用户名: 密码: 验证码:
装载机并联液压混合动力系统设计与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源需求快速增长与石油资源日渐匮乏矛盾的加剧,节能减排越来越受到全世界的关注。混合动力技术是目前实现车辆节能减排的有效措施之一,已在汽车领域有成功应用范例,并逐步扩展到工程机械。轮式装载机作为工程机械的一种主要产品,具有周期性作业、频繁起停、消耗大、排放差等特点。目前,轮式装载机的发动机节油技术及整机匹配技术研究已很深入,却很难大幅度地提高整机的节能效果。
     液压混合动力技术利用液压蓄能器将轮式装载机的制动能、下坡惯性能及发动机的多余能量进行回收和存储,并在起动、加速和铲掘的过程中提供辅助动力,保证发动机工作于高效燃油经济区。相对于电动混合动力技术,液压混合动力瞬间处理大功率的能量释放和存储能力强,更能适应于频繁起停和负载多变的作业工况要求,是一种低成本、高功率比、可靠的技术。本文将并联液压混合动力技术应用于轮式装载机传动系统中,以实现制动动能及势能的回收和再利用,最终实现轮式转载机节能减排的目的。
     本文对装载机并联液压混合动力技术进行了全面深入的研究,主要工作内容如下:
     (1)综述和分析了国内外液压混合动力技术的研究现状与趋势,阐述了二次调节静液传动系统的结构、工作原理、控制方式及技术特点。
     (2)对比分析了装载机在工作中的各类能耗,确定了制动动能和下坡势能作为能量回收的主要方向,设计了并联式液压混合动力装载机的驱动系统、柔性制动系统,并根据不同作业工况,设计了多种工作模式,并阐述了各工作模式的转换条件。
     (3)确定了液压泵/马达、蓄能器、耦合器等关键元件参数的选择标准,在Matlab/Simulink环境下,采用后向建模方法建立了并联液压混合动力装载机的仿真模型,并将仿真结果和传统装载机各项性能进行了对比分析。
     (4)分析了不同结构配置、行驶工况、耦合器传动比、液压蓄能器的关键参数、控制参数等对液压混合动力系统效率和节能效果的影响,提出了装载机并联液压混合动力系统关键参数的选择标准,。
     (5)设计了液压再生制动与传统机械制动相结合的并行制动的控制策略,通过仿真研究了不同制动初速度、不同路面条件下的制动能量回收效率,以及再生制动力和摩擦制动力的比例关系。采用动态的逻辑门限方法,设计了并联式液压混合动力装载机能量控制策略,并根据车速及加速踏板的下行幅度,识别整机的作业工况,实现不同工作模式的平滑切换。根据发动机负荷和蓄能器的能量存储状况,动态调整主动充压转矩,并优化铲掘驱动转矩,使发动机工作于最佳效率区域。
     (6)试制了装载机并联液压混合动力系统,并论述其结构,进行了液压泵/马达实验、再生制动实验,复合制动实验、整机实验。
     理论分析,仿真研究以及样机实验表明,将并联液压混合动力系统应用于装载机,能高效回收制动动能和下坡惯性能,并明显提高轮式装载机的动力性能,调整发动机工作负荷,保证发动机工作于最佳燃油经济区,提高燃油经济性。本文研究的并联液压混合动力技术将为装载机混合动力技术的工程化应用提供理论基础,为包括装载机的工程机械采用液压混合动力系统提供了技术指导。
     该论文有图107幅,表13个,参考文献135篇。
The contradiction between the rapid increase of energy demand and the lack of oil resources becomes greater, thus people are paying more attention to energy saving and emission reduction in the world. Hybrid technology is currently becoming one of the effective measures to solve the energy crisis and environment pollution. In view of the successful application of hybrid technology in automotive field, it is also gradually introduced into the application of engineering machinery. Wheel loader is one type of main products of engineering machinery. It has some features, such as cyclical work, frequent starting and stopping, more consumption and bad emission. There are a lot of researches about engine oil saving technology and the machine matching technology,it is difficult to improve the fuel economy of the whole machine greatly.
