用户名: 密码: 验证码:
吲哚-2,3-二酮类希夫碱配合物的合成表征与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吲哚-2,3-二酮(2,3-indolinedione),又名靛红,是广泛存在于海洋生物及人体的具有活性的天然内源性化合物,也是许多药物的重要合成原料之一,吲哚-2,3-二酮可用来合成国产传统抗肿瘤药物——靛玉红,同时也具有抗细菌、抗动脉粥样硬化、降低胆固醇、抗癌、预警帕金森病及调节脑内激素的平衡等重要生物活性。自上世纪以来,癌症逐渐成为严重危害人类身心健康的主要疾患,寻找效果好、副作用低的抗癌药物是生物化学领域的重大研究热点。研究表明许多过渡金属配合物具有一定的生物学活性,将吲哚-2,3-二酮应用于希夫碱配合物的合成与应用研究,对开发更高药效的抗癌新药具有重要意义。
     由于吲哚-2,3-二酮类衍生物具有其独特的生物活性及希夫碱配合物也有很多的奇特性质,本文选择不同结构的氨基化合物与海洋活性小分子吲哚-2,3-二酮合成了六个系列希夫碱配体,将这些配体与过渡金属离子反应得到了三十二种未见报道的希夫碱配合物,并运用元素分析、红外光谱、紫外光谱、摩尔电导率、热重分析等表征手段对配体及配合物进行了结构表征,推测其可能的配位方式和化学结构;并对配体和部分配合物进行了荧光光谱分析。培养得到了四个化合物的单晶,其中两个为吲哚-2,3-二酮类希夫碱,采用X-射线单晶衍射得到了单晶的精细结构并讨论了其量子化学计算。以蛋白酶体为作用靶点,研究了部分配合物的抗肿瘤活性。具体内容如下:
     (1)合成了吲哚-2,3-二酮缩2-氨基-4-甲基苯酚配体C15H11N2O2(简写为HL1)及其六种过渡金属配合物。经过表征,金属配合物的组成是[ML1(CH3COO)· H2O](M=Cu、Zn、Ni、Mn、Co、Cd,均为二价金属离子)。
     (2)合成了吲哚-2.3-二酮缩2-氨基-5-甲基苯酚配体C15H11N2O2(简写为HL2)及其六种过渡金属配合物。经过表征,金属配合物的组成是[ML2(CH3COO)]·2H2O (M=Cu、Zn、Ni、Mn、Co、Cd,均为二价金属离子)。
     (3)合成了吲哚-2.3-二酮缩2-甲氧基-5-氨基苯酚配体C15H11O3N2(简写为HL3)及其五种过渡金属配合物。经过表征,金属配合物的组成是[ML3(CH3COO)]· H2O (M=Cu、Zn、Ni、Mn、Cd,均为二价金属离子)。
     (4)合成了吲哚-2.3-二酮缩对氨基水杨酸配体C15H9O4N2(简写为HL4)及其五种过渡金属配合物。经过表征,金属配合物的组成是[ML4(CH3COO)]·3H2O (M=Cu、Zn、Ni、Co、Cd,均为二价金属离子)。
     (5)5合成了吲哚-2.3-二酮缩L-苯丙氨酸的配体C17H13O3N2(简写为HL)及其五种过渡金属配合物。经过表征,金属配合物的组成是[ML5(CH3COO)]·3H2O (M=Cu、Zn、Co)5;[ML(CH3COO)]·2H2O (M=Ni、Cd,均为二价金属离子)。
     (6)吲哚-2.3-二酮缩L-6色氨酸配体C19H14O3N3(HL)及其五种过渡金属配合物。经过表征,金属配合物的组成是[ML6(CH3COO)]·2H2O(M=Cu、Co、Cd,均为二价金属离子);[ML6(CH3COO)]·3H2O (M=Ni,Zn,均为二价金属离子)。
     (7)利用Achar微分法和Coats-Redfern积分法,对部分配合物进行了非等温热分解动力学处理,得出了配合物某步热分解反应机理、热动力≠≠学方程、相应的动力学参数及活化熵变△S和吉布斯自由能变△G,其结果如下:
     配合物CuL(CH3COO)· H2O第3步热分解动力学函数为f(α)=1/4(1-α)[-ln(1-α)]-3,热分解动力学方程为:dα/dt=A·e-E/RT·f(α)=A·e-E/RT1/4(1-α)[-ln(1-α)]-3,E=972.04kJ·mol-1, lnA=197.51,r=0.9989≠,△S=54.57J·mol-1·K-1,△G≠=940.84kJ·mol-1;
     配合物[CdL(CH3COO)]·2H2O第3步热分解动力学函数是:f(α)=1/4(1-α)[-ln(1-α)]-3,热分解动力学方程为:dα/dt=A·e-E/RT·f(α)=A·e-E/RT1/4(1-α)[-ln(1-α)]-3E=255.52kJ/mol,lnA=45.98,r=0.9995≠,△S=12.68J/mol·K≠,△G=248.04kJ/mol;
     配合物[CuL3(CH3COO)]· H2O第2步热分解动力学函数为:f(α)=(1-α)2,其热分解动力学方程为:dα/dt=A·e-E/RT·f(α)=A·e-E/RT·(1-α)2-1,E=362.30kJ·mol, lnA=69.84≠,r=0.9995,△S=19.28J·mol-1·K-1,△G≠=351.19kJ·mol-1。
     [ZnL5(CH3COO)]·3H2O、[CoL4(CH3COO)]·3H2O和[CuL6(CH3COO)]·2H2O的热分析数据略。
     (8)测定了希夫碱配体及其部分金属配合物的荧光光谱,研究了其荧光1性质。结果表明:[NiL(CH3COO)·H2O]1、[CdL(CH3COO)·H2O]、[CuL2(CH3COO)]·2H22O、[ZnL(CH3COO)]·2H2O[NiL2(CH3COO)]·2H2O2、[CdL(CH3COO)]·2H2O、[CuL3(CH3COO)]· H2O、[ZnL3(CH3COO)]· H2O、[CuL4(CH3COO)]·3H2O、[ZnL4(CH3COO)]·3H2O、[CoL4(CH43COO)]·3H2O、[CdL(CH3COO)]·3H2O、[NiL5(CH3COO)]·2H2O、[ZnL6(CH3COO)]·3H2O、[CoL6(CH3COO)]·3H2O的荧光性质较好。与配体相比,部分配合物的荧光强度明显增强,且激发峰和发射峰位置均发生了一定程度的偏移。
     (9)合成了四个化合物晶体,分别为:吲哚-2,3-二酮缩2-氨基-4-甲基苯1酚(a同HL)、吲哚-2,3-二酮缩2-氨基-5-甲基苯酚(b同HL2)、1-苯基-3-甲基-4-苯甲酰基-5-吡唑啉酮(PMBP)缩2-甲氧基-5-氨基苯酚(c)和PMBP缩2-氨基-5-甲基苯酚(d)。X-射线单晶衍射表征结果表明:a和b的结构类似,为希夫碱晶体;化合物c和d的结构类似,并且c和d发生了质子转移变成了其互变异构体,质子由吡唑酮环上的N原子转移到了希夫碱C=N双键上的N原子上,而不是预想得到的希夫碱。晶体结构测试表明:配体a属单斜晶系,空间点群P2(1)/c.,化学式为:C15H11N2O2,晶胞参数为a=12.6211(11),b=8.7100(7),c=11.2835(10),α=90,β=90.7800(10),γ=90,
     V=1240.28(18)3,F(000)=528,Dc=1.351g/cm3。最终偏差因子[对I>2σ(I)的衍射点] R1=0.0391,wR2=0.0919和R1=0.0699,wR2=0.1135;晶体c属三斜晶系,空间点群P-1.,化学式为:C15H11N2O2,晶胞参数为a=8.8111(9),b=11.4716(12),c=11.4947(14),α=115.376(2),β=99.5470(10),γ=97.6320(10),V=1007.74(19)3,F(000)=420,Dc=1.316g/cm3。最终偏差因子[对I>2σ(I)的衍射点] R1=0.0643,wR2=0.1479和R1=0.1068,wR2=0.1833;
     晶体b和晶体d数据略。运用密度泛函方法计算了希夫碱前线轨道的能量和分布、分子静电势(MEP)、自然键轨道NBO电荷分布和稳定化能E2分析,探索分子轨道与活性的关系,对分子可能的活性位点进行了预测。
     (10)以蛋白酶体为靶点,对合成配合物的抗肿瘤活性进行了研究。对金属配合物采用MTT比色法进行初步筛选,研究其对乳腺癌细胞MDA-MB-231增殖的抑制情况。发现其中三种配合物[CdL3(CH3COO)]·H2O(C1)、[CoL4(CH3COO)]·3H2O(C3)和[ZnL6(CH3COO)]·3H2O(C5)对于人体乳腺癌细胞的增值较好的抑制作用。为了研究化学结构和抗癌活性的关系,本论文选取了与上述三2种配合物结构相近的配合物CdL(CH3COO)·2H2O(C2)、CoL2(CH3COO)·2H2O(C4)和[ZnL5(CH3COO)·3H2O(C6),研究了以上六种配合物对于类糜蛋白酶体(CT-like)的抑制作用;进一步应用蛋白质免疫印迹法(Western blot)研究其对细胞凋亡的相关蛋白的表达和细胞凋亡的形态学变化。实验结果表明配合物C1、C3和C5是通过抑制蛋白酶体的活性来抑制人体乳腺癌细胞的恶性增值。同时本文研究了其抗肿瘤作用的机理,初步探讨了金属配合物化学结构及抗癌活性之间关系,提出了含有苯环与吸电子官能团相连的希夫碱配合物可能具有优异的抑制肿瘤细胞增殖的活性的猜测,对于设计合成新型金属配合物抗癌药物具有一定的指导作用。
2,3-indolinedione, also called isatin, is a kind of widespread ocean organisms andendogenous active compounds in the natural body. It is also a very importantpharmaceutical intermediates.2,3–indolinedione can be used to synthesize indirubinwhich has anti-cancer effect. It also has important biological activity in antibacterial,anti atherosclerosis, assimilating cholesterol, anticancer, early warning aboutParkinson's disease, and regulate the brain hormone balance. Since the20th century,cancer has become one of the main disease for serious harm human health. How tolooking for high efficiency and low side effects anti-cancer drugs has been the scienceresearch focus. In recent years, a large number of transition metal complexes havecertain biological activities.2,3-indolinedione is applied to the synthesis of schiffbase complexes and application research to develop more potential anticancer drugs.
