用户名: 密码: 验证码:
超声速内外流干扰的数值方法研究及其实验验证与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以超声速内外流干扰为研究对象,以计算方法的建立、验证及应用为主线,采用计算为主、实验为辅的研究方法,对超声速内外流的异质气体干扰特性、非定常喷流干扰控制与燃烧特性等方面开展了研究。
     发展了层流、湍流、化学非平衡流的统一算法,建立了数值模拟软件,完成了算法的数值验证。该算法的主要特征为:⑴基于多组分NS方程和Menter’s Shear-Stress Transport k ?ω两方程湍流模型,对流动项和化学反应生成源项进行解耦处理,有效解决了化学非平衡流计算中的刚性问题;⑵基于结构网格,采用有限差分法进行方程离散,流动项的时间离散采用Runge-Kutta法(避免了原算法中采用时间分裂法时对差分格式的限制),对流项离散采用NND-1或WAF格式,粘性项采用中心差分格式。数值验证表明:该算法具有较高的时空精度,非常适合对非定常流动尤其是非定常化学非平衡流动进行模拟。
     基于平面激光诱导荧光技术和纹影技术,设计并开展了异质喷流干扰的一个模型实验。模型实验表明:⑴采用平面激光诱导荧光技术和纹影技术相结合的实验技术,可以对喷流干扰流场进行有效的光学诊断,平面激光诱导荧光技术适合于异质喷流干扰的显示和测量;⑵喷流介质的物性参数(比热比和气体常数)对喷流干扰有重要影响。
     针对典型异质气体喷流干扰问题,开展了算法的应用。第一,数值模拟了固体火箭发动机尾喷流的干扰流场,分析了工程实验中防护板发生脱落的原因之一在于喷流的引射效应。第二,数值模拟了导弹横喷干扰流场,获得了典型工况下推力放大系数随横喷燃气比热比的关系曲线,建立了一种通过调整横喷总压来关联冷喷和热喷数据的方法。第三,数值模拟了典型超燃冲压发动机燃烧室内的横喷干扰流场,捕捉到了实验没有发现的横喷燃料沿下游运动并向凹腔扩散的非定常流动现象。
     以超燃实验中的脏空气效应问题为背景,设计了具有随机特性的脏空气来流条件下钝头体激波诱导振荡燃烧的算例,数值研究了来流随机扰动对非定常化学非平衡流的影响问题。在脏空气来流参数和飞行来流参数均值一致的前提下,对脏空气来流工况和飞行来流工况的计算结果进行有效对比,结果表明:当随机扰动最大相对偏差值小于5%时,脏空气来流的随机特性对流动的基本结构演变影响不大,但对流动参数随时间变化的细节有直接影响,且该影响呈无规则、非线性的随机态势。
     以超燃研究中的增强混合燃烧问题为背景,根据漩涡增强混合燃烧的流动机理,采用非定常流动控制技术,依托多个燃料加注喷嘴进行脉冲式喷注,设计了“新型超燃冲压发动机燃料交替脉冲喷注器”的方案,并对其在典型超燃冲压发动机中的应用特性进行了数值模拟研究。研究表明:采用燃料交替脉冲喷注器进行燃料加注时,燃料以团状进入燃烧室,在漩涡的作用下可充分与空气混合并高效地组织燃烧,可缩短燃烧的流向分布空间,从而有利于通过缩短隔离段和燃烧室的长度来减轻发动机重量。
The jet interaction in supersonic external flow was studied by means of numerical simulation and experimental investigation. The development, validation and application of the CFD algorithms for various jet interactions were focused on in the dissertation. And the heterogeneous gas jet interaction characteristics, unsteady jet interaction control and combustion characteristics and so on were studied.