     The hydraulic hybrid technology uses hydraulic accumulator, which can recycle the brake energy, downhill inertia energy and the engine’s redundant energy of the wheel loader and provide the auxiliary power for the restarting and spading of the whole loader, this is important to ensure that the engine works in efficient fuel economic zone. Relative to the electric hybrid technology, hydraulic hybrid can own a higher release and storage capacity for processing high power energy instantly, thus it is more suitable to the frequent starting and stopping and variable load operating requirements, it also is a low cost, high specific power, safe mature technology. In this paper, the parallel hydraulic hybrid technology is used in wheel loader transmission system to realize energy recycling and reuse, realizes energy saving and emission reduction in the end.
     The author makes a comprehensive thorough research on the loader parallel hydraulic hybrid technology. The mainly work are shown as follows:
     (1)This paper discusses and analyses the hydraulic hybrid technology's research status and development trend in the world, introducing the structure, working principle, control method and technical characteristics about secondary regulation hydrostatic transmission system.
     (2)Many types of energy consumption of the loader are analyzed, brake energy and downhill inertia energy are established the main study direction. The drive system and flexible brake system of parallel hydraulic hybrid loader are designed. According to different operating conditions, a variety of operation modes are designed, and conversion conditions are introduced.
     (3)Key elements selection criteria are determined, such as pump and motor, hydraulic accumulator, and coupler. The model of parallel hydraulic hybrid loader is established on the platform of Matlab and Simulink by backward modeling method. Comparative analysis are provided between simulation results and traditional loader performance.
     (4)This paper analyzes the influences of distribution way, the operation speed, the coupler ratio, the hydraulic accumulator key parameters and the control strategies on the system efficiency and energy saving effect,and puts forward key parameters selection criteria of parallel type hydraulic hybrid system。
     ( 5 ) This paper designs parallel brake control strategy combining hydraulic regenerative brake and traditional mechanical brake, researches the brake energy recovery rate of different initial brake speed and different road conditions by simulation, also study proportional relation between regenerative brake force and the friction brake force . This paper uses the logic threshold design method to design the control strategy of the parallel hydraulic hybrid loader , distinguish machine operation condition and realize the smooth switching of different working modes .According to the speed and the downlink amplitude of acceleration pedal, this paper also adjustments dynamically active supercharging pressure torsion, optimizes spading drive torque ,ensuring the engine working in efficient fuel economic zone combine with engine load energy saving of the hydraulic accumulator.
     (6)Parallel hydraulic hybrid system of the loader is made, its structure is discussed and various experiments are conducted, including pump and motor experiment, low brake experiment, compound brake experiment, and the machine experiment.
     Through theoretical analysis, simulation study and prototype experiment, the results show that parallel type hydraulic hybrid system used on loader can highly efficient recovery braking energy, obviously improve the dynamic properties and the downhill inertia energy.Meanwhile, it is easy to adjust the engine’s workload to ensure that the engine can extremely save the fuel. The parallel type hydraulic hybrid technology of this paper will provide theoretical basis for the engineering application, also provide technical guidance for other hosting products of engineering machinery which adopts hydraulic hybrid technology.
     This dissertation contains 107 diagrams, 13 tables and 135 references.
引文
[1] V. L. Septimus.Bulk Energy Storage Potential in the USA,Current Developments and Future Prospects[J].Energy,2006,31(15):3446-3457.
    [2] 2010中国工程机械十大新闻[OL].http://news.cm.hc360.com/2011/01/12091627395-3.
    [3]周志飞.关注混合动力装载机的发展[J].铁道货运,2006,04:33-34.
    [4]徐立.应用超级电容的工程机械混合动力系统仿真研究[D].武汉理工大学博士学位论文,2008:1-6.
    [5]叶明.基于机械自动变速的轻度混合动力传动系统综合控制研究[D].重庆大学博士学位论文,2006:4-6.
    [6]张彦廷.基于混合动力与能量回收的液压挖掘机节能研究[D].浙江大学博士学位论文,2006:1-10.
    [7]刘昌盛,张大庆,蒋苹,谭青.工程机械混合动力技术的发展与应用[J].建筑机械,2009,5(上半月刊):59-60.
    [8]孙辉,姜继海,王昕.静液传动混合动力车辆再生制动策略研究[J].东北大学学报. 2008, 6(29): 248-252.
    [9]齐吉富.轮式装载机节能技术研究[J].建筑机械,2010,06: 73-79.