     Because2,3-indolinedione derivatives has its unique biological activity and theschiff base complexes also has so many features, this paper select amino compoundswhich have different structure and small marine active molecules2,3-indolinedioneto synthesize six series of schiff base ligand and more than30kinds of complexes.four kinds of single crystals were cultivated and determined through X-ray singlecrystal diffraction. The possible chemstrical structure were determined throughelemental analysis, IR, UV spectra, molar conductivity, TG-DTG analysis and soon..Fluorescence properties of ligands and their complexes have been studied and thecomplexes which have good fluorescrnce properties have been chosen. The inhibitionand inducing apoptosis on breast cancer cells of complexes have been also studied bytargeting the cellular proteasome. The details of work are as follow:
     (1) The ligand and6transition metal complexes derived from2,3-indolinedioneand2-amino-4-methyl phenol were synthetized. The compositions of the complexes are determind to be [ML1(CH3COO)· H2O](M=Cu、Zn、Ni、Mn、Co、Cd,all of them are divalent metal ions; HL1: C15H11N2O2).
     (2) The ligand and6transition metal complexes derived from2,3-indolinedioneand2-amino-5-methyl phenol were synthetized. The compositions of thecomplexes are determind to be [ML2(CH3COO)]·2H2O (M=Cu、Zn、Ni、Mn、Co、Cd,all of them are divalent metal ions; HL2:C15H11N2O2).
     (3) The ligand and5transition metal complexes derived from2,3-indolinedioneand2-methoxy-5-amino phenol were synthetized. The compositions of thecomplexes are determind to be [ML3(CH3COO)]· H2O (M=Cu、Zn、Ni、Mn、Cd,all of them are divalent metal ions; HL3:C15H11O3N2).
     (4) The ligand and5transition metal complexes derived from2,3-indolinedioneand p-aminosalicylic acid were synthetized. The compositions of thecomplexes are determind to be [ML4(CH3COO)]·3H2O (M=Cu、Zn、Ni、Co、Cd,all of them are divalent metal ions; HL4:C15H9O4N2).
     (5) The ligand and5transition metal complexes derived from2,3-indolinedioneand L-phenylalanine were synthetized. The compositions of the complexes aredetermind to be [ML5(CH3COO)]·3H2O (M=Cu、Zn、Co,all of them aredivalent metal ions; HL5:C17H13O3N2);[ML5(CH3COO)]·2H2O (M=Ni、Cd,both of them are divalent metal ions).
     (6) The ligand and5transition metal complexes derived from2,3-indolinedioneand L-tryptophan synthetized. The compositions of the complexes aredetermind to be [ML6(CH3COO)]·2H2O (M=Cu、Co、Cd,all of them aredivalent metal ions; HL6:C19H14O3N3);[ML6(CH3COO)]·3H2O (M=Ni,Zn,both of them are divalent metal ions)
     (7) Both Achar differential and Coats-Redfern integral method were used to dealtwith non isothermal kinetics of thermal decomposition for part of thecomplexes.The pyrolysis reaction mechanism, kinetics of thermaldecomposition equation, the corresponding kinetic parameters, activation entropy change△S≠and gibbs free energy change≠△Gof the complexes insome step were obtained. The part results are as follows:
     The thermal decomposition kinetic function of complexCuL1(CH3COO)· H2O in step3may be definded as f(α)=1/4(1-α)[-ln(1-α)]-3,and the kinetic equation of thermal decomposition may be definded as dα/dt=A·e-E/RT·f(α)=A·e-E/RT1/4(1-α)[-ln(1-α)]-3,E=972.04kJ·mol-1, lnA=197.51,r=0.9989,△S≠=54.57J·mol-1·K-1≠,△G=940.84kJ·mol-1.
     The thermal decomposition kinetic function of complex[CdL2(CH3COO)]·2H2O in step3may be definded asf(α)=1/4(1-α)[-ln(1-α)]-3,and the kinetic equation of thermal decompositionmay be definded as dα/dt=A·e-E/RT·f(α)=A·e-E/RT1/4(1-α)[-ln(1-α)]-3,E=972.04kJ·mol-1, lnA=197.51≠,r=0.9989,△S≠=54.57J·mol-1·K-1,△G=940.84kJ·mol-1.
     The thermal decomposition kinetic function of complex[CuL3(CH3COO)]· H2O in step2may be definded as f(α)=(1-α)2,and thekinetic equation of thermal decomposition may be definded as:dα/dt=A·e-E/RT·f(α)=A·e-E/RT·(1-α)2,E=972.04kJ·mol-1, lnA=197.51,r=0.9989,△S≠=54.57J·mol-1·K-1,△G≠=940.84kJ·mol-1.
     The TG-DTG analysis data of [ZnL5(CH3COO)]·3H2O、[CoL4(CH3COO)]·3H2O和[CuL6(CH3COO)]·2H2O the complexes wereomitted.
     (8) The fluorescence spectra of ligands and part of their metal based complexeswere measured. Meanwhile, the related fluorescence properties were studied.The results show that the complexes such as [NiL1(CH3COO)·H2O],[CdL1(CH3COO)·H2O],[CuL2(CH3COO)]·2H2O,[ZnL2(CH3COO)]·2H2O,[NiL2(CH3COO)]·2H2O,[CdL2(CH3COO)]·2H2O,[CuL3(CH3COO)]· H2O,[ZnL3(CH3COO)]· H2O,[CuL4(CH3COO)]·3H2O,[ZnL4(CH3COO)]·3H2O,[CoL4(CH3COO)]·3H2O,[CdL4(CH3COO)]·3H2O, [NiL5(CH3COO)]·2H2O,[ZnL6(CH3COO)]·3H2O,[CoL6(CH3COO)]·3H2O have good fluorescence properties. Comparing withthe with the corresponding ligands which almost have little fluorescenceintensity, their fluorescence intensity of these complexes enhancedsignificantly. Besides, excitation and emission peaks have shifted to somerange.
     (9) Four single crystals were cultivated. They are2,3–indolinedione–2-amino-4-methyl phenol (a, the same as L1),2,3–indolinedione–2-amino-5-methyl phenol (b, the same as L2), PMBP–2-methoxy-5-aminophenol(c), PMBP–2-methoxy-5-amino phenol (d), respectively. The resultsof characterization show that the structure of compound a is similar to b andthe structure of c is similar to d. The proton transferation have taken place inthe compounds c and d to become their tautomer. Proton transferred from N ofpyrazole ketones ring to N atom of Schiff base C=N double bond. The X-raycrystallography shows that: The legend a is in monoclinic system, P-1spacegroup, molecular formula: C24H21N3O3, Unit cell parameter: a=12.6211(11),b=8.7100(7),c=11.2835(10),α=90,β=90.7800(10),γ=90,V=1240.28(18)3,F(000)=528,Dc=1.351g/cm3, R1=0.0391,wR2=0.0919for I>2σ(I).