     The uniform CFD algorithms for the simulation of laminar flows, turbulent flows, chemical nonequilibrium reaction flows were developed. The leading characteristics of the algorithms are: (1) NS equations plus a two-equation turbulence model(Menter’s Shear-Stress Transport model), species conservation equations are used as the governing equations, and an uncoupled method is adopted to simulate chemical nonequilibrium reaction flow which has the stiffness problem. (2) a finite difference method is used based on structured girds, Runge-Kutta method is used for time integration, which could go beyond the limit of difference schemes in time splitting technique, NND-1 scheme and WAF scheme for convection terms’discretization, and central difference scheme for viscous terms’discretization. Numerical validation showed that the uniform CFD algorithms are of higher-order accuracy, and suitable for the simulation of unsteady flows (especially the unsteady chemical nonequilibrium reaction flows).
     Based on PLIF (Planar Laser-Induced Fluorescence) technique and schlieren technique, a model experiment was designed and carried out for typical jet interaction research. The model experiment showed: (1) PLIF technique and schlieren technique are suitable for the optic diagnosis of jet interaction, and PLIF technique is capable of capturing the flow field of heterogeneous gas jet interaction; (2) the physical parameters (the ratio of specific heats and the gas constant) of jet have an effect upon jet interaction.
     The CFD algorithms were used to simulate typical heterogeneous gas jet interactions. Firstly, after simulating a solid rocket engine’s jet interaction, it showed that one of the reasons for the shield board’s dropout in experiment is the ejection effect of jet. Secondly, after simulating the lateral jet flow fields of a missile with wings for some different ratios of specific heats and gas constants of the lateral jet, the thrust force amplification factor versus the lateral jet’s ratio of specific heats for typical case was obtained, and a method for correlating the data of cold jet case and hot jet case was constructed by adjustting jet’s total pressure. Thirdly, after simulating the inner flow field of a typical scramjet combustion chamber with fuel jet and cavity structure, the unsteady dynamic phenomenon that fuel jet moves downstream and diffuses into the cavity is captured (The corresponding experiment fails to capture that phenomenon).
     According to the vitiated air effects in supersonic combustion experiments, an CFD example, which is the oscillating shock-induced combustion of a blunt body with random and vitiated air flow coming from the far field, was designed and simulated for analyzing the effects of the random disturbance on the unsteady chemical nonequilibrium reaction flow field. On condition the mean parameters of the vitiated air were equal to the flight air parameters, the CFD results of vitiated air case and flight air case were compared. The results showed that, when the maximal relative error is smaller than 5%, the random disturbance has less effect upon the basic flow structures, but has an effect upon the variety of typical flow parameters versus time, and the effect is ruleless and nonlinear.
     According to the problem of enhancing mixing and combustion in supersonic combustion researches, based on the flow mechanism of vortex’s enhancement on mixing and combustion, an“innovative fuel injector with alternate and impulse jet for scramjet”was designed by an unsteady flow control technique with multiple impulse jets, and its application characteristics were simulated furthermore. The results showed that the innovative fuel injector injects fuel into the combustor dollop by dollop, which could enhance the mixing and combustion of fuel and air, and reduce the combustion zone length in the main flow direction, so it is favorable to reduce the length of isolator and combustor, and the weight of scramjet by using the innovative fuel injector.
引文
[1] Draper A C, Sieron T R. Evolution and Development of Hypersonic Configurations 1958-1990[R]. AD-A242768, 1991.
    [2] Hamm D, Best D. Hypersonic Design[R]. AIAA 92-5077, 1992.
    [3] Williamson W E. Hypersonic Flight Testing[R]. AIAA 92-3989, 1992.
    [4] Chinitz W. Some Supersonic and Hypersonic Research at GASL in the 1960s and 70s[R]. AIAA 93-2327, 1993.
    [5] Matthews R K, Rhudy R W. Hypersonic Wind Tunnel Test Techniques[R]. AD-A284057, 1994.
    [6] Sancho M, Colin Y. Program Overview-The French Hypersonic Research Program PREPHA [R]. AD-A9710803, 1996.
    [7] Hagseth P E, Benner K W, Gillen S. Technology Development for High Speed/Hypersonic Applications[R]. AIAA 2005-3212, 2005.
    [8] Cipollini F, Muylaert J-M. European Activities on Advanced Flight Measurement Techniques for Hypersonic Space Vehicles[R]. AIAA 2006-3832, 2006.
