用户名: 密码: 验证码:
深空导航敏感器标定系统与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学导航敏感器是利用其光学系统将不同空间目标成像于光电探测器靶面,通过数字处理技术得到数字图像,提取标准目标表后,再利用姿态计算单元得到飞行器导航需要的星体中心矢量、运行轨道高度以及其惯性姿态,从而实现对卫星等航天器的精确导航,所以光学导航敏感器在地面上标定试验的精度,将直接关系到航天器在轨工作精度。而目前国内外地面标定所采用的方法精度只能到达10"左右,不能满足深空导航敏感器对星间角距精度≤1"的标定要求。通过分析已有常规标定系统在高精度光学敏感器标定时存在的技术缺点,展开对深空导航敏感器标定系统及其关键技术的研究,提出一种高精度光学导航敏感器标定方法,并设计出可实现星间角距精度≤1",5~10等星准确模拟的深空导航敏感器标定系统,可为深空导航敏感器提供高精度静态可变标准星图,解决了目前常规标定设备的工作性能无法满足深空导航敏感器标定的现实问题。
     论文提出了深空导航敏感器标定系统的总体方案,论述了标定系统的总体组成,并阐述了标定系统的工作原理。本文研究的标定系统由动态小天体全视场高精密模拟器和高精度大口径静态可变目标标准源两部分组成。模拟器采用了透射式长焦距大视场投影光学系统,以达到全视场全光谱范围内波差、倍率色差与畸变等像差要求。目标标准源以OLED、光纤以及自聚焦透镜组合的光耦合机构作为照明系统,配合高精密靶标进行星图模拟的方案。标定系统的工作原理是用模拟器接收目标标准源通过变换星点位置和亮度形成的不同星图,再按照敏感器视场形成无限远的可变标准模拟星图,投射到敏感器入瞳处,实现在地面上模拟出敏感器在太空中看到的不同星相图。
     本文在给定的标定系统光学系统的基础上,着重对标定系统的机械机构进行了详细设计。针对长焦距的机械结构特点以及目标源弱目标模拟要求,系统设计了自准直调焦机构来确保目标源位于光学系统的理论焦平面处;同时为了减小系统整体尺寸,光路配置有转向平面反射镜,其采用了微应力装夹方法,以消除由反射镜变形和外界振动时所造成的光线偏移与跳动;为了方便装调和减少因整体结构过大而易受外界振动影响,系统采用分段式结构,并通过软连接进行拼装。
     对大尺寸、高精度星模拟器光机结构的关键技术进行了研究。首先提出一种光机结构的轴向一致性可控方法,通过分析不同结构尺寸的挠曲构件温度变化下的轴向变形量,来建立挠曲构件的参数方程式,解算方程可得到具体参数大小,并以此实现用于大尺寸光学透镜系统的挠曲元件的合理设计。此方法的应用可消除或减弱光学元件与装配零件相对移位或变形时对光学元件造成的应力破坏,保持所设计光学系统的光学特性一致。同时也研究了大尺寸棱镜运动学和半运动学的安装方法,分析几种不同的棱镜安装结构对棱镜光学特性的影响,给出了标准安装时的计算公式,并对自准直调焦机构中的大尺寸分光棱镜安装机构进行了半运动学设计。
     提出了高精度大口径静态可变目标标准源的总体方案,即将OLED面阵光源、光纤传光束与高精度星点靶集成实现星图模拟。此方法实现了在高精度光学敏感器标定时,对模拟星图中,星间角距与星等的高精度标定要求,其具有的宽星等范围的模拟技术,为深空探测用敏感器的进一步研究提供了技术支持。
     详细设计了目标标准源的的照明系统。通过研究光源与光纤的耦合技术,分析影响耦合效率的主要因素,给出目标标准源照明系统设计方案;对比已有光源与光纤的耦合方式,结合标定系统中光学系统能量损耗的计算结果以及耦合机构技术参数,选择OLED作为目标标准源的光源与聚合物光纤和自聚焦透镜构建成目标源照明系统,实际设计与仿真结果表明此照明系统可提供5~10等星的准确星亮度,并能够实现单星精确可控。
     分析了标定系统的关键参数星间角距和星等的精度影响因素,并提出了检测方法,实测结果表明其星间角距精度≤1",模拟星等范围5~10等,可满足深空导航敏感器标定的精度要求。
Optical navigation sensor is the special equipment of the precise navigation for the aircraft. Using of the optical system of navigation sensor, the photoelectric detector target surface can obtain the different imaging of the space target. Through the digital processing technology of digital image, the attitude calculation unit of navigation sensor can obtain the quasar center vector, orbit height and inertial attitude used for the aircraft navigation by the extraction of standard target table. Through the above operation can achieve the precise navigation of the satellite spacecraft. So it is so important to the optical navigation sensor that we must to calibrate the optical navigation sensor to get the precision value of the navigation sensor on the ground before the actual operation. At present the precision of the ground calibration using in the domestic and foreign methods can reach10" or so,which cannot meet the calibration requirement to deep space sensor that the star included angle accuracy is≤1".By analyzing the technical shortcomings using the existion conventional calibration system in the high precision optical sensor calibration,we research the the deep space navigation system and its technology,and put forward a new kind of the calibration method of the high precision optical sensor.Finally,we design the sensor calibration system based on the above presented method can realize the star included angle accuracy≤1",the magnitude5~10.The designed calibration system can simulates the high precision static variable standard star map,so the practical problem that the conventional calibration equipment performance cannot meet the calibration to the ddp space navigation sensor.