    [10]姚树平.浅谈废气涡轮增压发动机[J].农业装备技术.2010,36(4):48-49.
    [11]刘云.车用柴油机技术现状及发展趋势[J].潍坊学院学报.2005,5(4):86-87.
    [12]郝勇,孙健,杨海清.2009年国内车用柴油机技术发展分析[J].汽车工程师,2010,08:12-14.
    [13]马振新.直喷柴油机技术研究[J].农业科技与装备,2010,08:71-72.
    [14]汪世益,方勇,满忠伟.工程机械液压节能技术的现状及发展趋势[J].工程机械,2010,09:51-53.
    [15] Kamil ?. B., Mehmet A. G. and Ahmet T. A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units[J]. Energy Conversion and Management, 2011(52): 1305-1313.
    [16]刘涛.并联式液压混合动力车辆参数优化与控制策略研究[D].哈尔滨工业大学博士学位论文,2010: 2-10.
    [17]杨阳.CVT混合动力系统再生制动综合控制研究[D].重庆大学博士学位论文,2008: 2-5.
    [18]黄伟.基于CVT的四轮驱动混合动力汽车传动控制策略研究[D].湖南大学博士学位论文, 2008: 4-10.
    [19]魏英俊.新型液压驱动混合动力运动型多用途车的研究[J].中国机械工程,2006,17(15): 1645-1648.
    [20] Institute for the Analysis of Global Security. EPA displays the first advanced hydraulic hybrid vehicle [OL]. http://www.iags.org/cn 033104 t3.htm.
    [21] Septimus van der Linden. Bulk energy storage potential in the USA, current developments and future prospects[J]. Energy, 2006, 31(15): 3446-3457.
    [22] Hewko L. O., Weber T. R. Hydraulic energy storage based hybrid propulsion system for a terrestrial vehicle[R]. Proceedings of the Intersociety Energy Conversion Engineering Conference. 1990(4): 99-105.
    [23] US Environmental Protection Agency. Hydraulic hybrid technolygal - a proven approach [OL]. http://www.epa.gov/ otaq/technology /420f04024.pdf.
    [24]刘明辉.混合动力客车整车控制策略及总成参数匹配研究[D].吉林大学博士学位论文, 2005:30-40.
    [25] US Environmental Protection Agency. World’s First Full Hydraulic Hybrid SUV Presented at 2004 SAE Wold Congress [OL]. http://www. epa. gov/otaq/technology/ 420f04019.pdf.
    [26] B. Simon, E. Christine, G. Edward and G. K. Markus. Hydraulic Hybrid Systems for Commercial Vehicles[N]. SAE Paper No. 2007-01-4150.
    [27] S. W. Shen, E. V. Frans. Analysis and Control of a Flywheel Hybrid Vehicular Powertrain[C]. IEEE Transactions on Control Systems Technology. 2004, 12(5):645-660.
    [28]孙逢春,张承宁,祝嘉光.电动汽车——21世纪的重要交通工具[M].北京理工大学出版社,1997:1-40.
    [29]刘海昌.飞轮储能型二次调节流量耦联系统研究[D].哈尔滨工业大学博士论文,2008:1-16.
    [30] Bosch Rexroth AG Products[OL]. http://www.boschrexroth.com/corporate/sys/ productindex _xml /en/index,jsp oid=619681.
    [31] G.Charles. Hydraulic Hybrids: EPA Hydraulic Truck Initiative[OL]. http://files.harc.edu/Projects/ Transportation/ HydraulicHybridsGray.pdf.
    [32]江琳.液压蓄能器的应用[J].流体传动与控制,2006,19(6):27-28.
    [33] ZBIGNIEW Pawelski,ROBERTAP,MICHAELT.为老式市内公共汽车配备力士乐驱动装置[J].Rexroth Information Quarterly,1997(1):27-28.
    [34] S. Hiroki, I. Shigeru, K. Eitaro, et al. Study on Hybrid Vehicle Using Constant Pressure Hydraulic System with Flywheel for Energy Storage[N]. SAE Paper No. 2004-01-3064.
    [35] Murrenhoff H, Weishaupt E. Recent Developments for the Control of Variable Displacement Motors with Impressed Pressure[C]. The 3th JHPS International Symposium on Fluid Power. Yokohama, Japan. 1996:79~84.
