用户名: 密码: 验证码:
汽车动力总成电控单元硬件在环测试系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以ECU为核心的汽车电子控制技术极大的提高了汽车的动力性、燃油经济性,降低了尾气排放量。ECU的复杂程度逐渐提高,控制逻辑也变得越来越复杂,而开发周期却要求越来越短。为了解决ECU控制功能的复杂化与快速开发之间的矛盾,ECU的开发过程采用了“V”模式开发流程。在ECU的“V”模式开发流程中,硬件在环仿真测试是整个开发流程的一个重要环节,它对缩短ECU的开发周期,提高ECU产品的质量和可靠性起着至关重要的作用。本文为了解决汽车动力总成ECU开发过程中在线测试的复杂和不便,针对汽车动力总成ECU的硬件在环仿真测试,开发了一套测试工具——汽车动力总成ECU硬件在环测试系统,适用于多种动力总成ECU在实验室环境中进行硬件在环仿真测试。
     汽车动力总成ECU硬件在环测试系统是为ECU开发的调试与测试工具,它为ECU提供虚拟的硬件试验环境,生成各种汽车传感器仿真信号、为ECU的驱动信号提供各种模拟执行器、检测ECU的驱动信号是否正常工作,考核ECU软件控制策略是否满足使用要求,它为ECU在试验环境中的调试与测试提供基础。为此,本文对汽车动力总成ECU硬件在环测试系统进行深入、系统的研究,论文完成的主要研究工作如下:
     1)详细分析了国内外汽车动力总成ECU硬件在环测试技术的发展现状。并对多种动力总成ECU的工作环境以及输入输出信号的特点做了综合分析,提出了ECU硬件在环测试系统总体设计方案。
     2)根据ECU驱动点火线圈初级绕阻的特点及其测试需求,建立了点火线圈的电路模型,提出了只保留了点火线圈初级绕阻的简化电路模型。电路模型中增加了能量泄放回路,以保证其电流曲线与真实点火线圈一致。通过对点火线圈两个电路模型的仿真分析和对比,证明了点火线圈简化电路模型能够非常精确地模拟点火线圈初级绕阻的电流,并具有电路结构简单的特点,非常适用于硬件在环仿真系统中模拟执行器开发。
     3)阐述了汽车常用传感器输出信号的建模方法,重点介绍了磁电式传感器、爆震传感器信号数学模型的建立。基于所建数学模型,提出了利用双通道直接数字频率合成技术生成曲轴转速传感器信号、凸轮轴位相传感器信号和爆震传感器信号的方法。阐明了通过用高端MCU与双通道DDS技术结合的方法实现复杂波形的途径。解决了在不增加硬件复杂程度的前提下三路复杂信号同时输出的问题。
     4)设计开发出具有自主知识产权的汽车动力总成ECU硬件在环测试系统,通过对系统的检测试验证明所开发系统的有效性。利用该系统可实现对汽车动力总成ECU的室内台架离线性能检测和调校,克服了以往在ECU研发过程中需要利用汽车动力总成物理样机进行其ECU性能测试和调校带来的操作不便、试验成本高的不足。
     5)以硬件在环测试系统的架构为基础,建立了多样品、不需要人工干预的ECU可靠性自动测试系统,可同时满足14台ECU样品的在线测试,通过CAN网络完成14套硬件模拟器与工控机的数据交换,并对每台ECU的各种测试数据和发生的故障进行自动记录,实现ECU可靠性测试试验的全程自动化。
Automotive electronic control technology based on ECU has greatly improved dynamic, fuel economy, and reduced exhaust gas emission of automobile. Nowadays, ECU’s structure and control technology becomes more and more complex, but the development cycle becomes more and more short. To solve the contradiction between complex requirements and rapid development, the development of ECU often adopts V-model. In the V-model development lifecycle, hardware-in-the-loop (HIL) testing plays an important part, which can shorten development cycle, improve reliability and quality of ECU. In this paper, to solve the difficulty of ECU testing, and for the HIL testing of automotive powertrain ECU, a testing tool is introduced, which is called hardware-in-the-loop testing System. It applies to HIL testing of different kinds of automotive powertrain ECU in laboratory environment.