     We present the overall scheme of calibration system of deep space navigation sensor in this paper,and then constrcures and the principle of the calibration system are introduced.The calibration system is mainly composed of the high precision parallel light pipe and the high precision star charts simulator. In order to achieve the precision of the wave aberration, chromatic difference of magnification and distortion on the full field of view and the full spectral range, the simulator uses in the long-focal distance, large field projection optical system. The star charts simulator is introduced based on the method that combing the lighting system using the OLED,optical fiber and self-focusing lens as the optical coupling mechanism with the high-precision target. The work principle of the designed calibration system is that the simulator receives the different star map through the changing the star position and brightness, and projects the infinite variable standard star map to the entrance pupil of the sensor in accordance with the size of the sensor field, such realizing the different astrological charts in space to the sensor on the ground.
     We detailed design the mechanical mechanism of the calibration system based on the designed optical system.In view of the simulation requirements of the long focal length mechanical structure features and the weak target simulation,the collimation focusing mechanism is designed to ensure the target source located in the theory focal plane of the optical system.At the same time in order to reduce the overall system size,the steering mirror,which designed using of the micro stress clamping method to elimination the light shift and beating resulted from the reflector deformation and the vibration, is fixed in the system optical path.The overall sectional structures are connected by soft connection to facilitate the assembly and reduce the vibration influence because of the large strcture.
     Studying the key technology about the machine structure of the large size, high-precision star simulator, The controllable axial conformity for opt-mechanical structure is put forward, which shows using the designed flexure member can eliminated or attenuated the stress damage to optical element when the relative displacement of the components or the deformation caused by the temperature change. The parametric equation is established through analysis of the interrelation between the deformation of the different structure dimensions flexural member and the temperature change, and the parameters solving method is given too. Study on the installation method of the large size prism based on the kinematics and the semi dynamic and analysis of the influence of the optical properties of the prism under the difference installation structure on the prism,we present the calculation formula of the standard installation. Applying the above theory,the collimation focusing mechanism is designed.
     The overall scheme of star charts simulator, which is based on the optical coupling technology through the OLED combing with fiber and high-precision star target, is presented. Applying this scheme, the calibration system can achieve the high-precision calibration parameters including the star included angel, star brightness. This simulation technology having a wide range of magnitude value provides technical support for the further study on the deep space detection sensor.
     The lighting system of star charts simulator is detailed designed. Through research the coupling technology and analysis of the main effecting factors to the coupling efficiency, the scheme of the lighting system is presented. We choose the OLED as source, the polymer optical fiber and self-focusing lens to constructed the lighting system through comparison with several coupling methods and combing with the calculation results of energy loss of the optical system and the technical parameters of the coupling mechanism. The actual design and the simulation results show that the lighting system can provide5~10star brightness and realize the single star accurately controlled.
     Analysis of the key parameters of the calibration system mainly including the star included angle precision and the magnitude precision, we put forward theirs detection methods. The actual test results that star included angle accuracy<1",5~10magnitude simulation proves that the studied optical sensor calibration system meet the calibration precision of the current deep space navigation sensor.
