用户名: 密码: 验证码:
船体分段三维测量及对位系统控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展和造船工艺的提高,为了提高造船效率和质量,造船模式正在向总段巨型化建造工艺方向发展,这对船舶设计水平和制造精度控制等环节都提出了更高的要求。如何快速准确地测量建造过程中船体分段产品与理论模型之间的误差,以及如何提高搭载时对接分段快速对位的效率,已经成为国内外船舶与海洋工程领域研究的热点,因此研究这些问题具有非常重要的理论意义和实际应用价值。
     本文在掌握国内外相关问题的研究现状基础上,对这些关键问题展开了进一步的研究工作,主要研究内容包括:
     (1)船体分段建造过程中变形与反变形措施方面的研究。在船舶建造过程中,焊接、搁墩、吊装、移位等过程都会引起船体分段的变形,本文详细分析了引起船体变形的原因,并针对不同的变形情况提出了相应的反变形工艺措施。
     (2)基于全站仪的船体分段大尺度测量方法的研究。分析了分段建造及搭载过程中船体分段大尺度三维测量方法,讨论了理论点集的选取原则,理论点集和测量点集常用匹配方法,并结合船体分段三维测量的特点,针对对应点集匹配的三点对齐法的不足,提出了基于最小二乘法选择中心点的改进三点对齐法;针对非对应点集匹配常用的迭代最近点法(ICP),提出了先采用主成份分析(PCA)进行粗匹配,再利用ICP进行精匹配的两阶段匹配方法,有效地提高了匹配精度。
     (3)船体分段合拢自动化系统及控制策略的研究。针对现有的搭载方式占用吊机时间过长,并且存在安全隐患问题,设计了一种用于船体分段合拢的三维可调平台系统,该系统由多个三自由度可调墩组成,单个可调墩可实现一定范围的三维运动,当采用群墩控制时,系统可实现多自由度运动,从而实现安全、高效和高精度控制的船体分段搭载对位和合拢的建造工艺。
     (4)基于多新息(Multi-innovation)理论的船体分段对位控制方法研究。船体分段合拢对接过程是一个难以建立数学模型的非线性系统,针对这一特点深入研究了可调平台控制策略问题,理论证明了基于多新息理论的无模型控制律的收敛性问题,并对控制律中的参数采用遗传算法进行在线优化;提出了基于多新息理论的PID神经网络控制算法,并证明了该方法的收敛性。最后采用多个仿真实例对所提出的两种改进算法进行验证,结果表明,改进后的两种控制算法都比原算法收敛速度快,具有更强的鲁棒性。
     (5)面向造船工程实际,采用自主发明专利技术制作了三自由度可调墩样机,提出了基于开放式控制系统开发规范的可调墩控制系统的框架结构,研制开发了可调墩控制系统的软硬件平台,并在平台控制算法库中,实现了本文提出的基于多新息理论的PIDNN控制算法,实际控制效果进一步验证了方法的有效性。本文研发了具有自主知识产权的船体分段大尺度测量误差分析系统和模拟搭载系统,实现了船体分段无余量建造误差分析和模拟搭载过程分析,以及有余量测量建造误差分析和模拟搭载功能,本研究成果已应用于广新海事重工股份有限公司的多艘实船建造中,取得了较好的实际工程应用效果。
With the development of science and shipbuilding technology, the shipbuilding mode is moving on the direction of gigantic block in order to improve the efficiency and quality of shipbuilding. Therefore it makes more demands of designing and manufacturing and other sectors. How to quickly and accurately measure the error between the theoretical model and real product in construction process, and how to increase positioning efficiency of docking in assembly process, have become the hotspot of academic research at home and abroad, so it has important theoretical significance and application value onstudying these issues.
     This article launched further research work on these issues on the basis of the current research archeivement made by experts at home and abroad. The main research contents include:
     (1) Study the deformation and the anti-deformation measures in the process of hull construction. In the process of hull construction, welding, placing on pier, lifting and shifting can cause deformation of hull block. This paper analyzes the cause of hull deformation, and propose corresponding measures against deformation according to different deformation type.
     (2) Study the hull block large-scale measurement methods usingtotal station. This paper analyzes the large scale three-dimensional measurement method of hull block in the process of construction and assembly, discusses the selection principle of theoretical point set, and the matching method between theoretical point set and measurement point set, proposes the improved three point alignment method of selecting the central point based on least square method after taking the characteristics of three-dimensional measurement of hull block and aiming at the shortage of point set matching in alignment method,. About the IPC method frequently used in the matching of non-correspondence point set, this paper proposes a new way of matching the point set by PCA in general and then matching the point set by ICP finely, which can improve the matching accuracy effectively.