    [36] W. H. Close. Report on Noise Testing: Permo-drive Regenerative Drive Shaft[OL], 2002. http://www.permo-drive.com.
    [37] W. H. Close. Analysis of Performance and Fuel Consumption Tests: Permo-drive Regenerative Drive Shaft[OL], 2002. http://www.permo-drive.com.
    [38] H. Robert and J. K. John. Hydraulic Hybrid Promises Big Savings for UPS[OL]. http://www. hydraulicspneumatics. com /200/Issue/Article/False/38545/Issue.
    [39] H. Robert and J. K. John. Hydraulic Hybrid Promises Big Savings for UPS[OL]. http://www. hydraulicsp-neumatics.com/200/Issue/Article/False/38545/Issue.
    [40] Ford to Build 60-mpg F150[OL]. http://www.fordmuscle.com/blog /ford-to-build-60-mpg-f150/ 112114.
    [41]路华鹏,马彪,孙宪林等.轻型军用静液传动车辆的模糊控制[J].吉林大学学报(工学版),2007,37(2):286-290.
    [42]王会义.静液储能传动系统节能机理及实验研究[D].哈尔滨工业大学博士论文,1996:1-18.
    [43] B. Ante. Introducing Hydraulic-electric Synergy into Hybrid Transmission Using the Free-Piston Engine Technology[N]. SAE Paper No. 2007-01-4112.
    [44]王意.行走机械液压驱动技术发展大观[J].液压气动与密封,2000(1):19-28.
    [45]战兴群.静液驱动二次调节技术控制特性的研究[D].哈尔滨工业大学博士论文,1999:31-90.
    [46]刘宇辉,姜继海.二次调节流量耦联系统功率匹配研究[J].南京理工大学学报,2007, 31(6):701-705.
    [47]吴光强,王会义.车辆静液驱动与智能控制系统[M].上海科学技术文献出版社,1998:1-30.
    [48]赵春涛,姜继海,高维忠,赵克定.新型二次调节静液汽车传动系统[J].汽车技术,2001(5):4-6.
    [49]赵春涛,姜继海,赵克定.采用准恒压系统的公交汽车主要元件参数匹配的研究[J].机床与液压,2001(2):36-38.
    [50]陈华志.车辆制动能回收与再利用系统及控制技术研究[D].北京理工大学硕士论文,2003:83-102.
    [51]韩文.新型电控液驱车关键技术的研究[D].南京理工大学博士论文,2005:81-94.
    [52]李翔晟,常思勤.新型电控液驱车辆能量再生系统建模与实验[J].农业机械学报,2006, 37(10):31-34.
    [53]易纲,常思勤.基于模糊神经预测的新型电控液驱车辆的能量管理策略研究[J].机床与液压,2006(11):121-123.
    [54]何仁.汽车制动能量再生方法的探讨[J].江苏大学学报(自然科学版),2003,24(6):1-4.
    [55]魏英俊.液驱混合动力SUV制动能量回收研究[J].农业机械学报,2007,38(8):26-29.
    [56]姜继海.二次调节静液传动闭环位置系统和PID控制[J].工程机械,2000,05:26-27.
    [57]肖沁.二次调节静液传动技术在工程机械中的应用[J].工程机械,2004,06:38-39.
    [58]董宏林.基于二次调节原理的液压提升装置节能及控制技术研究[D].哈尔滨工业大学博士学位论文,2002:12-20.
    [59]郭晓林.履带车辆综合传动装置动态试验技术研究[D].北京理工大学博士学位论文,2005: 41-46.
    [60]董立队.ZL50装载机变速液压系统仿真分析[D].吉林大学硕士学位论文,2009:13-50.
    [61]王鹏宇,段幼华,张国强.并联式混合动力客车再生制动控制策略仿真研究[OL].中国科技论文在线.
    [62]杨力夫,孙辉,景军清,孟庆勇.液压混合动力装载机的节能研究.工程机械与维修,2011(1):183-185.
    [63]石荣玲,赵继云,孙辉.液压混合动力轮式装载机节能影响因素分析与优化[J].农业机械学报,2011,42(3):31-35
    [64]刘涛,赵立军,罗念宁,张舒,白洋.液压混合动力车辆柔性制动装置[P].