引文
[1]Peng Kai, Liu Shugui, Huang, Fengshan,Image processing based on the principle of subtraction in vision coordinate measurement system, Proceedings of 6th international symposium on Test and Measurement, International Academic Publishers World Publishing Corporation,2005,899-903
    [2]Y Shan, G.W Boon, Sup-pixel location of edges with non-uniform blurring a finite closed-form approach, Image Vision Computing,2000:1015-1022
    [3]Tanimoto, S.and Pavlidis, T(1975). A Hierarchial data structure for picture processing, CGIP,Vol 4,P104-109
    [4]L.Chausson, S.elavault.Optical Navigation Performance During Interplanetary Cruise.17th ISSFD,Moscow,Russia,2003:1-9
    [5]Catherine L.Thornton, James S.Border. Radiometric Tracking Techniques for Deep Space Navigation.USA:John Wiley&sons,Inc.2003:44-46
    [6]Talluri R., Aggarwal J.K. A positional estimation technique for an autonomous land vehicle in an unstructured environment.In Proceedings of the International Symposium on Artificial Intelligence,Robotics and Automation in Space,Kobe,Japan,1990:135-138
    [7]Doraiswami R. A Novel Kalman Filter-Based Navigation Using Beacons.IEEE transactions on aerospace and electronic systems.VOL.32,No,2 April 1996:830-840
    [8]Daniel P.SCHARF, Fred Y. HADAEGH, Bryan H.KANG On the validity of the double integrator approximation in the deep space formation flying.Formation Flying Missions&Technologies,Toulouse,France,2002:1-3
    [9]Konrad Reif, Stefan Gunther, Engin Yaz. Stochasttic Stability of the Continuous-Time Extended Kalman Filter.IEE Proc.Control Theory Appl.Vol.147,No.1,January 2000:45-52
    [10]Konrad Reif, Stefan Gunther, Engin Yaz. Stochasttic Stability of the Discrete-Time Extended Kalman Filter.IEEE Transactions on Automatic Control.Vol.44,No.4,April 1999:714-728
    [11]Ermakov O I, Soloviov, I V.Strelchonok Y A. A New Generation of the Sun and Earth Sensors. ESA,1997, WPP-129,15-17
    [12]李士贤,伍少昊.一种新型红外地球模拟器[J].展望21世纪初光电技术发展趋势研讨会2000,172-175
    [13]Todd J. Bednarek. Dual cone scanning earth sensor processing algorithms. Small Satellite Technologies and Applications II Meeting,1992,1691(1):181-191
    [14]George Rullman, Richard Burton, Len Anderson. A novel new geo earth sensor provides high accuracy. Proceedings of the Annual American Astronautically Society Rocky Mountain Guidance and Control Conference held February 2-6.2000,447-464
    [15]Kurii, Toshihiro. Next generation at Titude control with scan-through earth sensor and disturbance suppression. In: AIAA, International Communications Satellite Systems Conference and Exhibit,17th, Yokohama, Japan, Feb.23-27, 1998,661-669
    [16]孙宝祥,赵健翔,李宝援.摆动扫描地球敏感器数学模型及飞行试验结果[J].航天控制,2000,18(3):34-39
    [17]张新邦,索旭华.中低轨道卫星姿态控制系统半物理仿真方法讨论[C].99全国仿真技术学术会议论文集,1999:205-207
    [18]张湛,吴宏鑫,田时镁,等.地球敏感器摆动扫描系统全系数自适应控制[C]..中国控制会议论文集.445-457
    [19]王存恩.月球/太阳对CS-3星载地球敏感器的影响及地球敏感器的应用[J].化工设备设计,1992,19:54-55
    [20]孙宝祥,赵健翔.对地定向三轴稳定卫星的圆锥扫描地球敏感器的数学模型.[J]航天控制,1995,13(4):14-21
    [21]Puneet Singla. A New Attitude Determination Approach Using Split Field of View Star Camera. Texas A&M University MASTER OFSCIENCE.2002:58-61