     HIL testing System is a testing and debugging tool for the development of ECU, which provides a virtual automobile environment in laboratory, generates all kinds of sensor signals of automobile, and provides various simulated actuators for ECU. Furthermore the testing system also can test whether the driving signals of ECU are normal and whether the software control strategy is correct. For this purpose, this paper presents a thorough research on the HIL testing for automotive powertrain ECU. The main contents are as follows:
     1) Analyzes in detail the current situation of HIL testing at home and abroad. By analyzing input and output signals of many kinds of automotive powertrain ECUs, an overall project design is put forward.
     2) In this paper, a circuit model is set up for ignition coil. ECU drives only primary winding of ignition coil, for which reason and considering the testing requirement of ECU, the simplified circuit model is set up. The simplified circuit model keeps primary winding only, and adds bleeder circuit which ensures the current curve of circuit model is in accordance with real ignition coil. Through the simulation analysis, proves the simplified circuit model can simulate the primary winding current of ignition coil exactly. The model has the characteristic of simple structure, so it fits to the development of simulated actuator.
     3) Describes the model creation method of automobile sensor output signal, introduces emphatically the model creation method of camshaft position sensor, crankshaft position sensor and knock sensor output signals. Base on the model, two-channel direct digital synthesizer (DDS) method is put forward. By using this method, camshaft position sensor, crankshaft position sensor and knock sensor simulated signals can be generated. By using high-end MCU and two-channel DDS, realizes the generation of three complex signals at the same time and without aggravating the hardware cost.
     4) Designs and develops HIL testing system for automotive powertrain ECU, which has independent intellectual property. Through verification testing, proves the validity of the system. This system realizes the in-line testing without test bench in laboratory environment, and solves the problems of difficulty and high cost of in-line testing.
     5) Based on the structure of HIL testing system, A ECU reliability testing system is set up, which can realize the unmanned operation, multiply samples reliability testing of ECU. This system can test fourteen samples at the same time, and realize automation completely in testing, test data recording and test error recording.
引文
[1] Tom Denton.汽车电气与电子控制系统[M].北京:机械工业出版社, 2008:12-60.
    [2] Ronald K. Jurgen.汽车电子手册[M].北京:电子工业出版社, 2010:192-195.
    [3] AUTOSAR Consortium. AUTOSAR Documents (V3.0) [EB/OL]. 2009:11-13 http//:www.autosar.org.
    [4]恒润科技. dSPACE基于Matlab/Simulink平台的实时快速原及硬件在回路仿真的一体化解决途径.恒润科技公司, 2003:7-14.
    [5]戴海峰,魏学哲,孙泽昌. V-模式及其在现代汽车电子系统开发中的应用[J].机电一体化, 2006(6).
    [6]刘巨江,周文华,何正胤,等.基于模型的发动机ECU开发[J].汽车工程, 2007(11).
    [7]祝轲卿,徐权奎,王俊席,等.自动代码生成工具在电控柴油机喷油系统控制软件开发中的应用[J].内燃机, 2006(5).
    [8] Hanselmann H. Hardware in the Loop Simulation as a Standard Approach for Development Customization and Production Test [J]. SAE 930207, 1993.
    [9] Harald Krohm, Victor Gheorghiu. Hardware in the Loop Simulation for an Electronic Clutch Management System [J]. SAE 950420, 1995.
    [10] Achim Wohnhaas. Real Time Simulation Small Multi Computer Systems in Automotive Engineering [J]. SAE 942299,1994.
    [11] Acaraceni, F De Cristofaro, F Ferrara, et al. Benefits of Using a Real-Time Engine Model during Engine ECU Development [J], SAE paper 2003-01-1049, 2003.
    [12] Leohold, H J Theuerkauf. HiL-Methodology for Design and Calibration of automotive Systems and safety critical System Architectures [C], Virtual Product Creation,Stuttgart, 2004.6.
    [13]宋百玲.柴油机控制系统硬件在环仿真技术[M].北京:国防工业出版社, 2010:2-8.
    [14] S. Ram an, N. S ivashank ar, W. M ilam, W. S tu art, etc, Design and Implementation of HIL Simulators for Powertrain Control System Software Development [J]. Proceedings of the American Control onference, 1999.
    [15]马蓓蓓,吴进华. dSPACE实时仿真平台软件环境及应用[J] .系统仿真学报, 2004,16(s4):667-670.
    [16] http://www.dspace.com [OL].
    [17] dSPACE.Catalog 2006 [EB]. dSPACE, 2006.
    [18] H.Hanselmann. DSP-Based Automotive Sensor Signal Generation for Hardware in the Loop Simulation [J]. SAE940185.
    [19] ETAS. LabCar: Hardware-in-the-Loop test system [EB]. ETAS, 1997.