    [9]庄逢甘,崔尔杰,张涵信.未来空间飞行器的某些发展和空气动力学的任务[C]//中国第一届近代空气动力学与气动热力学会议论文集(上册).北京:国防工业出版社, 2006: 1-12.
    [10]杨彦广.横向喷流与高超声速主流干扰研究[D]: [博士学位论文],绵阳:中国空气动力研究与发展中心, 2003.
    [11]谢春燕,李为民,娄寿春.反导系统拦截弹技术综述[J].飞航导弹, 2004(3): 22-27.
    [12] Waltrup P J. Liquid-Fueled Supersonic Combustion Ramjets: A Research Perspective[J]. Journal of Propulsion and Power, 1987, 3(6): 515-524.
    [13] Waltrup P J, White M E, Zarlingo F, et al. History of U.S. Navy Ramjet, Scramjet, and Mixed-Cycle Propulsion Development[R]. AIAA 96-3152, 1996.
    [14] McClinton C R, Hunt J L, Ricketts R H, et al. Airbreathing Hypersonic Technology Vision Vehicles and Development Dreams[R]. AIAA 99-4978, 1999.
    [15] Curran E T. Scramjet Engines: The First Forty Years[J]. Journal of Propulsion and Power, 2001, 17(6): 1138-1148.
    [16] Bouchez M, Falempin F, Minard J-P, et al. French-Russian Partnership on Hypersonic Wide Range Ramjets: Status in 2002[R]. AIAA 2002-5254, 2002.
    [17] Waltrup P J, White M E, Zarlingo F, et al. History of U.S. Navy Ramjet, Scramjet, and Mixed-Cycle Propulsion Development[J]. Journal of Propulsionand Power, 2002, 18(1): 14-27.
    [18]韩杰才,屈强,袁建辉,等.超燃发动机的发展现状分析[C]//二○○五年冲压发动机技术交流会论文集(上集). 2005: 81-86.
    [19]刘喜泉,蒲建军.日本超燃冲压发动机试验技术进展[C]//二○○五年冲压发动机技术交流会论文集(上集). 2005: 87-91.
    [20]贺武生.超燃冲压发动机研究综述[J].火箭推进, 2005, 31(1): 29-32.
    [21]刘小勇.超燃冲压发动机技术[J].飞航导弹, 2003(2): 38-42.
    [22] Vinson P W, Amick J L, Liepman H P. Interaction Effects Produced by Jet Exhausting Laterally Near Base of Ogive-Cylinder Model in Supersonic Main Stream[R]. NASA MEMO 12-5-58W, 1959.
    [23] Hunter P A. An Investigation of the Performance of Various Reaction Control Devices[R]. NASA MEMO 2-11-59L, 1959.
    [24] Abramovich G N. The Theory of Turbulent Jets[M]. Cambridge, Mass.: The MIT Press, 1963.
    [25] Margason R J. The Path of a Jet Directed at Large Angles to a Subsonic Free Stream[R]. NASA Technical Note D-4919, 1968.
    [26] Kamotani Y, Greber I. Experiments on a Turbulent Jet in a Cross Flow[J]. AIAA Journal, 1972, 10(11): 1425-1429.
    [27] Hasselbrink E F, Jr. Transverse Jets and Jet Flames: Structure, Scaling, and Effects of Heat Release[R]. Technical Report TSD-121, Stanford University, Stanford, California, 1999.
    [28] Cubbison R B, Anderson B H, Ward J J. Surface Pressure Distributions with a Sonic Jet Normal to Adjacent Flat Surfaces at Mach 2.92 to 6.4[R]. NASA Technical Note D-580, 1961.
    [29] Letko W. Loads Induced on a Flat Plate at a Mach Number of 4.5 with a Sonic or Supersonic Jet Exhausting Normal to the Surface[R]. NASA Technical Note D-1935, 1963.
    [30] Zukoski E E, Spaid F W. Secondary Injection of Gases into a Supersonic Flow[J]. AIAA Journal, 1964, 2(10): 1689-1696.