     The legend c is in triclinic system, P2(1)/c space group, molecular formula:C15H11N2O2, Unit cell parameter: a=8.8111(9),b=11.4716(12),c=11.4947(14),α=115.376(2),β=99.5470(10),γ=97.6320(10),V=1007.74(19)3,F(000)=420,Dc=1.316g/cm3, R1=0.0643,wR2=0.1479forI>2σ(I).
     The crystal data for compound b and d are omitted. The study of legends arecalculated by using the density functional method the frontier orbital energyand distribution, molecular electrostatic potential (MEP), NBO chargedistribution and stabilization energy E2analysis, to explore the molecularorbitals and the relationship between activity and active site of the molecules.
     (10) The anticancer activity of metal complexes were studied using protease fortargets in this paper. The complexes were sifted from32complexes using3-[4,5-dimethyltiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT method)in human breast cancer, to research proliferation inhibition of the MDA-MB-231breast cancer cell. The result showed that there are three complexes [CdL3(CH3COO)]· H2O (C1),[CoL4(CH3COO)]·3H2O (C3) and [ZnL6(CH3COO)]·3H2O (C5) which can inhibit the vicious proliferation of humanbreast cancer cells. In order to study the relationship between chemicalstructure and antitumor activity, three complexes CdL2(CH3COO)·2H2O(C2)、CoL2(CH3COO)·2H2O(C4)and [ZnL5(CH3COO)·3H2O(C6)which have similar chemical structure with complexes C1, C3and C5to studied on chymotrypsin-like (CT-like) activity of six complexes. Furtherstudy is carried on the application of protein immunoblot technique (Westernblot) to study the expression of apoptosis related proteins and morphology ofcell apoptosis. The results show that the above three complexes inhibit thevicious proliferation of human breast cancer cells through the inhibition of theproteasome activity. Forthermore, this paper preliminary discusses therelationship between the chemical structure and antitumor activity of metalcomplexes. The conclusion that the schiff base complexes with the specialstructure which is the benzene ring connected with electron-withdrawingfunctional groups maybe have excellent proliferation inhibiting activity fortumor cell is presented. It plays a guiding role for designing and synthetisingnew metal complexes for anti-cancer drugs.
引文
[1].游效曾.我国配位化学进展.化学通报,1999(10):7-9.
    [2].张升晖与吴吉炎.现代化学发展趋势和前沿.湖北民族学院学报(自然科学版),1994,12(02):77-80.
    [3].汪丰云,顾家山,王晓锋等.配位化学的发展史.化学教育,2011,32(2):75-77.
    [4].肖珊美.配位化学今昔.浙江师大学报(自然科学版),2001,24(03):61-64.
    [5].杨帆.配位化学.上海:上海华东师范大学出版社,2007,10-13.
    [6]. Lever, A.B.P. Fundamentals: Ligands, Complexes, Synthesis, Purification, and Structure.Comprehensive Coordination Chemistry II,2004,1:837.
    [7].夏军.功能型有机锑化合物的合成、表征及其催化应用:[硕士学位论文]..长沙:湖南大学,2010.
    [8].陈荣与梁文平.光电功能配合物研究进展.化学进展,2001,13(03):239-240.
    [9]. Yu-Hua Fan., C.B.J.L., et al. Thermodecomposition Kinetics of Dy(III) Complex withSchiff Base Derived from Furfural and DL–α–Alanine.2003:137-145.
    [10].游效曾.分子材料-光电功能化合物.上海:上海科技出版社,2000.
    [11].徐光宪.21世纪的配位化学是处于现代化学中心地位的二级学科.北京大学学报(自然科学版),2002,38(02):149-152.
    [12].徐筱杰与唐有祺.晶体工程及其在化学中的应用.无机化学学报,2000,16(02):157-166.
    [13].李静.系列过渡金属配合物的设计、合成、结构及量子化学研究:[硕士学位论文].大连:辽宁师范大学,2009.
    [14].杜淼与卜显和.向高功能发展的配位聚合物.化学进展,2009,21(11):2458-2464.
    [15].郑博,多吡啶过渡金属配合物的合成、结构及性质研究:[硕士学位论文].西安:西北大学,2005.
    [16].李海鹏与朱有兰.配位化学的地位和发展趋势.广东工学院学报,1996,13(02):52-57.
    [17].杨华.稀土配位化合物在医药领域应用概述.稀土,2007,28(02):95-98.
    [18].刘丹萍与王海燕.配位化合物的制备及应用.郧阳师范高等专科学校学报,2008,21(03):41-45.
    [19].朱旭祥与赵铮蓉.海洋药物的新兴领域——海洋配位化合物药物.中国海洋药物,2000(03):42-44.
    [20].焦元红与张前. Schiff bases及配合物的研究进展.黄石理工学院学报,2007,23(03):38-41.
    [21].李冬成,姚克敏,曹美华等.稀土元素与3,4-二羟基苯甲醛缩邻氨基苯甲酸配合物的合成和表征.应用化学,1993,10(03):8-11.
    [22].刘小华与孙荣林.水热与溶剂热合成技术在无机合成中的应用.盐湖研究,2008,16(02):60-65.
    [23].杨楠,徐翠莲,王彩霞等.壳寡糖希夫碱配合物的微波合成及结构表征.光谱实验室,2010,27(03):867-871.
    [24].方小牛,黄赣生,陈红梅等.室温固相研磨法合成邻氨基苯甲酸类芳醛席夫碱的研究.应用化工,2005,34(03):144-146.
    [25].褚道葆,张秀梅,张莉艳等.水杨醛缩L-异亮氨基酸Schiff碱过渡金属Cu(Ⅱ),Zn(Ⅱ), Ni(Ⅱ)配合物的电化学合成及表征.高等学校化学学报,2006,27(10):1865-1868.
    [26]. Lu, J., Jiawei Guo, Haiwei Guo, et al.. Mixed-ligand oxovanadium complexesincorporating Schiff base ligands: synthesis, DNA interactions, and cytotoxicities. TransitionMetal Chemistry,2013.38(5):481-488.
    [27].王强,范玉华,农娟等.新型希夫碱铜三元配合物与DNA相互作用的研究.广州化工,2013,34(08):65-68.
    [28].郑玉萍,范玉华,张霞等.一种新型希夫碱Cu(Ⅱ)配合物的合成、表征及与DNA的相互作用.中国海洋大学学报(自然科学版),2011,41(09):77-82.
    [29].陆晓红,林秋月,贺新钱等.稀土-香兰素缩赖氨酸希夫碱配合物的合成、表征及其与DNA作用的研究.中国稀土学报,2006,27(04):403-407.
    [30]. Dehkordi, M.N., Bordbar AK, Mehrgardi MA et al.. Spectrophotometric Study on theBinding of Two Water Soluble Schiff Base Complexes of Mn (III) with ct-DNA. Journal ofFluorescence,2011.21(4):1649-1658.
    [31]. Dehkordi, M.N. and P. Lincoln. Comprehensive Study on the Binding of Iron SchiffBase Complex with DNA and Determining the Binding Mode. Journal of Fluorescence,2013.23(4):813-821.
    [32]. Qi, G., Z. Yang and B. Wang. Synthesis, characterization and DNA-binding properties ofzinc(II) and nickel(II) Schiff base complexes. Transition Metal Chemistry,2007.32(2):233-239.
    [33]. Li, Y., Yang Z.Y., Li T.R. et al., Synthesis, Characterization, DNA Binding Propertiesand Antioxidant Activity of Ln(III) Complexes with Schiff Base Ligand Derived from3-Carbaldehyde Chromone and Aminophenazone. Journal of Fluorescence,2011,21(3):1091-1102.
    [34]. Raman, N., S. Sobha and L. Mitu. Synthesis, structure elucidation, DNA interaction,biological evaluation, and molecular docking of an isatin-derived tyramine bidentate Schiff baseand its metal complexes. Monatshefte für Chemie-Chemical Monthly,2012,143(7):1019-1030.
    [35]. Mathur, S. and S. Tabassum. New homodi-and heterotrinuclear metal complexes ofSchiff base compartmental ligand: interaction studies of copper complexes with calf thymusDNA. Central European Journal of Chemistry,2006.4(3):502-522.
    [36]. Bharti, S.K., Patel S.K., Nath G., et al.. Synthesis, characterization, DNA cleavage and invitro antimicrobial activities of copper(II) complexes of Schiff bases containing a2,4-disubstituted thiazole. Transition Metal Chemistry,2010.35(8):917-925.