    [22]E. J. Lefferts, F. L. Markley, M. D. Shuster. Kalman Filtering for Spacecraft Attitude Estimation. Journal of Guidance, Control, and Dynamics.1982,5(5):417-429
    [23]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,1998
    [24]Paul Sanneman, Teresa Hunt, Kathie Blackman. Design of the EO-1 Pulsed Plasma Thruster Attitude Control Experiment. Charles Zakrzwski.37th AIAA/ASME/SAE/ASEE Joint Propulsion. Conference.8-11 July 2001. Salt Lake City, Utah:3-11
    [25]刘一武.惯性敏感器与星敏感器之间在轨自主标定比较研究。[J].航天控制,2005
    [26]陈雪芹,耿云海.一种利用星敏感器对陀螺进行在轨标定的算法[J].系统工程与电子技术,2005,27(12):2112-2116
    [27]Singla P. A new attitude determination approach using split field of view star camera [M].Texas A&M University MAS-TER OF SCIENCE,2002
    [28]Yashwant K. Jain, J.A. Kamalakar, ManishaSharma. Adaptation of GEO earth sensor for LEO. Infrared Spaceborne Remote Sensing Ⅲ Meeting1995,2553(1):66-76
    [29]Ahmed Salah; Ashraf Adel; Ahmed Ezeldin. Design and Implementation of an Area-Efficient MEMS-Based IR Static earthsensor. The 15th International Conference on Microelectronics 2003,143-146
    [30]Kenichiro Nigo, Ritsuo Hasegawa, Toshihiro Kurii, Masanori Fukui. Reduction of earth sensor Random Error Caused by Minute Vibration Interference. AIAA Guidance, Navigation and Control Conference2002,2468-2475
    [31]G. Soto-Romero, F. Bony;, JJ. Simonne, JY. Fourniol. Micro Infrared earth sensor project:an integrated IR camera for earth remotesensing. sensors, systems, and next-generation satellites V2001,176-187
    [32]Shuster M D, OHS D. Three-axis attitude determination from vec-tor observation[J].Journal of Guidance and Control, AIAA-81-4003,1981,1(4):70-77
    [33]Snow F, Krack K, Sheu Y, et al. Accuracy study of the upper at-mosphere research satellite (UARS) definitive attitude determina-tion[J].Flight Mechanics/Estimation Theory Symposium,1988,10(11):26-41
    [34]Shuster Malcolm D, Pitone Dantel S,Bierman Gerald J. Batch esti-mation of spacecraft sensor alignments I.Relative alignment esti-mation[J].The Journal of the Astronautical Sciences,1991,4(39):519-545
    [35]张延顺,王海,等.卫星三轴姿态确定系统的光纤陀螺/星敏感器组合技术研究[J].中国惯性技术学报,2003,11(2):1-4
    [36]杨博.一种用星敏感器自主定位方法的精度分析[J].航天控制,2001年1月,页:12-16
    [37]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998
    [38]许武军,张海洪.用于微卫星星座的空间监视望远镜系统设计[J].光电工程.2005,32(6):1-3
    [39]王涛,冯展军,尤太华,陈强华,等.基于星敏感器的飞行器姿态确定方法[J].导航与控制.2005,4(1):15-17
    [40]陈刚.卫星自主智能控制多传感器信息处理技术研究[D]:[硕士学位论文].国防科学技术大学,2005
    [41]uneet Singla, D. Todd Griffith, J. L. Crassidis andJ. L. Junkins. Attitude Determination and Autonomous On-Orbit Calibration of Star Tracker For GIFTS Mission. AAS/AIAA Space Flight Mechanics Meeting, San Antonio, Texas, 27-30 January,2002:4-11
    [42]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西北工业大学出版社,1998:40-41
    [43]Malak A.Samaan, Todd Griffith, Puneet Singla, JohnL. Junkins. Autonomous On-Orbit Calibration of StarTrackers. PPT. Paper Presented at SpaceCore Technology Conference Colorado Springs, Co.2001:1-11
    [44]蔡晓东,叶培建.基于特征点集的匹配算法应用于卫星姿态确定[J].北京航空航天大学学报.2006.32(2):171-175
    [45]孙宝祥,李铁寿.三轴稳定通信卫星在地球指向模式下的陀螺标定.航天控制.1994,(3):64-68
    [46]周世勤.光纤陀螺技术的发展.飞航导弹.2000.2(2):42-45
    [47]刘付成,刘汝滨.卫星惯性姿态敏感器技术.上海航天,2003(5):33-37