    [31] Glagolev A I, Zubkov A I, Panov Y A. Supersonic Flow Past a Gas Jet Obstacle Emerging from a Plate[J]. Fluid Mechanics, Soviet Research, 1967, 2(3): 97-102. (Scripta Publishing Co. 1979)
    [32] Zubkov A I, Glagolev A I. The Effect of Boundary Layer Thickness and Transverse Curvature of the Surface on the Geometry and Forces Acting in the Separation Zone Produced by Injection of a Jet into a Supersonic Flow over that Surface[J]. Fluid Mechanics, Soviet Research, 1979, 8(1).(Scripta Publishing Co. 1979)
    [33] Spaid F W, Cassel L A. Aerodynamic Interference Induced by ReactionControls[R]. AGARD AG-173, 1973.
    [34] Yen K T. The Aerodynamics of a Jet in a Crossflow[R]. AD-A076375, 1978.
    [35] Zubkov A I, Panov Y A, Vojtenko D M, et al. Seperated Flow Near Bodies at Super-and Hypersonic Velocities[C]. Vienna, Austria: 14th International Astronautical Congress, 1972.
    [36] Strike W T. Analysis of Aerodynamic Disturbances Generated on a Flat Plate Containing Lateral Jet Nozzles Located in a Hypersonic Stream[R]. AEDC-TR-67-158, 1968.
    [37] Povinelli F P, Povinelli L A, Hersch M. Supersonic Jet Penetration (up to Mach 4) into a Mach 2 Airstream[J]. AIAA Journal, 1971, 9: 988-992.
    [38] Cohen L S, Coulter L J, Egan W J, Jr. Penetration and Mixing of Multiple Gas Jet Subject to a Cross Flow[J]. AIAA Journal, 1971, 9: 718-724.
    [39] Billig F S, Orth R C, Lasky M. A Unified Analysis of Gaseous Jet Penetration[J]. AIAA Journal, 1971, 9: 1048-1058.
    [40]耿辉.超声速燃烧室中凹腔上游横向喷注燃料的流动、混合与燃烧特性研究[D]: [博士学位论文],长沙:国防科学技术大学, 2007.
    [41] Kurita M, Okada T, Nakamura Y. The Effects of Attack Angle on Side Jet Aerodynamic Interaction in a Blunted Body at Hypersonic Flow[R]. AIAA 2001-1825, 2001.
    [42]李素循.激波与边界层主导的复杂流动[M].北京:科学出版社, 2007.
    [43] Gogineni S, Sutkus D, Goss L, et al. Investigation of a Jet in a Cross Flow Using PIV[R]. AIAA 95-0790, 1995.
    [44] Beresh S J, Henfling J F, Erven R J, et al. Turbulent Characteristics of a Transverse Supersonic Jet in a Subsonic Compressible Crossflow[R]. AIAA 2004-2341, 2004.
    [45] Schaeffler N W, Jenkins L N. The Isolated Synthetic Jet in Crossflow: A Benchmark for Flow Control Simulation[R]. AIAA 2004-2219, 2004.
    [46] Ibrahim I M, Murugappan S, Gutmark E J. Penetration, Mixing and Turbulent Structures of Circular and Non-Circular Jets in Cross Flow[R]. AIAA 2005-0300, 2005.
    [47] Dano B P E, Liburdy J A. Vortical Structure of a 45o Inclined Pulsed Jet in a Crossflow[R]. AIAA 2006-3543, 2006.
    [48] Smith C T, Goyne C P. Three-component Particle Image Velocimetry: Low-speed Jet Measurements and Preparation for Scramjet Combustor Experiments[R]. AIAA 2006-351, 2006.
    [49] Mahmud Z, Bowersox R D W. Experimental Investigation of Low Blow Ratio Blended Missile Body Supersonic Jet Interaction Flowfields[R]. AIAA 2001-0886, 2001.
    [50] Weisgerber H, Martinuzzi R, Brummund U, et al. PIV Measurements in a Mach 2 Hydrogen-Air Supersonic Combustion[R]. AIAA 2001-1757, 2001.
    [51] Ikeda Y, Kuratani N, Nakajima T, et al. M2.5 Supersonic PIV Measurement in Step-Back Flow with the Normal Injection[R]. AIAA 2002-0232, 2002.