    [20]朱辉,王丽清.硬件在环仿真系统的软硬件基础[J].小型内燃机, 1998,27(6): 22-26.
    [21] ADI. RTS Simulator [EB]. Applied Dynamics International, 2006.
    [22] http://www.adi.com[OL].
    [23] ADI. Distributed HIL Simulation[EB]. Applied Dynamics International, 2005.
    [24] ADI. The eXpandable Real-Time Simulator[EB]. Applied Dynamics International, 2006.
    [25] Rolf Isermann, Stefan Sinsel and Jochen Schaffnit. Modeling and Real-Time Simulation of Diesel Engine for Control Design. SAE 980796, 1998:1-8.
    [26] R.Isermann, J.Schafnit, S.Sinsel. Hardware-in-the-loop Simulation for the Design and Testing of Engine-control Systems [J]. Control Engineering Pratice, 1999, 7:643~653.
    [27] NI. MEASUREMENT andAUTOMATION 07 CATALOG[EB]. National Instruments, 2006.
    [28] NI.基于计算机的测试测量和自动化方案—2006优秀论文合订本[EB]. 2006.
    [29]刘学瑜,施光林,范永健,等. dSPACE实时仿真系统在高压共轨ECU开发中的应用[J],现代车用动力, 2003(1):20-25.
    [30]李长文,张付军,黄英,等.基dSPACE系统的电控单元硬件在环发动机控制仿真研究[J].兵工学报, 2004,25(4):402-407.
    [31]王宏桥,李进,欧阳明高.电控柴油机计算机实时仿真系统设计[J].车用发动机, 2001(4):10-12.
    [32]李长文,张宏波,赵长禄,等. ECU硬件在环柴油机控制仿真平台研究[J].北京理工大学学院, 2004,24(5):407-410.
    [33]姜超,焦伟,易飞. DCT硬件在环仿真系统平台设计[J].上海汽车,2010,10:23-26.
    [34]孔峰,汤莎莎,曾洁,等.基CAN总线的ECU自动测控系统的研发[J].内燃机工程, 2007,28(4):36-39.
    [35]吴伟斌,洪添胜,李震,等.基于虚拟仪器技术的汽油发动机ECU仿真测试系统[J].微计算机信息, 2006,22(3-2):205-208.
    [36]谢友展,袁爱进.基于SHCAN智能仪表的ECU检测系统的开发[J].电气时代, 2007(9):64-65.
    [37] Feng Kong, Liyan Zhang, Jie Zeng, Yuhua Zhang. Automatic Measurement and Control System for Vehicle ECU Based on CAN Bus [J]. Proceedings of the IEEE International Conference on Automation and Logistics, August 18-21, 2007, Jinan, China:964-968.
    [38]程刚,李绍安,钱圆圆.基于32位微控制器的高压共轨ECU的开发[J].现代车用动力, 2003,1:12-16.
    [39]唐航波,龚元明,谭文春,等.柴油机高压共轨ECU硬件在环仿真系统硬件设计[J].车用发动机, 2005,2:24-28.
    [40]余淼,刘胜龙,朱李晰,等.汽车发动机ECU的可靠性试验研究[J].内燃机工程, 2010,6:90-94.
    [41]荆新超,敖国强,朱建新,等.混合动力汽车动力总成硬件在环仿真系统开发[J].车用发动机, 2006,12:20-23.
    [42]麻友良.汽车电器与电子控制技术[M].北京:机械工业出版社, 2006:214-217.
    [43]邬宽明. CAN总线原理和应用系统的设计[M].北京:北京航空航天大学出版社, 1996.
    [44]何希才.传感器及应用[M].北京:国防工业出版社, 2001:189-195.
    [45]董辉.汽车用传感器[M].北京:北京理工大学出版社, 2000:240-245.
    [46]宋国民.磁感应式高压共轨转速传感器研制[J].仪器仪表学报, 2006, 27(3): 291-293.
    [47]宋国民,刘学瑜,陆健.高压共轨转速信号测量与精确定时分析[ J] .现代车用动力, 2003(5) : 22-25.
    [48] Hartmut Jasberg. Differential Hall IC for gear-tooth sensing[J]. Sensors and Actuators, 1990:737-742.
    [49]肖波平,高转速磁电式转速传感器的研制[J].仪器仪表学报, 2002,23(2):215-217.
    [50]刘迎总编著.传感器原理设计与应用[M] .北京:国防科技大学出版社, 1980: 168-173.