     (3) Study the hull block assembly automation systems and control method. The existing assembly methods occupies long crane time and have security issues, this paper designes a three-dimensional adjustable platform used for hull block assembly. The system consists of several three degree of freedom adjustable pier, and using single pier can achieve a range of three-dimensional movement. When it turnsto group pier control mode, system can achieve multi degree of freedom of movement, and then realize a safe, efficient, high-accuracy technology of hull block assembly and positioning.
     (4) Study the hull block positioning control method based on the theory of multi-innovation. It is difficult to establish mathematical model for the hull block docking as it is a nonlinear system, this paper deeply studies the adjustable platform control method issues, theoretically proves the convergence of the model free control based on the multi-innovation theory, optimizes the control parameters online by using genetic algorithms, proposes a PID neural network control algorithm based on multi-innovation theory, and proves its convergence. Finally, this paper use multiple simulation instancesto verify these two improved algorithms, and the results show that the improved two control algorithms converges faster with strong robustness.
     (5) Oriented to the shipbuilding engineering practice, this paper makes a three degrees of freedom adjustable pier prototype, proposes adjustable pier control system frame structure based on the development of open control system specification., developes the hardware and software platform of adjustable the pier control system, and implement the proposed PIDNN control algorithm based on multi-innovation theory in platform control algorithm library, and the actual control results further validate the effectiveness of the proposed method. This paper also developes a hull block large-scale measurement error analysis system and an assembly simulation system, which achieved functions as error analysis and simulation analysis of hull block no-margin construction, margin measuring error analysis and assembly simulation. The results of this study have been applied to several shipbuilding projects in Guangxin Shipbuilding&Heavy Industry Co., Ltd., and acheives a good practical effect.
引文
[1]胡日强.船体建造精度控制关键技术研究[D]:(博士学位论文).大连:大连理工大学,2006.
    [2]Wantana M, Satoh K. Fundamental study on buckling of thin steel plate due to bead welding [J]. Journal of Japan Welding Society,1959,27(6):13-20.
    [3]George J.Bruce, M.Z. Yuliadi, A. Shahab. Towards a practical means of predicting weld distortion [J]. Journal of Ship Production,2001,17(2):62-68.
    [4]Teng T L. Analysis of residual stresses and distortions in T-joint fillet welds. International [J]. Journal of Pressure Vessel and Piping,2001,78(8):523-528.
    [5]A. Bachorski, M.J. Painter, A.J. Smailes. Finite element prediction of distortion during gas metal arc welding using the shrinkage volume approach [J]. Journal Materials Processing Technology,1999,92:405-409.
    [6]O.A Vanli, P. Michaleris. Distortion analysis of welded stiffeners [J]. Journal of Ship Procution,2001,17(4):226-240.
    [7]Mitsuyoshi Nakatani, Morihiko Ohsawa. Development of the welding deformation estimation method for high accuracy production system in shipbuilding [C].12th International Offshore and Polar Engineering Conference, Kyushu,2002.
    [8]Y. Takeda. Prediction of butt welding deformation of curved shell plates by inherent strain method [J]. Journal of Ship Production,2002,18(2):99-104.
    [9]H.c. Kuo, L.J. Wu. Prediction of deformation to thin ship panels for different heat sources [J]. Journal of Ship Production,2001,17(2):52-61.
    [10]汪建华,陆皓,魏良武.固有应变有限元法预测焊接变形理论及其应用[J].焊接学报,2002,23(6):36-37.
    [11]赵东升,刘玉君,孙敏科,纪卓尚等.碳钢与304不锈钢焊接残余应力的计算[J].焊接学报,2012,33(1):93-98.
    [12]田丰增.全船补偿计算及焊接变形预测[D]:(硕士学位论文).大连:大连理工大学,2005.
    [13]罗宇,朱积锋,鲁华益.船用大型焊接结构的焊接变形预测实现[J].造船技术,2005,(3):34-37.
    [14]李鸿.基于固有应变的船体分段焊接变形预测[D]:(博士学位论文).哈尔滨:哈尔滨工程大学,2005.
    [15]张殿桢.船体大型总段快速测量技术研究[D]:(硕士学位论文).大连:大连理工大学.2009.
    [16]杨剑.大尺寸视觉测量精度的理论和实验研究[D]:(博士学位论文).北京:北京邮电大学,2010.