    [52] Kuratani N, Ikeda Y, Nakajima T, et al. Mixing Characteristics of Normal Injection into a Supersonic Backward-Facing Step Flow Measured with PIV[R]. AIAA 2002-0237, 2002.
    [53] Liscinsky D S, True B. Experimental Investigation of Crossflow Jet Mixing in a Rectangular Duct[R]. AIAA 93-2037, 1993.
    [54] Liscinsky D S, True B, Holdeman J D. Mixing Characteristics of Directly Opposed Rows of Jets Injected Normal to a Crossflow in a Rectangular Duct[R]. AIAA 94-0217, 1994.
    [55] Liscinsky D S, True B. Crossflow Mixing of Noncircular Jets [R]. AIAA 95-0732, 1995.
    [56] Nakagawa M, Dahm W J A. Compressibility Effects on Entrainment and Mixing in Supersonic Planar Turbulent Wakes[R]. AIAA 99-3582, 1999.
    [57] Nakagawa M, Dahm W J A. Mach Number Effects on Entrainment and Mixing in Supersonic Planar Turbulent Wakes[R]. AIAA 2000-0664, 2000.
    [58] Fay J E, Rossmann T. Mixing Measurements of Transverse and Oblique Sonic Jets in Supersonic Cross Flow[R]. AIAA 2005-3713, 2005.
    [59] Panda J, Seasholtz R G. Density Measurement in Underexpanded Supersonic Jets Using Rayleigh Scattering[R]. AIAA 98-0281, 1998.
    [60] Panda J, Seasholtz R G. Velocity and Temperature Measurement in Supersonic Free Jets Using Sprectrally Resolved Rayleigh Scattering[R]. AIAA 99-0296, 1999.
    [61] Elliott G S, Boguszko M, Carter C. Filtered Rayleigh Scattering: Toward Multiple Property Measurements[R]. AIAA 2001-0301, 2001.
    [62] Gustavsson J P R, Segal C. Filtered Rayleigh Scattering Velocimetry - Accuracy Investigation in a M=2.22 Axisymmetric Jet[R]. AIAA 2004-21, 2004.
    [63]杨仕润. CARS在超音速燃烧中的应用[D]: [博士学位论文],北京:中国科学院力学研究所, 1998.
    [64] Woodmansee M A, Dutton J C, Lucht R P. Experimental Measurements of Pressure, Temperature, and Density in an Underexpanded Sonic Jet Flowfield[R]. AIAA 99-3600, 1999.
    [65]赵建荣,杨仕润,俞刚. CARS在超音速燃烧研究中的应用[J].激光技术, 2000, 24(4): 207-212.
    [66] Bresson A, Bouchardy P, Magre P, et al. OH / Acetone PLIF and CARS Thermometry in a Supersonic Reactive Layer[R]. AIAA 2001-1759, 2001.
    [67] Vereschagin K A, Smirnov V V, Stelmakh O M. Temperature Measurements by Coherent Anti-Stokes Raman Spectroscopy in Hydrogen-Fuelled Scramjet Combustor[J]. Aerosp. Sci. Technol., 2001, 5: 347-355.
    [68] DeOtte R E, Jr., Morrison G L, Sewell R D. LDV Measurements of the Velocity Field in an Underexpanded Supersonic Jet (Ma=1.5)[R]. AIAA 92-0504, 1992.
    [69] Jiang L-Y, Sislian J P. LDV Measurements of Mean Velocity Components and Turbulence Intensities in Supersonic High-Temperature Exhaust Plumes[R]. AIAA 93-3067, 1993.
    [70] Santiago J G, Dutton J C. Velocity Measurements for a Sonic Underexpanded Transverse Jet Injected into a Supersonic Flow[R]. AIAA 95-0525, 1995.
    [71] Kennedy K D, Walker B J, Mikkelsen C D. Comparisons of CFD Calculations & Measurements for a Sonic Jet in a Supersonic Crossflow[R]. AIAA 2000-3313, 2000.
    [72]李麦亮.激光光谱诊断技术及其在火箭发动机燃烧研究中的应用[D]: [博士学位论文],长沙:国防科学技术大学, 2004.