    [51]徐权奎.电控柴油机转速传感器处理模块优化设计[J].车用发动机, 2006, 163(1): 28-31.
    [52] Heywood J B.Internal Combustion Engine Funda-mentals[M]. Mc Gram-Hill Book Company. 1988:138-196.
    [53]于秀敏,林学东,钱耀义,等.汽油机爆震信号测量与应用分析[J].吉林工业大学学报. 2000,3(2):31-35 .
    [54] Hudson C etal. Knock measurement for fuel evaluation in spark ignition engines[J]. Fuel. 2001(80):395~407.
    [55]张振东,王伯年,王祝炜.汽车发动机爆震检测与量化方法[J].上海理工大学学报. 1998,12(4):273~2797.
    [56]张建峰.汽油机爆震特征提取与诊断研究[D].哈尔滨工业大学硕士学位论文. 2003:6~23.
    [57]吴平友,黄河,程庆.汽油发动机爆震分析与控制[J].传动技术. 2003(3):36-38.
    [58]刘金武,龚金科,谭理刚,等.基于多维模型的电喷汽油机MAP图的数值生成[J].汽车工程. 2006,28(8):719-724.
    [59]王宇鹏.爆震反馈控制汽油机点火ECU技术研究[D].河北工业大学硕士学位论文, 2007:8-15.
    [60] Giorgio Rizzoni, Xing Cindy Chen. Detection of Internal Combustion Engine Knock Using Time-Frequency Distributions [J]. IEEE Transaction on Instrumentation an Measurements. 1993, 19(3):360-363.
    [61] A.M.Zoubir. A Comparative Study of Multiple Test Based Techniques for Optimal Sensor Location for Knock Detection [J]. Mechanical Systems and Signal Processing.2000, 14(3):353-369.
    [62] M.D.Boland, A.M.Zoubir. Identification of Time-Varying Non-Linear Systems with Application to Knock Detection in Combustion Engines [J]. IEEE Transaction on Instrumentation and Measurements. 1997,15(3):799-802.
    [63] S.Carstens Behrens, M.Wagner, Johann F. Bohme. Improved Knock Detection by Time Variant Filtered Structure-Bone Sound[J]. IEEE Transaction on Instrumentation and Measurements. 1999, 26(1):2255-2258.
    [64] Mark Urlaub, Johann F.Bhme. Reconstruction of Pressure Signals on Structure-borne Sound for Knock Investigation [J].2004 SAE World Congress Detroit.2004,(3):8-11.
    [65]刘海荣,于墩录,陈小迅,等.火花点火发动机爆震测量方法的初步研究[J].汽车技术.2000,(3):11-13.
    [66] F.Millo, C.V.Ferraro. Knock in S.I.Engines: A Comparison between Different Techniques for Detection and Control [J]. SAE.982477.
    [67]蔡昌贵,黄韶炯.基于点火控制算法的汽油机爆震控制[J].农机化研究. 2006,(8):200-202.
    [68]彭生辉.内燃机爆震与爆震传感器的性能研究[D].合肥工业大学硕士学位论文. 2005:39-58.
    [69] Olivier Boubal, Knock Detection in Automobile Engines[J], IEEE instrumentation & measurement magazine, Sept.2000,3(3):24-28.
    [70] Jean-Hugh Thomas, Bernard Dubuisson and Marie-Agnes Dillies-Peltier, Engine Knock Detection from Vibration Signals using Pattern Recognition[J], Meccanica, 1997,32:431-439.
    [71]吴平友.汽车发动机电控点火系统的分析与研究[D].上海交通大学硕士学位论文. 2004:76-89.
    [72] Dues S.M.combustion Knock Sensing,Sensor Selection and Application Issue.SAE PAPER, 900488.
    [73]刘成才.发动机爆震小波包变化分析及特征提取研究[D].吉林大学博士学位论文. 2010:35-47.
    [74] S.Ker,F.Bonnardot and L.Duval,Algorithm comparison for real timeknock detection[C], IEEE International Conference on Acoustics,Speech, and Signal Processing (ICASSP 07),2007,pp.397-400.
    [75]贺建波,贺展开主编.汽车传感器的检测[M],北京:机械工业出版社, 2005.1:78.
    [76]宋福昌.汽车传感器识别与检测图解[M],北京:电子工业出版社, 2006.7:48.
    [77]刘夏伦.电子点火系统的种类和结构特点[J].汽车电器. 2002,(6):26-27.