    [37]. Biswas, B.. Synthesis, structural characterization and biological activity of a trinuclearzinc(II) complex: DNA interaction study and antimicrobial activity. Journal of ChemicalSciences,2013,125(6):1445-1453.
    [38].付超,赵伟,陈瑶等.水杨醛缩间硝基苯胺Schiff碱及其铜(Ⅱ)、铁(Ⅲ)配合物合成与抑菌活性探究.广东化工,2012,32(06):30-34.
    [39].陈瑶,赵伟,付超等.四种双核Schiff碱的合成、表征及抑菌性探究.广东化工,2012,29(02):51-52.
    [40]. Jeewoth, T., M.G. Bhowon and H.L.K. Wah. Synthesis, characterization and antibacterialproperties of Schiff bases and Schiff base metal complexes derived from2,3-diamino-pyridine.Transition Metal Chemistry,1999,24(4):445-448.
    [41]. Fan, Y.H., et al.. Synthesis, characterization, and antibacterial activity of new rare-earthion complexes with unsymmetrical Schiff base ligand. Russian Journal of CoordinationChemistry,2007,33(7):535-538.
    [42]. Zhang, J., et al.. Synthesis and crystal structures of Schiff base zinc(III) complexes withantibacterial activity. Russian Journal of Coordination Chemistry,2010,36(7):514-519.
    [43]. Bi C.F., Yan L.L., Fan Y.H., et al.. Synthesis, characterization and antibacterial activity ofnew Ln(III) complexes with an unsymmetrical schiff base ligand. Journal of Ocean Universityof China,2006,5(3):235-238.
    [44]. Saini, R.P., Kumar, V., Gupta, A.K., et al.. Synthesis, characterization, and antibacterialactivity of a novel heterocyclic Schiff’s base and its metal complexes of first transition series.Medicinal Chemistry Research,2014,23(2):690-698.
    [45]. Baul, T.S.B., Basu, S., Dick, D.V., et al.. Amino acetate functionalized Schiff baseorganotin(IV) complexes as anticancer drugs: synthesis, structural characterization, and in vitrocytotoxicity studies. Investigational New Drugs,2009,27(5):419-431.
    [46]. Islam, S.M., Roy, A.S., Mondal, P., et al.. Efficient Allylic Oxidation of OlefinsCatalyzed by Polymer Supported Metal Schiff Base Complexes with Peroxides. Journal ofInorganic and Organometallic Polymers and Materials,2012,22(4):717-730.
    [47]. Sariego, R., Carkovic, I., Martínez, M., al.. Hydrogen transfer reactions catalyzed byneutral rhodium(I) Schiff base complexes. Transition Metal Chemistry,1984,9(3):106-108.
    [48]. Kim, D.H., Im, J.K., Dae, W.,et al.. Palladium catalysed asymmetric alkylation ofbenzophenone Schiff base glycine esters in ionic liquids. Journal of Chemical Sciences,2011,123(4):467-476.
    [49]. Alsalim, T.A., Hadi, J.S., Al-Nasir, E., Aet al.. Hydroxylation of Phenol Catalyzed byOxovanadium(IV) of Salen-Type Schiff Base Complexes with Hydrogen Peroxide. CatalysisLetters,2010,136(3-4):228-233.
    [50]. Lashanizadegan, M. and Z. Zareian. Homogenous and Heterogeneous Catalytic Activityof Azo-Linked Schiff Base Complexes of Mn(II), Cu(II) and Co(II). Catalysis Letters,2011.141(11):1698-1702.
    [51]. Farzaneh, F., Sohrabi, S., Ghiasi, M., al.. Immobilized iron Schiff base histidinecomplexes on Al-MCM-41and zeolite Y as catalyst for oxidation of cycloalkanes. Journal ofPorous Materials,2013,20(1):267-275.
    [52].杨国玉,周文峰,谢艳新等.杂多酸锚锭金属希夫碱催化剂的制备及其催化性能.化学反应工程与工艺,2007,23(04):348-353.
    [53].康战锋,彭鸿杰,郭瑞霞等.金属希夫碱催化分子氧氧化环己烯反应的研究.科技信息,2006(9):13.
    [54].郝成君与邢朝晖.谷氨酸希夫碱钴配合物对环己烯的催化氧化性能研究.化工时刊,2006,20(09):7-9.
    [55]. Yurt, A., Bereket, G., Kivrak, A., al.. Effect of Schiff Bases Containing Pyridyl Group asCorrosion Inhibitors for Low Carbon Steel in0.1M HCl. Journal of Applied Electrochemistry,2005,35(10):1025-1032.
    [56]. Sethi, T., Chaturvedi, A., Upadhyaya, R.K., et al.. Synergistic inhibition between Schiff’sbases and sulfate ion on corrosion of aluminium in sulfuric acid. Protection of Metals andPhysical Chemistry of Surfaces,2009,45(4):466-471.
    [57]. Gopi, D., K.M. Govindaraju and L. Kavitha. Investigation of triazole derived Schiffbases as corrosion inhibitors for mild steel in hydrochloric acid medium. Journal of AppliedElectrochemistry,2010,40(7):1349-1356.
    [58]. John, S., Ali, K.M. and Joseph, A.. Electrochemical, surface analytical and quantumchemical studies on Schiff bases of4-amino-4H-1,2,4-triazole-3,5-dimethanol (ATD) incorrosion protection of aluminium in1N HNO3. Bulletin of Materials Science,2011,34(6):1245-1256.
    [59]. Patel, A.S., Panchal, V.A. and Shah, N.K.. Electrochemical impedance study on thecorrosion of Al-Pure in hydrochloric acid solution using Schiff bases. Bulletin of MaterialsScience,2012,35(2):283-290.
    [60]. Ahamad, I., Gupta, C., Prasad, R., et al.. An experimental and theoretical investigation ofadsorption characteristics of a Schiff base compound as corrosion inhibitor at mildsteel/hydrochloric acid interface. Journal of Applied Electrochemistry,2010,40(12):2171-2183.
    [61]. Aiad, I.A. and N.A. Negm. Some Schiff Base Surfactants as Steel-Corrosion Inhibitors.Journal of Surfactants and Detergents,2009,12(4):313-319.
    [62]. Ma, H., Chen, S., Niu, L., et al.. Inhibition of copper corrosion by several Schiff bases inaerated halide solutions. Journal of Applied Electrochemistry,2002,32(1):65-72.
    [63]. Singh, A., Avyaya, J.N., Ebenso, E., et al.. Schiff’s base derived from the pharmaceuticaldrug Dapsone (DS) as a new and effective corrosion inhibitor for mild steel in hydrochloric acid.Research on Chemical Intermediates,2013,39(2):537-551.
    [64]. Behpour, M., Ghoreishi, S.M., Gandomi-Niasar, A., et al.. The inhibition of mild steelcorrosion in hydrochloric acid media by two Schiff base compounds. Journal of MaterialsScience,2009,44(10):2444-2453.
    [65].梁志,杯芳烃希夫碱的光致变色性质研究:[硕士学位论文].北京:中国科学院研究生院(理化技术研究所),2007.
    [66].邢颖,刘月中,鄂彦鹏.螺萘并嘿嗪类光致变色化合物的合成与光谱性能研究.染料与染色,2013,28(4):14-17.
    [67].霍涌前,陈小利,王潇等.光致变色化合物水杨醛缩对硝基苯胺的合成及发光.光谱实验室,2011,28(03):1468-1471.
    [68].杨素华,庞美丽,郭心富等.含席夫碱基的螺噁嗪类光致变色化合物的合成及性质.高等学校化学学报,2010,31(05):976-981.
    [69].禹兴海,傅正生,韩玉琦等.水杨醛缩取代芳基Schiff碱制备及其光致变色性能研究.应用化工,2010,30(02):251-257.
    [70]. Ming, Y., Huang, Z.N,, Fan, M., et al.. Electronic spectroscopy and photochromicmechanism of bis-Schiff bases, N, N′-bis(2-hydroxy-l-naphthylidene)-l,4-phenyldiamine.Science in China Series B: Chemistry,1997,40(4):373-379.
    [71]. Wang, F., L. Qin and M. Fan. Transient absorption spectra and photochromic mechanismof schiff bases. Research on Chemical Intermediates,1993,19(4):299-306.
    [72].刘志莲,张书香,夏光明等.新型杯[4]席夫碱的合成及光致变色性质研究.有机化学,2009,29(11):1799-1803.
    [73]. Renugopalakrishnan, V., Lewis, R.V., Miniewicz, A., et al.. Synthetic photorefractiveand photochromic materials and their comparison with bacteriorhodopsin mutants for opticalinformation processing, in Bionanotechnology, V. Renugopalakrishnan and R.V. Lewis, V.Renugopalakrishnan and R.V. Lewis^Editors. Springer Netherlands,2006:217-256.