    [65] Kim Y J. Integrated modeling and hardware-in-the-loop study for systematic evaluation of hydraulic hybrid propulsion options[J]. 2008, 10-60.
    [66] Wu B, Lin C C, Filipi Z, Peng H and Assanis D. Optimal power management for a hydraulic hybrid delivery truck[J]. Vehicle System Dynamics. 2004 ( 42):23-40.
    [67] Kepner R P. Hydraulic power assist– a demonstration of hydraulic hybrid vehicle regenerative braking in a road vehicle application[N]. SAE Paper 2002-01-3128.
    [68] Paul M and Jacek S. Development and simulation of a hydraulic hybrid powertrain for use in Commercial heavy vehicles[N]. SAE Paper 2003-01-3370.
    [69] L. B. Karen, E. Mehrdad, K. Preyas. Matlab-based Modeling and Simulation Package for Electric and Hybrid Electric Vehicle Design[C]. IEEE Transaction on Vehiculer Technology. 1999, 48(6):1770-1778.
    [70]吴庆玲.装载机液力机械变速器性能及传动系匹配研究[D].吉林大学硕士学位论文, 2009:20-40.
    [71]常绿.装载机发动机与液力变矩器功率匹配优化[J].农业机械学报,2010,41(7): 25-29.
    [72]王昕.静液传动混合动力轮边驱动车辆节能与控制性能研究[D].哈尔滨工业大学博士学位论文,2010:15-30.
    [73]李翔晟,常思勤.新型电控液驱车辆能量再生系统建模与实验[J].农业机械学报,2006, 37(1[1]0):31-34.
    [74] A.J.Robyn, S. Paul and B. Steven. Physical System Model of a Hydraulic Energy Storage Device for Hybrid Powertrain Applications[N]. SAE Paper No. 2005-01-0810.
    [75] M.Paul and S. Jacek. Development and Simulation of a Hydraulic Hybrid Powertrain for Use in Commercial Heavy Vehicles[N]. SAE Paper No. 2003-01-3370.
    [76]于永涛.混联式混合动力车辆优化设计与控制[D].吉林大学博士学位论文. 2010: 30-50.
    [77]吴剑.并联式混合动力汽车能量管理策略优化研究[D].山东大学博士学位论文,2008: 33-50.
    [78] H. Yeo, H. Kim. Hardware-in-the-Loop Simulation of Regenerative Braking for a Hybrid Electric Vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216(11): 855-864.
    [79] Hoon Yeo, Sungho Hwang, Hyunsoo Kim. Regenerative Braking Algorithm for a Hybrid Electric Vehicle with CVT Ratio Control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220(11): 1589-1600.
    [80] S. Tarao, T. Koiwa. Prototyping of a Motion Base for a Desktop Interaction System, Consisting of a Combination of a Wheel Drive and a Parallel Mechanism[J]. Proceedings of the SPIE, 2007, 6794: 67941Q-67947Q.
    [81] JG/T 48-1999轮胎式土方机械制动系统的性能要求和实验方法[S].
    [82]赵国柱,杨正林,魏民祥,等.基于ECE法规的电动汽车再生制动控制策略的建模与仿真[J].武汉理工大学学报(交通科学与工程版).2008,32(1): 149-152.
    [83] D. Fussner, G. Wendel and C. Wray. Analysis of a hybrid multi-mode hydromechanical transmission[N]. SAE Paper 2007-01-1455.
    [84] F. Hosein, S. B. Dawood and A. Ehsan. A bidirectional soft switched ultracapacitor interface circuit for hybrid electric vehicles[J]. Energy Conversion and Management, 2008, (49):3578-3584.
    [85] C. Y. Li, G. P. Liu. Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles[J]. Journal of Power Sources, 2009,(192):525-533.
    [86] Y. J. Huang, C. L. Yin and J.W. Zhang. Design of an energy management strategy for parallel hybrid electric vehicles using a logic threshold and instantaneous optimization method. International [J]. Journal of Automotive Technology, 2009,10(4): 513-521.
    [87] Y. J. Kim and Z. Filipi. Series hydraulic hybrid propulsion for a light truck–optimizing the thermostatic power management[N]. SAE Paper,2007,24:0080.
    [88] P. Vanessa, D. Teresa, D. R. Arturo, L. Domenico. Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development[J]. Energy Conversion and Management. 2007 (48): 3001-3008.