    [78]周耀.汽车点火线圈种类的发展[J].汽车电器. 2003,(3):1.
    [79]陈红.点火线圈技术的进步[J].汽车电器. 2006:6~8.
    [80] L.M.Das, Rohit Gulati, P.K.Gupta. A Comparative Evalution of the Performance Characteristics of A Spark Ignition Engine Using Hydrogen and Compressed Natural Gas as Alternative Fuels [J]. International Journal of Hydrogen Energy. 2000:783-793.
    [81] Emil L.Hanzevack. Improving Cold-Start Overrun and Engine Efficiency with Multiple Spark Ignition [J]. Automotive Engine.April,1994:30-34.
    [82]边焕鹤.汽车电器与电子设备[M].北京:人民交通出版社,1997:142-210.
    [83]关文达.汽车构造[M].北京:清华大学出版社, 2004:169-199.
    [84]汽油发动机直接点火系统设计研究[J].内燃机工程. 1999,(1):54-58.
    [85] Bruno Lindl. Interaction of Ignition Components and Their Influence on Operating Conditions of Spark– Ignition Engines [J]. MTZ, 1994(2). 110-115.
    [86] Kekedjian H, Krepec T. Further Development of Solenoid Operated Gas Injection with Fast Opening and Closing [C]. SAE Paper 940450, 1994.
    [87]连长震,李建秋,周明,等.电控燃油喷射用高速电磁阀驱动方式研究[J].汽车工程, 2002(4) : 310-313.
    [88]李峰,齐鲲鹏,隆武强.高压共轨喷油系统电磁阀特性试验与仿真研究[J].车用发动机, 2008(6):48-51.
    [89] Yang Ming gao, Lu Qilong. Study of Inject ion Control Valve in a New Electronic Diesel Fuel System [C]. SAE Paper 980813, 1998.
    [90]安士杰,欧阳光耀.电控喷油器控制电磁阀理论与试验研究[J].内燃机学报, 2003, 21( 5) : 356 -360.
    [91] Bianchi G M, Pelloni P. Optimization of the solenoid valve behavior in common rail injection systems [C]. SAE Paper, 2000: 2130-2138.
    [92]卢启龙,欧阳明高,李建秋.电控柴油喷射系统用高速强力电磁阀的性能研究[J] .内燃机工程, 1997(3): 36-42.
    [93]王永虹,徐炜,郝立平. STM32系列ARM Cortex-M3微控制器原理与实践[M].北京:北京航天航空出版社,2008.
    [94] STMicroelectronics group of companies, STM32F107 Reference manual[OL], http://www.st.com, 2006.
    [95] Microchip Technology Inc.dsPIC30F datasheet [OL], http://www.microchip.com, 2005.
    [96]张迎新,雷文. ST7通用单片机原理及应用[M].北京:北京航空航天大学出版社, 2004.
    [97] STMicroelectronics group of companies. ST7LITE1Xb Data Sheet Rev.5 [OL]. www.st.com, 2006.
    [98] International Rectifier Products. IPS511G / IPS512G Data Sheet[OL ]. www.irf.com, 2000.
    [99] On Semiconductor Products. NIF5002N Data Sheet[OL ]. http://onsemi.com, 2004.
    [100] Allegro MicroSystems. ACS712 Data Sheet Rev.7 [OL]. www.allegromicro.com, 2007.
    [101] D.P.Noel, T.A.Kwasniewski. Frequency Synthesis: a Comparision of Techniques Digital Object Identifier [J]. IEEE.1994:535-538.
    [102]迟忠君,徐云,常飞.频率合成技术发展概述.现代科学仪器. 2006,(3):21-23.
    [103] T.Nicholas, Henry Samueli. An Analysis of the Direct Digital Frequency Synthesizers in the Presence of Phase-Accumulator Truncation [J]. IEEE 41st Annual Frequency Control Symposium. 1987:495-502.
    [104]中华人民共和国国家技术监督局. GB3187-82 [S].可靠性基本名词术语及定义. 1983.
    [105]中华人民共和国国标.发动机可靠性试验GB/T 19055[S].中国标准出版社,2003.
    [106]中华人民共和国国标.电工电子产品环境试验国家标准GB2423[S].中国标准出版社, 2001.
    [107]胡思德( Dan iel ROUCH B ).汽车车载网络( VAN /CAN /L IN)技术详解[M ] .北京:机械工业出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700