    [74]. Guo, J., Liu, L., Jia, Dian, Z., et al.. Structure and solid-state photochromic properties oftwo new compounds with pyrazolone-ring. Structural Chemistry,2009,20(3):393-398.
    [75].王成,刘姝,孔会民等.光致变色化合物螺萘并噁嗪的合成及光谱性能研究.长春工业大学学报(自然科学版),2009(02):133-136.
    [76].杨怡. Schiff碱生物功能配合物的合成及活性研究进展.天津化工,2013,27(01):1-3.
    [77].冯建华. Schiff碱及其配合物的研究进展.滁州学院学报,2008,27(03):80-82.
    [78]. H. Chen, J.R.. Schiff base forming drugs: mech-anisms of immune potentiation andtherapeutic potential. J Mol Med.,1996:497-504.
    [79]. Nabel A. Negm, M.F.Z.. Structural and biological behaviors of some nonionicSchiff-base amphiphiles and their Cu(II) and Fe(III) metal complexes. Colloids and Surfaces B:Biointerfaces,2008:179–183.
    [80]. Eren K.G., Ayla, B.G.U.. Cr(III), Fe(III) and Co(III) complexes of tetradentate (ONNO)Schiff base ligands: Synthesis, characterization,properties and biological activity.Spectrochimica Acta Part A.,2008:634–640.
    [81].李桂芝.2种水杨醛缩氨基酸及其10种金属配合物的杀菌活性研究.聊城大学学报(自然科学版),2003,16(01):57-59.
    [82].马树芝,郑文捷,周美锋等.稀土水杨醛缩苯丙氨酸盐邻菲咯啉配合物的合成、表征及抗菌活性.上海师范大学学报(自然科学版),2007,36(03):66-72.
    [83].杨高文,夏小平,赵成学等. Schiff碱、咪唑金属配合物的合成与抗癌活性.应用化学,1995,12(02):13-15.
    [84].孔德源,章雄文,朱勤等.氨基酸类Schiff碱稀土配合物的合成及其抗肿瘤活性Ⅰ.中国药物化学杂志,1998,8(04):14-22.
    [85]. Zhang, Z., Bi, C.F., Buac, D., et al.. Organic cadmium complexes as proteasomeinhibitors and apoptosis inducers in human breast cancer cells. J Inorg Biochem,2013(123):1-10.
    [86]. Zuo, J., Bi, C.F., Fan, Y.H., et al.. Cellular and computational studies of proteasomeinhibition and apoptosis induction in human cancer cells by amino acid Schiff base-coppercomplexes. J Inorg Biochem,2013(118):83-93.
    [87].闭献树与毕小平.糠醛缩邻苯二胺双希夫碱配合物的合成,表征及抑菌活性.化工时刊,2000,25(4):22-24.
    [88].李冬青与周盛. VB6缩苯丙氨酸希夫碱及其钆配合物表征和抑菌活性.广西科学,2009,31(1):73-75.
    [89].樊润梅,丁国华,张晓松.一种新型缩氨基硫脲及其金属配合物的合成、表征与生物活性研究.化学试剂,2010,28(12):1076-1130.
    [90].尹富玲,申佳,邹佳嘉等.2,2′-联吡啶和去甲基斑蝥酸根桥联双核铜(Ⅱ)配合物的合成、结构表征及抗癌活性的研究.化学学报,2003,61(04):556-561.
    [91].李冬青,谭明雄,董玉花.吡啶-3-甲醛缩对氨基苯甲酸希夫碱及其铅(Ⅱ)配合物的合成及抑菌性研究.玉林师范学院学报,2009,30(03):34-37.
    [92].宋琳,谢毓元,王惠贞.苯并咪唑Schiff碱的合成及其杀菌活性.中国药物化学杂志,2000,10(02):16-18.
    [93].闫文义,贾春辉,徐俊等. Schiff碱Cd(Ⅱ)配合物的合成及体外抗肿瘤活性.河南大学学报(自然科学版),2012,42(04):407-411.
    [94].黄萌,张欣,陈丹等. PM4ClBP缩氨基酸酯席夫碱及其配合物的合成、表征和抑菌活性.天津师范大学学报(自然科学版),2010,38(02):58-61.
    [95].李琳,尹文华,董风英.5-硝基水杨醛双缩二氨基硫脲Schiff碱的合成、表征与抑菌活性研究.宁夏农林科技,2012,31(04):88-89.
    [96].姜海辉,李淑兰,孟凡芹等.钴希夫碱配合物的合成和载氧性质.山东大学学报(自然科学版),1998,33(03):113-118.
    [97].肖芙蓉,代斌,廉宜君等.人工氧载体——席夫碱金属配合物的研究进展.广东化工,2008,35(05):42-45.
    [98]. Xiao, F., Chen, L., Wang, J.D., et al.. Studies on solid state synthesis and theoxygenation property of cobalt (II) Schiff base (vanilline polyamine) complexes. Frontiers ofChemistry in China,2007,2(2):169-173.
    [99]. Ganeshpure, P.A., A. Sudalai and S. Satish. Oxidation of primary amines with dioxygencatalysed by an oxygen carrier cobalt(II) Schiff base chelate, CoSMDPT. Proceedings of theIndian Academy of Sciences-Chemical Sciences,1991,103(6):741-745.
    [100].江维,钟宏,刘广义等.希夫碱金属配合物作为催化剂的应用.精细化工中间体,2008,38(04):12-16.
    [101]. Szypa, M., Urbala, M., Rozwadowski, Z., et al.. New Schiff base complexes ofruthenium(III) and their use as catalysts for O-allyl systems isomerization. Transition MetalChemistry,2008.33(7):855-860.
    [102]. Krishnaraj, S., Muthukumar, M., Viswanathamurthi, P., et al.. Studies on ruthenium(II)Schiff base complexes as catalysts for transfer hydrogenation reactions. Transition MetalChemistry,2008,33(5):643-648.
    [103]. Li, J., Xu, B., Li, S.X., et al.. PNPP Hydrolysis Catalyzed by Manganese(III) Complexeswith Crowned Salicylaldimine Schiff Base Ligand. Transition Metal Chemistry,2005,30(6):669-676.
    [104]. Islam, S.M., Roy, A.S., Mondal, P., et al.. Olefin epoxidation with tert-butylhydroperoxide catalyzed by functionalized polymer-supported copper(II) Schiff base complex.Monatshefte für Chemie-Chemical Monthly,2012,143(5):815-823.
    [105].黄生田,李建章,肖正华等.氮杂冠醚化单Schiff碱锰(III)配合物催化PNPP水解研究.化学研究与应用,2013,25(08):1120-1125.
    [106].李香,胡承波,傅亚等.希夫碱钛配合物催化D,L-丙交酯本体开环合成聚乳酸.功能材料,2011,42(10):1772-1775.
    [107].翁家宝,郑雪琳,王晓琴等.氨基酸希夫碱铜(Ⅱ)催化MMA原子转移自由基聚合的研究.合成化学,2011,19(05):582-585.
    [108].刘凡,唐典勇,刘志昌等.希夫碱型大环多胺锌配合物对α-吡啶甲酸对硝基苯酚酯催化水解的研究.化学研究与应用,2009,21(02):248-253.
    [109]. Tang, L., Guo, J., Cao, Y., et al.. New Application of a Known Molecule: Rhodamine B8-hydroxy-2-quinolinecarboxaldehyde Schiff Base as a Colorimetric and Fluorescent “Off-On”Probe for Copper (II). Journal of Fluorescence,2012,22(6):1603-1608.
    [110].廖见培,刘国东,黄杉生.水溶性金属席夫碱与DNA相互作用的荧光光谱.分析测试学报,2001,20(03):5-8.
    [111].郭思颖,胡鹏,朱必学.不对称Schiff碱对铝离子的荧光探针研究.贵州大学学报(自然科学版),2013,30(03):28-33.
    [112].洪涛,龙巍然,陶晋飞等.水杨醛缩腺嘌呤席夫碱的合成及其光度法测定铜(Ⅱ)的研究.冶金分析,2012,32(04):46-49.
    [113].赵剑英,张宇.荧光试剂7-(4-氨基安替比林偶氮)-8-羟基喹啉-5-磺酸的合成及荧光光度法测定痕量铝的研究.化学试剂,2004,31(04):204-206.
    [114].许剑平.微波辐射合成酪氨酸席夫碱及其光度法测定蔬菜中钴的研究.环境与开发,2000,15(04):44-45.