    [73] Gulati A, Warren R E, Jr. NO2-Based Laser-Induced Fluorescence(LIF) Technique to Measure Cold-Flow Mixing[R]. AIAA 92-0511, 1992.
    [74] Klavuhn K G, Gauba G, McDaniel J C. High-Resolution OH LIF Velocity Measurement Technique for High-Speed Reacting Flows[R]. AIAA 92-3422, 1992.
    [75] Lozano A. Laser-Excited Luminescent Tracers for Planar Concentration Measurements in Gaseous Jets[D]: [PhD Thesis], California: Stanford University, 1992.
    [76] Bowman C T, Hanson R K, Mungal M G, et al. Research on Supersonic Reacting Flows[R]. AD-A299395, 1995.
    [77] Hanson R K. Advanced Diagnostics for Reacting Flows[R]. AD-A299535, 1995.
    [78] Wang K C, Smith O I, Karagozian A R. In-Flight Imaging of Transverse Gas Jets Injected into Subsonic and Supersonic Crossflows[R]. AIAA 95-0516, 1995.
    [79] Dahm W J A, Driscoll J F. High Resolution Measurements of Supersonic Mixing and Combustion in Coflowing Turbulent Jets[R]. AD-A368692, 1999.
    [80] Thurber M C. Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows[R]. Topical Report TSD-120, 1999.
    [81] Thurber M C, Hanson R K. Simultaneous Imaging of Temperature and Mole Fraction Using Acetone Planar Laser-Induced Fluorescence[J]. Experiments in Fluids, 2001, 30: 93-101.
    [82] Hanson R K. Laser Diagnostics for Reacting Flows[R]. AD-A424171, 2004.
    [83] Su L K, Mungal M G. Mixing in Crossflowing Jets: Turbulence Quantities[R]. AIAA 2005-305, 2005.
    [84] Haubelt L C. Aerodynamic Loss and Mixing over a Cavity Flame Holder Located Downstream of Pylon-Aided Fuel Injection[D]: [Master Thesis], Ohio: Air Force Institute of Technology, 2006.
    [85] Gruber M R, Nejad A S, Goss L P. Surface Pressure Measurements in Supersonic Transverse Injection Flowfields[R]. AIAA 97-3254, 1997.
    [86] Seivwright D L, Shreeve R P. Flat Plate in a Highly-Underexpanded Sonic Jet[R]. AIAA 97-0066, 1997.
    [87] Woodmansee M A, Dutton J C. Methods for Treating Temperature-Sensitivity Effects of Pressure-Sensitive Paints[R]. AIAA 97-0387, 1997.
    [88] Liu T, Guille M, Sullivan J P. Accuracy of Pressure Sensitive Paint[R]. AIAA 99-3785, 1999.
    [89] Matsumoto M, Masuya G, Tomioka S, et al. PSP Measurement of Fuel Mixing in a Supersonic Combustor of Scram-jet Engine Model[R]. AIAA 2002-0235, 2002.
    [90] Orchard D M, Fournier E Y, Dupuis A, et al. Wind Tunnel Tests on the H3P78, Power Law, Elliptic Section Flared Projectile with Jet Interaction[R]. AIAA 2001-4322, 2001.
    [91] Chamberlain R, Dang A, McClure D. Effect of Exhaust Chemistry on Reaction Jet Control[R]. AIAA 99-0806, 1999.
    [92] Ben-Yakar A. Experimental Investigation of Mixing and Ignition of Transverse Jets in Supersonic Crossflows[D]: [PhD Thesis], California: Stanford University, 2000.
    [93]孙明波.超声速来流稳焰凹腔的流动及火焰稳定机制研究[D]: [博士学位论文],长沙:国防科学技术大学, 2008.
    [94]刘君.超音速完全气体和H2/O2燃烧非平衡气体的复杂喷流流场数值模拟[D]: [博士学位论文],绵阳:中国空气动力研究与发展中心, 1993.
    [95] Khan Z U. On the Dominant Vortex Created by a Pitched and Skewed Jet in Crossflow[D]: [PhD Thesis], California: Stanford University, 1999.