    [48]Travis, H. D. Attitude Determination Using Star Tracker Data withKalman Filters:[Master's thesis]. Naval Postgraduate School, Monterey, CA.Dec 2001:2-11
    [49]胡绍林,黄刘生.自旋稳定卫星姿态参数的容错Kalman滤波[J].中国空间科学技术,2003(1):66-70
    [50]赵黎平,周军,周凤岐.基于磁强计的卫星自主定轨[J].航天控制,2001(3):7-11
    [51]钱勇.高精度三轴稳定卫星姿态确定和控制系统研究[D]:[博士研究生论文].西北工业大学,2002
    [52]周军.航天器控制原理[M].西安:西北工业大学出版社.2000:62-68
    [53]黄圳圭.航天器姿态动力学[M].长沙:国防科技大学出版社,1997:7-23
    [54]Erikjebo,Satellite Attitude Determination-Three-axis attitude determination using magnetometers and a star tracker. Siv. ing. Thesis. Department of Engineering Department of Engineering Cybernetics, NTNU,2000
    [55]郑庆晖.基于GPS的航天器姿态、相对姿态确定研究[D]:[博士研究生论文].国防科学技术大学,2003
    [56]刘建业,李荣冰.一种改进的星敏感器/陀螺卫星定姿算法.系统工程与电子技术.2006.28(6):896-899
    [57]杨小会.基于天文信息的卫星自主导航[D]:[硕士学位论文].西北工业大学,2006
    [58]Thomas R?bekk Krogstad. Attitude Control of Satellites in Clusters. Norwegian University of Science and Technology Department of Engineering Cyberntetics. Master's thesis.2005:3-10
    [59]MARK E PITTELKAU. Kalman filter for spacecraft sys-tem alignment calibration [J]. Journal of Guidance,Control and Dynamics,2001,24(6):1187-1195
    [60]Hideaki Koyama, Toshihiro Kurii, Fumiho Takahashi. Commercialized space use earth sensor assembly. NEC Research & Development2001,42(1):210-214
    [61]G. Soto-Romero, Jy. Fourniols, C. Vergnenegre, J. J. Simonne, F. Bony. Uncooled Micro-earth sensor for micro-satellite atTITude control. Infrared imaging systems:design, analysis, modeling, and testing XI2000,10-20
    [62]Hand AJ. Earth sensor keeps satellite on track. Photonics spectra1998,32(1):22-26
    [63]柯受全主编.卫星环境工程和模拟试验[M].北京:宇航出版社,1993
    [64]林聪榕等编著.世界航天武器装备[M].北京:国防科技大学出版社,2001
    [65]李世忠,王仁礼.航天遥感立体测绘小卫星目标跟踪与角度测量[J].测绘学院学报,2001,18(1):29-32
    [66]Huang, Peisen S, Zhang, Aiyu. Optical sensor for precision small-angle measurement. American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC,1999,67:753-757
    [67]郭玉娇.星模拟器概述.控制工程,1986,5:42-49
    [68]Fu Zheng Jun, Xiao Xiu Ling.An angle measurement method with variable amplification, Intelligent Control and Automation. Proceedings of the 3rd World Congress.2000,2:1379-1381
    [69]Huang, Peisen S, Zhang, Aiyu. Optical sensor for precision small-angle measurement. American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC.1999,Vol.67:753-757
    [70]Zhang Z, Yu Y. Method for 3D small angle measurement. Optical Engineering,2001,4189:286-293
    [71]Zhang Zhijiang, Yu Yingjie, Du Mingfang Three-dimensional small angle measurement using a single image. Optical Engineering,2001,4595:52-59
    [72]Yin Chunyong, Xie Guangping, Cheng Xiangyin. Measurement method of the rolling angle. Journal of Tsinghua University,1996,36(10):86-91
    [73]王南华,张陶,赵旭行.小型动态模拟器设计[J].航天设计,1996,No.4:13-21
    [74]宋晓龙.全轨道实时星模拟器[J].系统仿真学报,1995.No.6:40-46
    [75]张文明.小型星模拟器的研制方法和研制技术[D][工程硕士学位论文].电子科技大学,2003
    [76]T.K. Alex, J.A. Kamalakar. Scanning infrared earth sensor for INSAT-Ⅱ. sensors and sensor Systems for Guidance and Navigation Meeting1991,106-111
    [77]Rdbert R. Strunce, Jr, Francis H,Maher, An Object Oriented Dynamic Simulation Architecture For Rapid Spacecraft Prototyping, PWSPublishing Co.1997.