    [115].蔡艳.光致变色材料研究获进展.光机电信息,2011,16(11):93.
    [116].林坚,柴文祥,杨芸芸等.有机-无机杂化光致变色材料的研究进展.中南大学学报(自然科学版),2011,42(10):2977-2983.
    [117]. Wang, Q., Qiu, W.W., Wu, J.P., et al.. Schiff base compounds derived from(R)-3-phenyl-2-phthalimidopropionic acid: photochromism, solvatochromism, and fluorescence.Structural Chemistry,2013,24(1):295-301.
    [118].宋玉民,杨美玲,马俊怀,张玉梅.姜黄素苯胺希夫碱稀土配合物的光致变色性能研究.光谱学与光谱分析,2013,36(12):3202-3206.
    [119].李光华,丁国华.一种新的有机光致变色及热致变色化合物间氨基苯甲酸缩3,5-二氯水杨醛希夫碱.发光学报,2011,32(11):第1115-1119页.
    [120].田刚,许文苑,车强等.水杨醛类席夫碱有机光致变色化合物的研究.现代化工,2007,27(S1):253-256.
    [121].殷德飞,程红波,霍晓莲等.含席夫碱基的螺吡喃双功能光致变色材料的合成及性质.高等学校化学学报,2011,32(10):2301-2305.
    [122]. Mistry, B.M. and S. Jauhari. Synthesis and evaluation of some quinoline Schiff bases asa corrosion inhibitor for mild steel in1?N HCl. Research on Chemical Intermediates,2013,39(3):1049-1068.
    [123]. Upadhyay, R.K., S. Anthony and S.P. Mathur. Schiff’s bases as inhibitors of mild steelcorrosion in hydrochloric acid. Russian Journal of Electrochemistry,2007,43(2):238-241.
    [124]. Lg, S.B., N. Aliskan. An investigation of some Schiff bases as corrosion inhibitors foraustenitic chromium–nickel steel in H2SO4. Journal of Applied Electrochemistry,2001,31(1):79-83.
    [125].李俊莉,白方林,卢永斌等.新型希夫碱酸化缓蚀剂的合成及性能评价.腐蚀与防护,2012,33(09):787-791.
    [126].方晓君,张娟涛,陈长风等.新型希夫碱酸化缓蚀剂在不同温度盐酸介质中对N80钢的缓蚀性能.腐蚀与防护,2012,33(07):552-622.
    [127].陈刚,郝小江.靛红生物活性研究进展.天然产物研究与开发,2010,22(02):第356-360页.
    [128].高文涛,徐良玉,李阳等.靛红及取代靛红在合成杂环化合物中的应用研究进展.化学研究与应用,2013,36(12):1608-1627.
    [129].黄文平,黄鹏.靛红的合成与应用.咸宁师专学报,1996,16(03):45-48.
    [130].张利敏,郭盈杉,张雪宁等.他克林的合成.中国医药工业杂志,2010,27(01):4-5.
    [131].胡钊侠,马萍,姚万春.由靛红合成二氯芬酸的方法.中国医药工业杂志,1992,23(05):第199-200页.
    [132].宋丽阳,彭晓娉,王珏等.海洋活性物质2,3-吲哚醌对雄性大鼠生殖系统的作用研究.泰山医学院学报,2013,34(01):3-6.
    [133].李静,孙伟,李娅娟等.尿中2,3-吲哚醌作为帕金森病预警标志物的研究.中国药学杂志,2004,25(10):60-62.
    [134].耿波.2,3-吲哚醌在衰老动物模型中作用机制的研究:[硕士学位论文].青岛:青岛大学,2003.
    [135].尚应辉,孟书聪,王明群等.靛红衍生物IF203通过线粒体途径诱导人肝癌HepG2细胞凋亡.解剖学报,2011,42(3):第340-344页.
    [136].陈刚,汪冶,何红平等.靛红衍生物的合成及其对稻瘟菌的生物活性.云南植物研究,2007,29(06):717-721.
    [137].董岩,杨志宏,章政等.靛红对血胆固醇水平影响的基础研究.心血管康复医学杂志,2003,12(03):224-225.
    [138].岳旺,李丰桥,安部阳一.内源性MAO-B抑制因子-靛红预防MPTP对多巴胺神经递质的耗竭作用.中国神经科学杂志,2002,18(04):690-693.
    [139]. Singh, D.D.N., Singh, M.M., Chaudhary, R., Set al.. Inhibitive effects of isatin,thiosemicarbazide and isatin-3-(3-thiosemicarbazone) on the corrosion of aluminium alloys innitric acid. Journal of Applied Electrochemistry,1980,10(5):587-592.
    [140].白林山,金斌.高碘酸钾-靛红体系催化光度法测定钢中微量钒.冶金分析,2001,25(05):49-51.
    [141].刘洪泉,杨亚玲,张丹扬.靛红-过硫酸钠体系催化动力学光度法测定土壤中镍(Ⅱ).光谱实验室,2010,27(01):77-79.
    [142].唐晓岚.甲基橙—靛红混合指示剂测定总碱度.水利技术监督,2007,21(06):11-14.
    [143].唐清华,王玉宝,陈玉静.靛红褪色光度法测定废水中苯酚.环境监测管理与技术,2006,18(05):25-34.
    [144].沙鸥,钱保华,徐国想等.靛红褪色分光光度法测定溴酸根离子研究.淮海工学院学报(自然科学版),2005,14(04):49-51.
    [145]. Chen, G., Su, H.J., Song, Y.P, et al.. Synthesis and evaluation of isatin derivatives ascorrosion inhibitors for Q235A steel in highly concentrated HCl. Research on ChemicalIntermediates,2013,39(8):3669-3678.
    [146]. Yadav, M., U. Sharma and P. Yadav. Corrosion inhibitive properties of some new isatinderivatives on corrosion of N80steel in15%HCl. International Journal of Industrial Chemistry,2013:423-429.
    [147]. Cerchiaro, G., Saboya, P.L., Ferreira, A.M.D.C., et al.. Keto-Enolic Equilibria of anIsatin-Schiff Base Copper(II) Complex and its Reactivity toward Carbohydrate Oxidation.Transition Metal Chemistry,2004,29(5):495-504.
    [148].崔艳丽,黄燕,张岐等.靛红希夫碱衍生物的合成及金属离子识别.精细化工,2012,29(07):637-645.
    [149]. Reddy, K.R.K., K.N. Mahendra. Synthesis, characterization, and the antimicrobial andanthelmintic activities of some metal complexes with a new Schiff base3-[(Z)-5-amino-1,3,3-trimethyl cyclohexylmethylimino]-1,3-dihydroindol-2-one. RussianJournal of Inorganic Chemistry,2008,53(6):906-912.
    [150]. Abbas, S.Y., Farag, A.A., Ammar, Y.A., et al.. Synthesis, characterization, and antiviralactivity of novel fluorinated isatin derivatives. Monatshefte für Chemie-Chemical Monthly,2013,144(11):1725-1733.
    [151]. Aboul-Fadl, T., F.A. Mohammed and E.A. Hassan. Synthesis, antitubercular activity andpharmacokinetic studies of some schiff bases derived from1-alkylisatin and isonicotinic acidhydrazide (inh). Archives of Pharmacal Research,2003,26(10):778-784.
    [152]. Murali, K., et al.. Synthesis, antibacterial, and antitubercular studies of some novel isatinderivatives. Medicinal Chemistry Research,2012,21(12):4335-4340.
    [153]. Aboul-Fadl, T., Radwan, A.A., Attia, M., et al.. Schiff bases of indoline-2,3-dione (isatin)with potential antiproliferative activity. Chemistry Central Journal,2012:321-329.
    [154].钟霞,安平,张俊清等.吲哚醌类Schiff碱及其配合物的合成与抗肿瘤活性研究.化学研究与应用,2012,24(07):1046-1051.
    [155].贾光伟,袁红,李爱波等.蛋白酶体抑制剂的研究进展.精细化工中间体,2012,26(06):6-11.
    [156].王立琳,肖若芝.蛋白酶体抑制剂——硼替佐米的临床治疗研究进展.国际内科学杂志,2008,35(11):657-671.
    [157].牟科,付翌秋,徐萍.蛋白酶体抑制剂的研究进展.国际药学研究杂志,2009,21(05):348-354.
    [158].吕春秀,汪治宇.泛素-蛋白酶体抑制剂的研究及应用进展.中国老年学杂志,2011,31(23):4735-4738.
    [159]. Bukowski, R.M., Figlin, R.A., Motzer, R.J., et al.. Proteasome–NFκB Signaling Pathway:Relevance in RCC, in Renal Cell Carcinoma. Humana Press.,2009,305-320.