    [96] Viti V. Numerical Studies of the Jet Interaction Flowfield with a Main Jet and an Array of Smaller Jets[D]: [PhD Thesis], Virginia: Virginia Polytechnic Institute and State University, 2002.
    [97]高旭东.复杂旋转侧喷流场数值模拟[D]: [博士学位论文],南京:南京理工大学, 2002.
    [98]田正雨.高超声速非定常复杂流场数值模拟[D]: [硕士学位论文],长沙:国防科学技术大学, 2003.
    [99]闫宝琴,李素循,许能喜.横向喷流引起的三维复杂干扰流场结构研究[J].流体力学实验与测量, 2004 18(3): 59-63.
    [100]雷娟棉,吴甲生.制导兵器某些气动力问题[J].兵工学报, 2007, 28(3): 358-365.
    [101]王军旗,李素循,倪招勇,等.数值模拟侧向超声速单喷流干扰流场特性[J].宇航学报, 2007, 28(3): 598-602.
    [102]刘君,周松柏,徐春光.超声速流动中燃烧现象的数值模拟方法及应用[M].长沙:国防科技大学出版社, 2008.
    [103] Covell P F. Interference Effects of Aft Reaction-Control Yaw Jets on the Aerodynamic Characteristics of a Space Shuttle Orbiter Model at Supersonic Speeds[R]. NASA Technical Memorandum 84645, 1983.
    [104] Finseth J L, Hopkins D F, Harvey D W. Multiple Jet Effects in Jet Interaction: Flowfield Phenomena and Evaluation Methodology[R]. AIAA 88-3272, 1988.
    [105] Shang J S, McMaster D L, Scaggs N, et al. Interaction of Jet in Hypersonic Cross Stream[J]. AIAA Journal, 1989, 27(3): 323-329.
    [106] Champigny P, Lacau R G. Lateral Jet Control for Tactical Missiles[R]. Presented at an AGARD Special Course on 'Missile Aerodynamics', June, 1994.
    [107] Brandeis J, Gill J. Experimental Investigation of Side Jet Steering for Missiles at Supersonic and Hypersonic Speeds[R]. AIAA 95-0316, 1995.
    [108] Brandeis J, Gill J. Experimental Investigation of Super- and Hypersonic Jet Interaction on Configurations with Lifting Surfaces[R]. AIAA 97-3723, 1997.
    [109] Kumar D, Stollery J, Smith A. Hypersonic Jet Control Effectiveness[R]. AIAA 95-6066, 1995.
    [110] Takanashi S, Sentoh E, Yoshida A, et al. Sidejet Aerodynamics Interaction Effect of the Missile, Part 1 - Estimation of Missile Sidejet Ineraction Force by Modeling in Pressure Field[R]. AIAA 98-4273, 1998.
    [111] Takanashi S, Sentoh E, Yoshida A, et al. Sidejet Aerodynamics Interaction Effect of the Missile, Part 2: Prediction of Ineraction Effect by the Force Measurement[R]. AIAA 98-4346, 1998.
    [112] Kikumoto K, Sentoh E, Takanashi S, et al. Sidejet Aerodynamics Interaction Effect of the Missile, Part 3: Flight Test Results[R]. AIAA 98-4347, 1998.
    [113] Gnemmi P, Seiler F. Interaction of a Lateral Jet with the Projectile External Flow[R]. AIAA 2000-4196, 2000.
    [114] Fan H, Bowersox R. Gaseous Injection Through Diamond Orifices at Various Incidence Angles into a Hypersonic Freestream[R]. AIAA 2001-1050, 2001.
    [115] Kurita M, Inoue T, Nakamura Y. Aerodynamic Interaction Due to Side Jet from a Blunted Cone in Hypersonic Flow[R]. AIAA 2000-4518, 2000.
    [116] Kurita M, Okada T, Nakamura Y. The Effects of Attack Angle on Aerodynamic Interaction due to Side Jet from a Blunted Body in a Supersonic Flow[R]. AIAA 2001-0261, 2001.