    [78]Robbie E. Hood and Roy W. Spencer, High Altitude Aircraft Mapping of Near Surface Ocean Winds, 0-7803-3068-4/96$5.000 1996 IEEE
    [79]Uwe Schmidt, Intelligent error correction method applied on active pixel sensor based star tracker. Detectors and Associated Signal Processing II, edited by Jean-Pierre Chatard. Peter N. J. Dennis.Proc. of SPIE Vol.5964,59640J,
    [80]Ahmed Salah, Ashraf Adel, Ahmed Ezeldin. Design and Implementation of an Area-Efficient MEMS-Based IR Static earthsensor. The 15th International Conference on Microelectronics 2003.143-146
    [81]Kenichiro Nigo, Ritsuo Hasegawa, Toshihiro Kurii, Masanori Fukui. Reduction of earth sensor Random Error Caused by Minute Vibration Interference. AIAA Guidance, Navigation and Control Confefence2002,2468-2475
    [82]G Soto-Romero, F. Bony, JJ. Simonne, JY. Fourniol. Micro Infrared earth sensor project:an integrated IR camera for earth remotesensing. sensors, systems, and next-generation satellites V2001,176-187
    [83]K. Kanakaraj; J.A. Kamalakar; A.S. Laxmiprasad. Infrared earth sensor for detection of solar sail deployment of INSAT-2A. Space Guidance, Control, and Tracking Meeting1993,1949(1):266-271
    [84]刘亚平,李娟,张宏.星模拟器的设计与标定[J].红外与激光工程,2006,10(35):24-28
    [85]赵晨光,谭久彬,刘俭等.用于天文导航设备检测的星模拟装置[J].光学精密工程,2010,18(6):1326-1332
    [86]屠善澄.卫星姿态动力学与控制[M].北京:宇航出版社,2003
    [87]许江宁,边少锋,等.陀螺原理[M].北京:国防工业出版社,2004
    [88]Todd J. Bednarek. Dual cone scanning earth sensor processing algorithms. Small Satellite Technologies and Applications Ⅱ Meeting1992,1691(1):181-191
    [89]George Rullman, Richard Burton, Len Anderson. A novel new geo earth sensor provides high accuracy. Proceedings of the Annual American Astronautically Society Rocky Mountain Guidance and Control Conference held February 2-6,2000,447-464
    [90]M.M.Nardai and GZifferer. Simulation of dilute solutions of linear and star-branched polymers by dissipative particle dynamics. THE JOURNAL OF CHEMICAL PHYSICS 131,124903 2009.1-48
    [91]D.J.Pines. X-ray Source Navigation for Autonomous Position Determination Program. DARPA/TTO.571-217-4339, USA.2004:1-15
    [92]S.Bhaskaran, Nick Mastrodemos, Joseph E. Riedel,Stephen P.Synnott.OPTICAL NAVIGATION FOR THE STARDUST WILD 2 ENCOUNTER.18th International Symposium on Space Flight Dynamics,11-15 October 2004:455-460
    [93]Massimiliano Vasile. Deep Space Autonomous Orbit Determination Using CCD.AIAA-2002-48I8,Astrodynamics Specialist Conference and Exhibit.Monterey,California,5-8 August 2002:1-10
    [94]卢欣.CCD星敏感器光学系统设计[J].中国空间技术,1994,No.8:49-55
    [95]田玉龙,王广君,房建成,等.星光模拟的半物理仿真技术[J].中国航天,2004,No.4:25-26
    [96]朱耆祥.白天用CCD摄像机对天体目标的探测及实验[J].光电工程,1995,Vol.22,No.6:1-10
    [97]王晓东.大视场高精度星敏感器技术研究[D].中国科学院研究生院,2003
    [98]李春艳,李怀锋,孙才红.高精度星敏感器天文标定方法及观测分析[J].光学精密工程,2006
    [99]高钟梳.静电陀螺仪技术[M].北京:清华大学出版社,2004
    [100]刘一武,陈义庆.星敏感器测量模型及其在卫星姿态确定系统中的应用[J].宇航学报,2003,24(2):162-167
    [101]李朝辉.月基对地观测极紫外相机光机结构设计[J].仪器仪表学报,2010,31(10):2352-2356
    [102]李志来,薛栋林,张学军.长焦距大视场光学系统的光机结构设计[J].光学精密工程,2008,16(12):2485-2490
    [103]黄心耕.准直式地球模拟器锗准直透镜光学系统的设计[J].航天控制,2004,22(3):54-57
    [104]周剑,骆德渊.一种新型的光学探头的研制[J].光电子.激光,1997,8(5):344-349
    [105]潘君骅.大相对口径大线视场光学系统的设计[J].中国工程科学,2000,8(2):89-90
    [106]蒋汉元,李雪雷,陈涛,等.光电经纬仪图像测量中的自动调焦系统研究[J].计算机测量与控制,2010,18(1):183-185
    [107]Paul R.Yoder. Opto-Mechanical Systems Design[M]. New York and Basel:MARCEL DEKKER.INC
    []08]刘新平.折轴二反射镜成像光学系统结构研究[J].光子学报,1998,27(1),73-76
    [109]苗健宇,张立平,吴清文等.测绘相机光学镜筒设计、加工及装配[J].光学精密工程,2008,16(9):1648-1653.