    [17]0. Nakamura, M. Goto. Development of a coordinate measuring system with tracking[J]. Laser Interferometers.1991,40(1):68-72.
    [18]Wendt. Development of test and calibration procedure for automated theodolite systems in production metrology[R]. PTB Project Report,1996
    [19]Hideki Shimizu. Evaluation of three dimensional coordinate measuring methods for production of ship hull blocks[C]. International Offshore and Polar Engineering Conference,2002,80-89.
    [20]Shoji Takenchi, Kazuhiro Aoyama. Studies on the block positioning metrics system for the hull erection stage[J]. Marine Science and Technology,2002, (6):158-167.
    [21]Hans-Gerd Maas, Thomas P.Kersten. Experiences with a high resolution still video camera in digital photogram metric applications on a shipyard[J]. ISPRS Inter congress Symposium,1994,3(30):250-255.
    [22]岳建平,魏叶青,张永超.船舶建造测量分析系统研究[J].测绘通报,2008,(10):20-22.
    [23]周富强,张广军,江洁.现场双经纬仪三维坐标测量系统[J].机械工程学报,2004,40(1):165-169.
    [24]程真英,陈晓怀,唐燕杰.大尺寸测量的温度误差修正的不确定度分析[J].工业计量,2004,14(2):46-48.
    [25]R.S. Pappa, L.R. Giersch, J.M. Quagliaroli. Photogrammetry of a 5M inflatable space antenna with consumer-grade digital cameras[J]. Experimental Technique,2001, 25(4):21-29.
    [26]陈泽志,吴成柯.计算机视觉测量系统的误差模型分析[J].计算机辅助设计与图形学学报,2002,14(5):90-96.
    [27]Shin SW. When should we consider lens distortion in camera calibration[J]. Pattern Recognition,1995,28(3):101-110.
    [28]Olague G., Dunn E. Development of a practical photgrammetric network design using evolutionary computing[C]. Photogrammetric Record,2006,243-255.
    [29]张广军.机器视觉[M].北京:科学出版社,2005.
    [30]Maurice GC, Bernd R. The use of a monte carlo method for evaluating uncertainty and expanded uncertainty [J].Pattern Recognition,2006,43(4):178-188.
    [31]Trapet E, Savio E. New advances in traceability of CMMs for almost the entire range of industrial dimensional metrology need[J]. CIRP Annals:Manufacturing Thechnology, 2004,53(1):433-438.
    [32]Zhang Z.Y. Camera calibration with one dimensional objects[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2004,26(7):892-899.
    [33]Hammarstedt P, Sturm P, Heyden A. Degenerate cases and closed-form solutions for camera calibration with one dimensional objects[C]. In:Proceedings of IEEE International Conference on Computer Vision. Bejing, China,2005,1:317-324.
    [34]Wu FC, Hu ZY, Zhu HJ. Camera calibration with moving one dimensional objectfJ]. Patten Recognition,2005,38(5):755-765.
    [35]陈宇.船体总段自动合拢小车控制模型研究[D]:(硕士学位论文).武汉:武汉理工大学,2009.
    [36]范国梁,王云宽.基于多机器人的运动控制平台在刚体对接系统中的应用[J].2005,27(2):456-463.
    [37]赫曼公司.赫曼为外高桥船厂提供巨型总段多导造船法设备与服务[EB/OL], http:// www.himen.cn/Simplified/ApplicationView.asp?ID=31&SortID=40,2012.
    [38]秦品乐.船舶液货装卸过程智能控制及其关键技术研究[D]:(博士学位论文).大连:大连理工大学,2009.
    [39]将爱平,李秀英,韩志刚.从PID到无模型控制器[J].控制工程,2005,12(3):217-220.
    [40]Hunt K J, D S, etal. Neural network for control system:a survey[J]. Automatica,1992, 28(6):1083-1112.
    [41]Narendra K S. Identifcation and control of dynamic systems using neural networks[J]. IEEE Transactions on Neural Networks,1990,(1):4-27.
    [42]Sorensen P H, Morgaard M, Ravn O, etal. Implementation of neural network based non-linear predictive control[J]. Neurocomputing,1999,28:37-51.
    [43]舒怀林.PID神经元网络控制系统分析[J].自动化学报,1999,25(1):105-111.
    [44]王宁.神经元网络控制理论及应用研究[D]:(博士学位论文).武汉:华中理工大学,1992.
    [45]Garcia G E, Morshedi A M. Quadratic programming solution of dynamic matrix control[J]. Chem. Eng. Commun.,1981,46(1):73-87.