    [89] D. W. Tian, D. G. Xie and S. M. Cui. Hybrid energy control strategy for hybrid electric drive system in military vehicle[J]. Journal of Mechanical Engineering. 2009,45(2):41-47.
    [90] M. Uzunoglu, O. C. Onar, M. S. Alam. Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications[J]. Renewable Energy. 2009(34) :509-520.
    [91] Tomaz K. Analytical framework for analyzing the energy conversion ef?ciency of different hybridelectric vehicle topologies[J]. Energy Conversion and Management, 2009 (50):1924-1938.
    [92]王庆年,金启前,初亮,王伟华.传动系参数和控制参数对并联混合动力轿车性能的影响[J].吉林大学学报(工学版),2005,35(3):243-248.
    [93]魏跃远,林程,林逸,何洪文,申荣卫.混合动力汽车系统效率的影响因素[J].吉林大学学报(工学版),2006,36(1):20-24.
    [94]王庆丰,张彦廷,肖清.混合动力工程机械节能效果评价及液压系统节能的仿真研究[J].机械工程学报,2005,41(12):135-140.
    [95]白志峰,张传伟,李舒欣等.电动汽车驱动与再生制动的H∞鲁棒控制[J].西安交通大学学报,2005,39(3):256-260.
    [96] S. R. Cikanek and K. E. Bailey. Electric Vehicle Braking System. The 14th International Electric Vehicle Symposium and Exposition[J]. Orlando, USA: Electric Vehicle Association of the Americas, 1997.
    [97]彭栋,殷承良,张建武.基于模糊控制的并联式混合动力汽车制动控制系统[J].吉林大学学报(工学版),2007,37(4):756-761.
    [98] D. Peng, C. L. Yin, J. W. Zhang. Advanced Braking Control System for Hybrid Electric Vehicle Using Fuzzy Control Logic[N]. SAE Paper No. 2006,01-3583.
    [99]彭栋.混合动力汽车制动能量回收与ABS集成控制研究[D].上海交通大学博士学位论文, 2007:48-83.
    [100] J. L. Zhang, C. L. Yin and J. W. Zhang. Design and Analysis of Electro-mechanical Hybrid Anti-lock Braking System for Hybrid Electric Vehicle Utilizing Motor Regenerative Braking[J]. Chinese Journal of Mechanical Engineering. 2009, 22(1):42-49.
    [101] F. Doug, W. Glenn, W. Chris. Analysis of a Hybrid Multi-mode Hydromechanical Transmission[N]. SAE Paper No. 2007,01-1455.
    [102]王昕彦,顾九春,李永和.并行再生制动控制策略仿真研究[J].计算机应用与软件,2010,27, 12: 184-185.
    [103]李晓英,于秀敏,李君,吴志新.串联混合动力汽车控制策略[J].吉林大学学报(工学版), 2005, 35(2):122-126.
    [104]于秀敏,曹珊,李君高等.混合动力汽车控制策略的研究现状及其发展趋势[J].机械工程学报,2006,42(11):10-16.
    [105]朱元,田光宇,陈全世,吴昊.混合动力汽车能量管理策略的四步骤设计方法[J].机械工程学报,2004,40(8):127-133.
    [106] C.C.Lin, P.Peng,W.Jessy. Power Management Strategy for a Parallel Hybrid Electric Truck[C]. IEEE Transactions on Control Systems Technology, 2003(6):839-849.
    [107] M. G. Morteza, P. Amir, G. Babak. Application of Genetic Algorithm for Optimization of Control Strategy in Parallel Hybrid Electric Vehicles[J].Journal of the Franklin Institute, 2006(343):420-435.
    [108]叶敏,郭振宇,程博,曹秉刚.基于参数摄动的电动汽车再生制动鲁棒混合控制研究[J].西安交通大学学报,2007,41(1):64-68.
    [109]童毅.并联式混合动力系统动态协调控制问题的研究[D].清华大学博士学位论文,2004:24-43.
    [110]谢辉,宋小武,周能辉.轻度混合动力系统控制模式分层决策及能量管理策略的研究[J].内燃机学报,2005,23(2):155-161.