    [110]闫勇,金光,杨洪波.空间反射镜结构轻量化设计.红外与激光工程[J].2008,37(1):97-99
    [111]吉小辉,孙后环,周必方,等.大视场平行光管的研究与设计[J].光学仪器,2007,29(3):35-40
    [112]J.H.Burge, E.Sabatke, J.R.P.Angel, Optical Design of Giant Telescopes for Space[J]. SPIE,2000? Vol.4092:82-93
    [113]Olivier L.de Weck,Isoperformance An Alternative Design Methodology for Engineering Systems[J]. Massachusetts Institute of Technology Engineering Systems Division Working Paper Seres,2003,1-18
    [114]张红坡,黄莉.点源目标模拟器研制[J].光学仪器,2008,30(6):74-76
    [115]胡宜,巩岩.星模拟器星光颜色模拟的初步研究[J].光电工程,2010,37(8):65-73
    [116]胡宜,巩岩.星模拟器星光颜色模拟的初步研究[J].光电工程,2010,37(8):65-73
    [117]许世文,龙夫年,付苓,等.实时星场模拟器中的坐标变换[J].哈尔滨工业大学学报,1998,No.5:118-121
    [118]郝雪涛,张广军,江洁.星敏感器模型参数分析与校准方法研究[J].光电工程,2005,No.3:5-10
    [119]林涛.四边形全天自主星图识别算法[J].宇航学报,2000,No.2:82-85
    [120]黄心耕.地球敏感器光谱波段对红外带通滤光片的影响.中国空间科学技术,2000.2(4):60-66
    [121]黄心耕.红外地球敏感器用高截止度宽带红外滤光片研制[J].光学仪器,2001,169-173
    [122]张群雁,周震,冯丽爽等.新型微米光栅加速度计光学结构研究[J].光学学报,2010,30(6):1796-1799
    [123]赵晶.单片机控制OLED显示系统设计[D]:[硕士研究生论文].重庆大学,2006
    [124]张华,李晓峰,杨文淑.星载激光通信光学反射镜镜面热变形及其对光学系统影响的研究[J].红外,2008,4:28-34
    [125]梁文科,刘顺发.次镜支承结构的力学性能分析[J].仪器仪表学报,2007,28(5):859-864
    [126]张德江,刘立人,孙建锋,等.棱镜自重变形对波面影响的研究[J].光子学报,2006,35(4):619-621.
    [127]王成彬,杨洪波,孙强等.头盔3D显示中塑料自有曲面棱镜热变形研究[J].计算机仿真.2009.26(7):340-350.
    [128]高明,王占军.微光夜视仪空间棱镜架有限元热分析[J].西安工业大学学报,2011,31(1):17-22.
    [129]胡志刚,徐诚,郭凯.一种枪械总体动态优化设计的新方法[J].兵工学报,2005,26(2):150-153
    [130]曹尉南,谢桂兰,龚曙光等.均匀化理论在开孔转鼓结构优化中的应用研究[J].中国机械工程.2006.7(9):937-940
    [131]王洋,张景旭.大口径望远镜支撑优化分析[J].光电工程,2009,36(1):107-113
    [132]张锐,陈志远,杨世模,等.空间太阳望远镜主镜支撑结构的优化设计[J].光学技术,2007,33(1):23-26
    [133]ZJr Paul R Yoder.光机系统设计[M].第3版.博卡拉顿(美国):国际光学工程学会出版社,2006:179-180,726-728
    [134]谢娜,周海,张军伟.大型激光装置光学元件的稳定性设计[J].光学精密工程,2009,17(10):2411-2417
    [135]Junwon Lee,Imaging quality assessment of multi-modal miniature microscope[J]. Optics Express,1436(12):1-12
    [136]MYUNG CHO, Conceptual Design of Primary Mirror Segment Support System of the GSMT Point Design, Report prepared for New Initiatives Office, October 2001
    [137]P.Tuteleers, Replication of Refractive Micro Opto-mechanical Components Made with Deep Lithography with Protons, Proceedings Dymposium IEEE/LOS Benelux Chapter 2000,247-262
    [138]刘卷民.消除大口径透镜径向温差应力的原理及结构[J].光电工程,2000,27(4),57-59
    [139]傅丹鹰.空间遥感器的热/结构/光学分析研究[J].宇航学报,2001,22(3),105-110
    [140]冯树龙.温度对大口径主镜面型变形影响分析[J].光学技术,2005,31(1),41-43
    [141]李积慧.空间光学遥感器的热光学分析与热控设计研究[D]:[博士研究生论文].中国科学院长春光机与物理研究所,2000
    [142]陈塬,张文明.面向星模拟器的可调准色温光源[J].光电工程,2010,27(8):50-53.