    [46]Richalet J, Rault A, Testud J L, etal. Model predictive heuristic control:application to industrial processes[J]. Automatica,1976,14:413-428.
    [47]Clarke E W, Mohtadi C, Tu(?)s P S. Generalized preditive control[J]. Automatica,1987, 23(2):137-162.
    [48]罗熊,孙增圻.计算智能方法优化设计模糊控制系统:现状与展望[J].控制与决策,2007,22(9):961-966.
    [49]Castro J L, Pelgado M. Fuzzy systems with defuzzi cation are universal approxi mators[J]. IEEE Trans.on Systems, Man and Cybernetics,1996,26(1):149-152.
    [50]Sun Z. Controller design and stability analysis of time-continuous systems based on a fuzzy state model[J]. Acta Automatica Sinica,1998,24(2):212-216.
    [51]张恩勤,施颂椒等.模糊控制系统近年来的研究与发展[J].控制理论与应用,2001,18(1):7-11.
    [52]韩志刚.一类无模型系统的控制律及其仿真研究[C].第一届全球华人智能控制与智能自动化大会论文集,北京:科学出版社,1993:2603-2608.
    [53]侯忠生.非线性系统参数辨识、自适应控制和无模型学习自适应控制[D]:(博士学位论文).沈阳:东北大学,1994.
    [54]韩志刚,王德进.无模型控制器[J].黑龙江大学自然科学学报,1994,11(4):29-35.
    [55]曹荣敏,周惠兴,侯忠生.数据驱动的无模型自适应直线伺服系统精密控制和实现[J].控制理论与应用,2012,29(3):310-316.
    [56]马洁.船舶运动姿态预报与控制方法研究[D]:(博士学位论文).哈尔滨:哈尔滨工程大学,2006.
    [57]吕凤琳,陈华斌,樊重建,陈善本.无模型自适应控制方法在脉冲TIG焊中的应用[J].上海交通大学学报,2009,43(1):61-66.
    [58]张铁柱,汪国强.无模型控制器在焦化炉上的应用效果分析[C].第21届中国控制会议文集,杭州,2002:265-268.
    [59]韩志刚.无模型控制方法在化肥生产中的应用[J].控制理论与应用,2004,21(6):858-863.
    [60]韩志刚,蒋爱平,汪国强.合成氨生产中的氢氮比控制系统[J].控制理论与应用,2005,22(5):762-766.
    [61]邹永涛.全站仪误差分析及其测量自动化的研究[D]:(硕士学位论文).北京:北京林业大学,2012.
    [62].P.Besl, N.McKay. A method for registration of 3d shapes[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,1992,14(2):239-266.
    [63]Z.Zhang. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision(IJCV),1994,13(2):119-152.
    [64]P.Besl, N.McKay. A method for registration of 3d shapes[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,1992,14(2):239-266.
    [65]Z.Zhang. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision(IJCV),1994,13(2):119-152.
    [66]R.Bergevin, M.Soucy, H.Gagnon, D.Laurendeau. Towards a general multi view registration technique [J]. Pattern Agence,IEEE Transactions on,1996,18:540-547.
    [67]D.F.Huber, M.Hebert. Fully automatic registration of multiple 3d data sets[J]. Image and Vision Computing,2003,21(7):637-650.
    [68]G.C. Sharp, S.W. Lee, D.K. Wehe. ICP registration using invariant features[J]. IEEE Trans. Pattern Anal. Mach. Intell,2002,24:90-102.
    [69]A. Stoddart, A. Hilton. Registration of multiple point sets[C]. in Pattern Recognition, Proceedings of the 13th International Conference,1996,2(2):40-44.
    [70]K.Rohr, H.Stiehl, R.Sprengel, T.Buzug, J.Weese, M. Kuhn. Landmark-based elastic registration using approximating thin-plate splines[J]. Medical Imaging,IEEE Transactions on,2001,20:526-534.
    [71]K.Rohr. Landmark-based image analysis:using geometric and intensity models[M]. Kluwer Academic Publishers.2001.
    [72]屈建勤.基于代数和几何不变量的点集配准方法[D]:(博士学位论文).吉林:吉林大学,2012.
    [73]管官,申玫,林焰,纪卓尚.船体分段测量点数据与CAD模型自动匹配方法研究[J].哈尔滨工程大学学报,2012,33(5):580-584.
    [74]Stanford Computer Graphics Laboratory, The Stanford 3d scanning repository[EB/OL]. Http//graphics.stanfor.edu/data/3Dscanrep/.