    [111]杜玖玉,苑士华,胡纪滨.新型车用功率分流式液压混合动力传动研究[J].液压与气动,2008,(8):22-25.
    [112]杜玖玉,苑士华,魏超.车辆液压混合动力传动技术发展及应用前景[J].机床与液压,2009,37(2):181-184.
    [113]秦大同,谭强俊,杨阳.CVT混合动力汽车再生制动控制策略与仿真分析[J].汽车工程, 2007,29(3):220-226.
    [114]赵国柱,杨正林.基于ECE法规的电动汽车再生制动控制策略的建模与仿真[J].武汉理工大学学报,2008,32(1):149-153.
    [115]韩文.新型电控液驱车关键技术的研究[D].南京理工大学博士论文,2005:1-10.
    [116]易纲,常思勤.基于模糊神经预测的新型电控液驱车辆的能量管理策略研究[J].机床与液压,2006,(11):121-123.
    [117] Pusca R, Ait-Amirat Y, Berthon A, et al. Advanced control applied to hybrid electrical vehicle[R]. Proceedings of the 19th International Electric Vehicle Symposium, Busan, Korea, 2002.
    [118]罗玉涛.混联式混合动力电动汽车的关键技术研究[D].华南理工大学博士学位论文,2002.
    [119]柳作民.最新国际汽车制动法规汇编[S].中国汽车工程学会制动专业委员会全国汽车标准化技术委员会制动分委会,1997.
    [120]赵国柱.电动汽车再生制动稳定性研究[D].南京航空航天大学博士论文,2006: 24-31.
    [121]吕建婷,李传江,马广富.卫星姿态调节的滑模PID控制器设计[J].哈尔滨工业大学学报,2008,40(7):1009-1012.
    [122]宋斌,马广富,李传江.基于自适应滑模方法的航天器位置与姿态控制[J].哈尔滨工业大学学报,2008,40(9):1353-1357.
    [123] Chung-Chun Kung, Tung-Yun Kao, Tin-Huang Chen. Adaptive Fuzzy Sliding Mode Controller Design[R]. Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, Honolulu: IEEE, 2002: 674-679.
    [124] J. X. Xu, T. H. Lee, Y. J. Pan. On the Sliding Mode Control for DC Servo Mechanisms in the Presence of Unmodeled Dynamics[J].Mechatronics, 2003(13): 755-770.
    [125]王阿庆.四轮液压驱动车辆模型与控制策略研究[D].长安大学硕士学位论文,2006:39-46.
    [126] Bradley Glenn, Gregory Washington, Giorgio Rizzoni. Operation and control strategies for hybrid electric automobiles[N]. SAE2000-01-1537.
    [127] Matthew Zolot,Tony Markel,Ahmad Pesaran.Analysis of Fuel Cell Vehicle Hybridization and Implications for Energy Storage Devices[R]. 4th Advance Automotive Battery Conference San Francisco, 2004, 6: 2-4.
    [128]陆建荣,王助良.汽车混合动力系统技术与发展[J].微电机,2007,3(7): 24-25.
    [129] Yimin Gao, Mehrdad Ehsani. Electronic Braking System of EV And HEV-Integration of Regenerative Braking, Automatic Braking Force Control And ABS[N]. SAE2001-01-2478, 2003: 46-51.
    [130] Matthew Zolot, Tony Markel, Keith.Wipke. Fuel Cell/Battery Hybrids:An Overview of Energy Storge Hybridization in Fuel Cell Vehicles[R]. 9th Ulm Electrochemical Talks, Germany, 2004(5): 17-18.
    [131]张京明.基于并行控制的混合动力车辆制动能量回收系统研究[D].哈尔滨工业大学博士学位论文,2010.
    [132]姜继海.二次调节静液传动系统及其控制技术的研究[D].哈尔滨工业大学博士学位论文, 1998:50-80.
    [133]刘清河.新能源电液复合制动系统技术研究[D].同济大学博士学位论文,2008: 28-47.
    [134] GB13594-1992.汽车防抱制动系统性能要求和试验方法[S].中国汽车技术研究中心标准化研究所.
    [135] Y. J. Huang, C. L. Yin and J. W. Mang. Development of the Energy Management Strategy for Parallel Hybrid Electric Urban Buses[J].Chinese Journal of Mechanical Engineering,2008, 21(4): 44-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700