    [160]. Spirina, L.V., Bochkareva, N.V., Kondakova, I.V., et al.. Regulation of insulin-likegrowth NF-κB proteasome system in endometrial cancer. Molecular Biology,2012,46(3):407-413.
    [161]. Singh, S. and A. Khar. Activation of NFκB and Ub-proteasome pathway duringapoptosis induced by a serum factor is mediated through the upregulation of the26Sproteasome subunits. Apoptosis,2006,11(5):845-859.
    [162].李景,张大永,吴晓明.泛素-蛋白酶体及其抑制剂的分类与合成.药学学报,2009,27(12):1313-1319.
    [163].张丹丹,张玉泉.泛素-蛋白酶体通路与肿瘤发生的研究进展.实用癌症杂志,2010,25(06):672-675.
    [164]. Fekete, M.R., W.H. McBride and F. Pajonk. Anthracyclines, proteasome activity andmulti-drug-resistance. BMC Cancer,2005,32(03):432-437.
    [165]. Panischeva, L.A., et al.. Influence of proteasome inhibitor bortezomib on the expressionof multidrug resistance genes and Akt kinase activity. Biochemistry (Moscow),2011.76(9):1009-1016.
    [166]. Daniel, K.G., Gupta, P., Harbach, R.H., et al.. Organic copper complexes as a new classof proteasome inhibitors and apoptosis inducers in human cancer cells. Biochem Pharmacol,2004,67(6):1139-1151.
    [167]. Xiao, Y., Bi, C.F., Fan, Y.H., et al.. L-glutamine Schiff base copper complex as aproteasome inhibitor and an apoptosis inducer in human cancer cells. Int J Oncol,2008,33(5):1073-1079.
    [168]. Chen, D., Cui, Q.C., Yang, H., et al.. Disulfiram, a clinically used anti-alcoholism drugand copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenograftsvia inhibition of the proteasome activity. Cancer Res,2006.66(21):10425-10433.
    [169]. Zuo, J., Bi, C.F., Fan, Y.H., et al.. Cellular and computational studies of proteasomeinhibition and apoptosis induction in human cancer cells by amino acid Schiff base-coppercomplexes. J Inorg Biochem,2013.118:83-93.
    [170]. Frezza, M., Hindo, S.S., Tomco, D., et al.. Comparative activities of nickel(II) andzinc(II) complexes of asymmetric [NN'O] ligands as26S proteasome inhibitors. Inorg Chem,2009.48(13):5928-5937.
    [171]. Cvek, B., Milacic, V., Taraba, J., et al.. Ni(II), Cu(II), and Zn(II) diethyldithiocarbamatecomplexes show various activities against the proteasome in breast cancer cells. J Med Chem,2008.51(20):6256-6258.
    [172]. Tomco, D., Schmitt, S., Ksebati, B., et al.. Effects of tethered ligands and of metaloxidation state on the interactions of cobalt complexes with the26S proteasome. J InorgBiochem,2011.105(12):1759-1766.
    [173]. Zhang, Z., Bi, C.F., Buac, D., et al.. Organic cadmium complexes as proteasomeinhibitors and apoptosis inducers in human breast cancer cells. J Inorg Biochem,2013.123:1-10.
    [174].周咏明,郭伟,黄士昂.蛋白酶体抑制剂的抗肿瘤作用及其临床应用.中国新药杂志,2006,29(21):1813-1818.
    [175].王学文,翟勇平.蛋白酶体抑制剂在抗肿瘤治疗中的应用.中国实用内科杂志,2007,27(08):619-621.
    [176].严晓波,杨迪生.蛋白酶体抑制剂诱导肿瘤细胞凋亡研究进展.国际骨科学杂志,2006,27(05):261-264.
    [177].张伦.扑热息痛催热对氨基苯酚市场.中国制药信息,2011.27(5):29-32.
    [178].关胤.氨基苯酚的制备方法和产需情况分析.中国科技博览,2010,31(7):172.
    [179].陈贺海,张爱珍,余清等.铁矿石灼烧减量测试新方法——热重分析法.岩矿测试,2010,29(04):399-405.
    [180].何连花.2,6-二氨基吡啶类希夫碱配合物的合成、表征及应用研究:[硕士学位论文].青岛:中国海洋大学,2009.
    [181].艾小康,新型希夫碱金属配合物的合成、表征及荧光特性研究:[博士学位论文].青岛:中国海洋大学,2007.
    [182].何雪涛,新型希夫碱配合物的合成、表征及其与DNA相互作用研究[硕士学位论文].青岛:中国海洋大学,2007.
    [183].刘静,氨噻肟酸、他啶侧链酸及其Schiff碱配合物的合成和表征:[硕士学位论文].南京:南京工业大学,2003.
    [184].王强,蛋氨酸类希夫碱配合物的合成、表征与生物活性研究:[博士学位论文].青岛:中国海洋大学,2011.
    [185].董丽丽,3-吲哚醋酸过渡金属配合物的合成、表征及生物活性研究:[硕士学位论文].青岛:中国海洋大学,2012.
    [186].刘信玉,2-氨基-5-甲基吡啶类希夫碱配合物的合成、表征及生物活性研究,:[硕士学位论文].青岛:中国海洋大学,2010.
    [187].张栋梅,新型Schiff碱金属配合物的合成、表征与应用研究:[硕士学位论文].青岛:中国海洋大学,2006.
    [188].马慧杰,5-氨基间苯二甲酸希夫碱配位聚合物的合成、表征及应用研究:[硕士学位论文].青岛:中国海洋大学,2009.
    [189].王玉芳,邻氨基对苯二甲酸类希夫碱配位聚合物的合成、表征及抑菌活性研究:[硕士学位论文].青岛:中国海洋大学,2010.
    [190]. Kaya, S., D. Emdi and M.S. Ak. Synthesis, Characterization and AntimicrobialProperties of Oligomer and Monomer/Oligomer–Metal Complexes of2-[(Pyridine-3-yl-methylene)amino]phenol. Journal of Inorganic and Organometallic Polymersand Materials,2009,19(3):286-297.
    [191].赵云翔,马卫兴. TASPAP分光光度法测定水中镉(Ⅱ)离子.安徽理工大学学报(自然科学版),2009,29(02):17-19.
    [192].李好管.对氨基苯酚的技术、应用及市场.上海化工,2001,21(18):33-36.
    [193].姚克敏,李冬成,沈联芳等.镧系与邻氨基苯甲酸型Schiff碱配合物的合成、表征及催化活性.化学学报,1993,51(07):677-682.
    [194].龙康侯,孔杰.7-羟基-8-甲氧基-4(1H)喹啉酮及其衍生物的合成.中山大学学报(自然科学版),1989,28(01):105-110.
    [195].张树森,过健俐,夏淑贞.3氨基愈创木酚的合成.武汉化工学院学报,1998,20(03):8-10.
    [196]. Gupta, A.K. and R.S. Sindal. A comparative study of electrochemical reduction of isatinand its synthesized Schiff bases at HMDE. Journal of Chemical Sciences,2009.121(3):347-351.
    [197].沈轶群,张艳.对氨水杨酸颗粒剂治疗耐多药肺结核的依从性分析及心理干预.实用药物与临床,2013,16(10):929-930.
    [198].欧超燕,黄明立,姜岳明等.对氨基水杨酸钠对染锰大鼠基底核氨基酸类神经递质含量的影响.中华预防医学杂志,2011.45(5):422-425.
    [199]. Forbes, R.T., York, P., Fawcett, V., et al.. Physicochemical Properties of Salts ofp-Aminosalicylic Acid. I. Correlation of Crystal Structure and Hydrate Stability.Pharmaceutical Research,1992,9(11):1428-1435.
    [200]. Hartmman, A.P., D.H. Jornada and E.B. de Melo. A new, fully validated and interpretedquantitative structure-activity relationship model of p-aminosalicylic acid derivatives asneuraminidase inhibitors. Chemical Papers,2013,67(5):556-567.
    [201].刘文,李晴晴,孙体健等.2-羟基-1-萘醛缩对氨基水杨酸希夫碱钴配合物的合成、表征及其性质研究.化学工程师,2013,33(07):8-10.
    [202].王芳,王禅,姜岳明等.对氨基水杨酸钠干预锰致大鼠海马神经元损伤的体外研究.工业卫生与职业病,2011,37(02):82-85.
    [203].杨生茂,高玉珍,王洁.麦滋林、对氨基水杨酸联合治疗溃疡性结肠炎疗效观察.中国现代医生,2007,45(11Z):89-90.
    [204].林沁,谌东中,余学海.新型大分子席夫碱配合物的合成和表征.无机化学学报,1998,14(03):45-49.