    [75]王运龙,林焰,秦品乐,陈明等.船体分段装配快速对位装置及其方法:中国,201010617752.4[P].2011.06.15.
    [76]王运龙,林焰,陈明,秦品乐等.船用三自由度可调墩:中国,201010617756.2[P].2011.06.01.
    [77]Qin Pinle, Lin Yan, Chen Ming. Improvement of Tracking Performance in Model-Free Adaptive Controller Based on Multi-innovation and Particle Swarm Optimization[J]. International Journal of Innovative Computing, Information and Control.2009,5(5): 1367-1377.
    [78]Qin Pinle, Han Xie, Lin Yan. Convergence Analysis about Improved Model-free Adaptive Controller Based on Multi-innovation Theory[J]. ICIC Express Letters,2009, 3(3):301-306.
    [79]Ding F, Xie XM, Fang CZ. Multi-innovation identication methods for time-varying systems[J]. Acta Automatica Sinica,1996,22(1):85-91.
    [80]Ljung L. Convergence analysis of parametric identi- cation methods[J]. IEEE Trans. Autom. Control, AC-23,1978, (5):770-783.
    [81]Ding F, Chen T W. Multi-innovation stochastic gradient identication methods[C]. Proceedings of the sixth World Congress on Intelligent Control and Automation, Dalian, China.2006:1501-1505.
    [82]Ding F, Chen T W. Performance analysis of multi-innovation gradient type identication methods[J]. Automatica,2007,43(1):1-14.
    [83]Ding F, Ding T. Mean square convergence of multi-innovation forgetting gradient identication[J]. IEEE Pacic Rim Conference on Communications, Computers and Signal Processing,2001:437-440.
    [84]张铁柱.无模型控制器的基本形式及其应用效果分析[A].第三届全球华人智能控制与智能自动化大会论文集[C].合肥:中国科学技术大学出版社,2000:2902-2906.
    [85]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2000.
    [86]Michalewica, Z., et al. A modified genetic algorithm for optimal control problems. Computers Math[J]. Applic,1992,23(12):83-94.
    [87]舒怀林.PID控制与神经网络的结合及PID神经网络非线性控制系统[C].第十九届中国控制会议论文集(二),2000:228-332
    [88]舒怀林.PID神经元网络及其控制系统[M].北京:国防工业出版社,2006:23-51
    [89]许少云.BP学习算法的在线模式与批处理模式[C].1996年中国智能自动化学术会议论文(上册),1996,203-209..
    [90]刘英玉.一种基于前向神经网络的多新息随机梯度算法[J].哈尔滨商业大学学报(自然科学版),2006,22(2):48-51.
    [91]舒怀林.PID神经网络及其非线性动态系统辨识能力分析[J].自动化与信息工程.2001,(4):36-40.
    [92]Wolfgang Sperling, Peter Lutz. Enabling open control system:an introduction to the OSACA system platform [J]. Rrbotics and Manufacturing,1996,5(6):1-8.
    [93]Lopez J.M., Ruiz-Minguela L.F.. Open control architecture for discrete Manufacturing automation technology[C]. Factory Communication System,1997 IEEE International Workshop,1997:329-333.
    [94]Gunter Prischow, Yusuf Altintas, Francesco Jovane, et al. Open controller architecture: past, present and future [J]. Manufacturing Technology,2001,50(2):463-470.
    [95]S. Kannan, C. Restrepo, I. Yavrucuk, et al. Control algorithm and flight simulation integration using the open control platform for unmanned aerial vehicles[C]. Proc. of the Digital Avionics Conference, Oct.1999:3-10.
    [96]王涛,王宇晗,蔡建国.开放式控制系统的研究现状[J].中国机械工程,1999,10(10):3-5.
    [97]大连理工大学船舶CAD工程中心.船体分段大尺度测量与模拟搭载系统研究[R].广新海事重工股份有限公司,2012.11.
    [98]Ren Gang, Qin Pinle, Lin Yan. Research on Auto Matching of Measuring Points Data with CAD Model for Hull Blocks. Advanced Materials Research,2013,15:680-685.
    [99]Ren Gang, Qin Pinle, Lin Yan, Wang Yunlong. Research on Improvement Algorithm of Model Free Learning Adaptive Controller. Applied Mechanics and Materials,2013, 300-301:1500-1504.
    [100]Gang Ren, Pinle Qin, Minmin Sun, Yan Lin. Convergence Analysis of multi-innovation learning algorithm based on PID neural network. Sersors and Transducers.2013,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700