    [143]Yand chun, XIA ZHi chao.Propagation Constant Solution for Large Core and High Numerical Aperture Step-Inedx Multimode Optical Fiber[J].Acta Optica Sinica,2004,24(7):957-960.
    [144]张文明,林玲,郝永杰,等.小型星模拟器中星图动态显示系统的设计[J].光电工程,2000,No.5:11-14
    [145]潘平.单星模拟数字光源研制技术[D]:f硕士学位毕业论文].西安:中国科学院西安光学精密机械研究所,2005
    [146]王兆魁,张育林.面向空间目标监视的星图模拟器设计与实现[J].系统仿真学报,2006,NO.5:1195-1211
    [147]钟奉金,许世文,赵亮等.星模拟器中积分球内光纤端面有效照度的计算[J].哈尔滨工业大学学报,1998,No.4: 112-115
    [148]杨春,夏志超.大芯径大数值孔径阶跃光纤传导模特征方程求解.[J].光学学报,2004,24(7):957-960
    [149]王高,周汉昌,李仰军.锥形光纤耦合特性仿真研究[J].仪器仪表学报,2006,27(6):1118-1119
    [150]田金文,欧阳桦,郑胜,等.一种星图中星的提取方法[J].华中科技大学学报,2005,No.4:38-40
    [151]朱长征.基于星模拟器的星模式算法及空间飞行器姿态确定技术研究:[博士学位毕业论文].合肥:国防科技大学,2004
    [152]刘亚平,李娟,张宏.星模拟器的设计与标定[J].红外与激光工程,2006,10(35):24-28
    [153]苗健宇,张立平,等.测绘相机光学镜筒设计、加工及装配[J].光学精密工程,2008,16(9):1648-1653
    [154]陈塬,张文明.面向星模拟器的可调准色温光源[J].光电工程,2010,27(8):50-53
    [155]高应俊,姚胜利,高凤。用自聚焦透镜作平行光束与单模光纤的最佳耦合[J].光子学报,1999,28(2):176-179
    [156]朱长征,沈振康.面向星敏感器的星模式识别算法[J].中国惯性技术学报,2004,No.2:55-61
    [157]黄种,周学平,欧阳艳东,等.液晶光阀的电光色散特性研究[J].光谱学与光谱分析,2006,No.3:539-542.
    [158]张磊,,祁康成,成建波.液晶光阀复合光吸收层的吸收系数研究[J].光电子技术,2005,No.4:222-225
    [159]钱祥忠,黄芳云.液晶光阀光电导层光吸收系数的研究[J].液晶与显示,2004,No.4:218-221
    [160]于永红,杜丕一,王瑞春,等.复合光导层液晶光阀的研究[J].功能材料与器件学报,2003,No.3:305-308
    [161]沈大可,韩高荣,杜丕一.液晶光阀薄膜的光电特性研究[J].功能材料与器件学报,2002,No.4:335-400
    [162]祁康成,光寻址液晶光阀的吸收层[J].真空科学与技术,2002,NO,12:60-63
    [163]钱祥忠.液晶光阀中的高反射介质镜的研究[J].液晶显示与器件,2002,No.2:43-48
    [164]王红霞,何俊发,李俊,等.基于液晶光阀微分处理的实时联合变换相关器[J].光电工程,2004,No.10:57-60
    [165]郝巨东.高精度快速角度测量系统[C].全国(第二届)工业控制系统应用学术会议,1996,464-469
    [166]张琢.动态转角测量及其误差检测技术的研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,1995
    [167]李向,李栋娟.一种新型的精密动态角度测量系统[J].航空精密制造技术,1995,31(1):35-37
    [168]刘晓彬,何俊发,王永庆.方位瞄准中的高精度小角度的检测[J].光电子技术与信息,2002,15(3):34-36
    [169]蔡喜平,孙东松,赵远.CCD敏感器系统测距测角技术的研究[J].航天控制,1997,15(3):22-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700