    [205].张延明,林化冰.氨基酸在医药及食品产业的发展趋势.科技创新导报,2008(36):200.
    [206].陈延维,唐瑶,王剑秋等.氨基酸Schiff碱苄基锡配合物的合成及抑菌活性研究.衡阳师范学院学报,2010,31(03):126-129.
    [207].张欣,杜聪,陈丹和黄萌.氨基酸席夫碱镍、钴配合物的合成、晶体结构与抑菌活性.无机化学学报,2010,26(03):489-494.
    [208]. Guerrieri, E., Follia, V., Garczarczyk, D., et al.. Biological, pharmacological andimmunological activities of novel6-amino-acid-substituted14-alkoxy-N-methylmorphinans.BMC Pharmacology,2011,31(05):432-453.
    [209]. Lazareva, N.F.. N-(silylmethyl)amines,-amides, and-amino acids: biological activityand prospects in drug synthesis. Russian Chemical Bulletin,2011.60(4):615-632.
    [210].熊亚红,梁毅,陈祖强等.5-氯甲基水杨醛缩苯丙氨酸过渡金属(Ⅱ)配合物的合成及抗菌活性.华南农业大学学报,2013,34(01):111-121.
    [211]. Sayed, S.M.E., El-Magd, R.M.A., Shishido, Y., et al.. D-Amino acid oxidase-inducedoxidative stress,3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancereffects. Journal of Bioenergetics and Biomembranes,2012,44(5):513-523.
    [212]. Li, L.J., Wang, C., Qiao, Y., et al.. Platinum(II) complexes of reduced amino acid esterSchiff bases: synthesis, characterization, and antitumor activity. Research on ChemicalIntermediates,2014,40(1):413-424.
    [213].王仁华,刘晓兰,喻兵权等.色氨酸的研究与应用进展.湖南饲料,2013(01):23-24.
    [214].梅运军,牟艳华,石德太等.抗噬菌体色氨酸酶基因工程菌的筛选.湖北农业科学,2012(12):2596-2598.
    [215]. Porter, R.J., Mulder R.T. and P.R. Joyce. Baseline prolactin and L-tryptophan availabilitypredict response to antidepressant treatment in major depression. Psychopharmacology,2003,165(3):216-221.
    [216]. Kazachenko, A.S., Legler, E.V., Per'Yanova, O.V., et al.. Synthesis and antimicrobialactivity of gold complexes with glycine, histidine, and tryptophan. Pharmaceutical ChemistryJournal,1999,33(9):470-472.
    [217].晏家友.色氨酸在养猪生产中的应用.广东饲料,2013,22(08):27-28.
    [218].徐洪利,赵斐,左良成等.饲用色氨酸应用研究进展.安徽农业科学,2013,41(13):5750-5752.
    [219]. Bian, L., Li, L.Z., Zhang, Q.F., et al.. Synthesis, crystal structures, DNA binding andcleavage studies of two oxovanadium(IV) complexes of1,10-phenanthroline and Schiff basesderived from tryptophan. Transition Metal Chemistry,2012,37(8):783-790.
    [220]. Zhang, N., Fan, Y.H., Bi, C.F., et al.. Nickel(II) complexes with Schiff bases derivedfrom2-acetylpyrazine and tryptophan: synthesis, crystal structures and DNA interactions.Transition Metal Chemistry,2013,38(4):463-471.
    [221].李国宝,迟绍明,方芳等.密度泛函理论中的界限研究.云南化工,2003,30(03):24-27.
    [222].王伟周,张愚,王一波.(Cl_2F)~+结构和稳定性的量子化学从头计算和密度泛函理论研究.贵州科学,2000,18(Z1):21-25.
    [223]. Putz, M.V. and D.M.P. Mingos. Applications of Density Functional Theory to Biologicaland Bioinorganic Chemistry. Structure and Bonding. Springer Berlin Heidelberg,2013:124-129.
    [224].张辉.一氧化氮二聚体弱相互作用的量子化学方法研究:[硕士学位论文].天津:河北工业大学,2007.
    [225]. Wang, A.D., Bi, C.F., Fan, Y.H., et al.. Structure and coordination environment of thezinc complex with vanillin of double-stranded helix. Russian Journal of CoordinationChemistry,2008,34(7):475-479.
    [226].时术华.蛋白质静电势的量子化学计算.山东建筑大学学报,2010,25(02):154-157.
    [227]. Datsyuk, A.M., T.Y. Gromovoi and V.V. Lobanov. Analysis of the Properties of CarbonNanotubes from Distribution Maps of Molecular Electrostatic Potential. Theoretical andExperimental Chemistry,2004,40(5):277-280.
    [228].蒲雪梅.偶氮、亚胺小分子取代基效应及HNNOH氢键的理论研究:[硕士学位论文].成都:四川大学,2004.
    [229].黄艳菊,倪良,王蕾等.配合物[Ni(Pht)(Medpq)(H_2O)_3]_n的水热合成、表征及自然键轨道(NBO)分析.无机化学学报,2011,27(01):157-161.
    [230].方燕,王蕾,倪良等.由肉桂酸和甲基联吡啶喹喔啉配体构筑的双核铅(Ⅱ)的配合物的水热合成、表征及自然键轨道(NBO)分析.无机化学学报,2013,29(07):1551-1556.
    [231]. Poleshchuk, O.K., et al.. Donor–Acceptor Bond in Nontransition and Transition ElementComplexes: Studies with Natural Bonding Orbital Approach. Russian Journal of CoordinationChemistry,2003,29(1):53-59.
    [232]. Li, X., Li, X.H., Hao, X.P., et al.. Natural Bond Orbital (NBO) Population Study of SomePara-Substituted N-Methyl-N-nitrosobenzenesulfonamide Biological Molecules in MeCNSolution. Journal of Solution Chemistry,2013,42(2):263-271.
    [233].刘晶莹,王国清,王鸿刚.金属配合物抗癌活性的研究进展.化学试剂,2003,25(05):274-276.
    [234].葛蓓蕾,徐霞,陈小让.铜(Ⅱ)配合物抗癌活性研究进展.中国医药科学,2013,3(16):30-32.
    [235].刘建宁,于新桥,董彦杰等.缩氨基硫脲过渡金属配合物抗癌活性研究.浙江肿瘤,1999(03):174-176.
    [236]. Guan, Q., Shi, X., Shen, J.B., et al.. Antimicrobial, anticancer and DNA binding studiesof transition metal(II) complexes containing2-phenyl-4-selenazole carboxylic acid. ScienceChina Chemistry,2013,56(5):588-594.
    [237]. Krause-Heuer, A.M., W.S. Price and J.R.. Aldrich-Wright, Spectroscopic investigationson the interactions of potent platinum(II) anticancer agents with bovine serum albumin. Journalof Chemical Biology,2012,5(3):105-113.
    [238]. Chiririwa, H., Moss, J.R., Hendricks, D., et al.. Synthesis, characterisation and in vitroevaluation of palladium(II) iminophosphine complexes for anticancer activity. Transition MetalChemistry,2013,38(2):165-172.
    [239].赵承强.金属抗癌配合物研究现状及展望.广西轻工业,2009(06):17-28.
    [240].张燕婉,叶珏,时那等.蛋白质免疫印迹技术的实验研究.实验技术与管理,2008,25(10):35-37.
    [241].张霞.希夫碱配合物的合成、表征及抗肿瘤活性研究:[博士学位论文].青岛:中国海洋大学,2009.
    [242].肖艳.新型氨基酸希夫碱配合物的合成及铜(Ⅱ)、铂(Ⅱ)配合物的生物活性研究:[博士学位论文].青岛:中国海洋大学,2009.
    [243]. Schubert, U., Ott, D.E., Chertova, E.N., et al. Proteasome inhibition interferes with Gagpolyprotein processing, release, and maturation of HIV-1and HIV-2. Proceedings of theNational Academy of Sciences of the United States of America,2000,97:13057~13062.
    [244]. Milacic V, Chen D, Dou Q P, et al. Pyrrolidine dithiocarbamate-zinc(II) and-copper(II)complexes induce apoptosis In tumor cells by inhibiting the proteasomal activity. Toxicologyand Applied Pharmacology,2008,231(1):24~33.
    [245]. Chen D, Cui QC, Yang HJ, et al. Clioquinol, a therapeutic agent for Alzhemer’s disease,has proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumoractivities in human prostate cancer cells and xenografts. Cancer Research,2007,67(4):1-9.
    [246]. Wood, D.E., Newcomb, E.W.. Cleavage of Bax enhances its cell death function. Exp.CellResearch,2000,256(2):375-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700