    [117] Mahmud Z, Bowersox R. Supersonic Missile Body Jet Interaction Flowfields at Low Momentum-Parameter-Ratio[R]. AIAA 2003-1244, 2003.
    [118] Wallis S, Schetz J, Bowersox R. Jet Interaction with a Main Jet and an Array of Smaller Jets. Part A: Experimental Studies[R]. AIAA 2002-3148, 2002.
    [119] Beresh S J, Heineck J T, Walker S M, et al. Stereoscopic PIV for Jet/Fin Interaction Measurements on a Full-Scale Flight Vehicle Configuration[R]. AIAA 2005-442, 2005.
    [120]程克明,伍贻兆,吕英伟,等.侧向喷流的气动增益特性研究[J].空气动力学学报, 2003, 21(4): 432-438.
    [121]程克明,伍贻兆,吕英伟.翼身组合体上的侧向喷流作用特性[J].南京航空航天大学学报, 2003, 35(6).
    [122]赵桂林,彭辉,胡亮,等.超音速流动中侧向喷流干扰特性的实验研究[J].力学学报, 2004, 36(5): 577-582.
    [123]赵桂林,彭辉,胡亮,等.高超声速流动中侧向喷流干扰特性的实验研究[J].空气动力学学报, 2005, 23(2): 20-24.
    [124]刘洪山,徐翔,孔荣宗,等.激波风洞侧向喷流干扰效应试验研究[J].空气动力学学报, 2005, 23(3): 294-298.
    [125]王福华.纹影技术在侧后向喷流实验中的应用[J].南京理工大学学报, 2005, 29(3): 334-336.
    [126]徐筠,王志坚,徐翔,等.高超声速侧向喷流干扰气动特性试验研究[J].实验流体力学, 2005, 19(4): 20-24.
    [127]王志坚,伍贻兆,徐翔,等.侧向喷流单、双喷管气动特性研究[J].实验流体力学, 2008, 22(3): 23-26.
    [128]刘君,耿辉,翟振辰,等.平面激光诱导荧光技术及其在横向喷流研究中的应用[C]//中国第一届近代空气动力学与气动热力学会议论文集(上册).北京:国防工业出版社, 2006: 582-587.
    [129] Heister S, Karagozian A. The Gaseous Jet in Supersonic Crossflow[R]. AIAA 89-2547, 1989.
    [130] Stull F. Scramjet Propulsion[R]. AIAA 89-5012, 1989.
    [131] VanLerberghe W M, Dutton J C, Lucht R P, et al. Penetration and Mixing Studies of a Sonic Transverse Jet Injected into a Mach 1.6 Crossflow[R]. AIAA 94-2246, 1994.
    [132] Davis D, Hingst W, Porro A. A Experimental Investigation of a Single Flush-Mounted Hypermixing Nozzle[R]. AIAA 90-5240, 1990.
    [133] Mays R B, Thomas R H, Schetz J A. Low Angle Injection into a Supersonic Flow[R]. AIAA 99-2461, 1999.
    [134] Gruber M R, Nejad A S, Chen T H, et al. Mixing and Penetration Studies of Sonic Jets in a Mach 2 Freestream[J]. Journal of Propulsion and Power, 1995, 11(2): 315-323.
    [135] McMillin B K, Palmer J L, Antonio A L, et al. Instantaneous,Two-Line Temperature Imaging of a H2/NO Jet in Supersonic Crossflow[R]. AIAA 92-3347, 1992.
    [136] Stouffer S D, Baker N R, Capriotti D P, et al. Effects of Compression and Expansion-Ramp Fuel Injection Configurations on Scramjet Combustion and Heat Transfer[R]. AIAA 93-0609, 1993.
    [137]耿辉,周进,翟振辰,等.凹腔结构对超声速燃烧室中横向燃料喷流流动与燃烧的影响[J].推进技术, 2007, 28(6): 599-606.
    [138] Drummond J P. Numerical Investigation of the Perpendicular Injector Flow Field in a Hydrogen Fueled Scramjet[R]. AIAA 79-1482, 1979.
    [139] Thompson D S. Numerical Solution of a Two-Dimensional Jet in a Supersonic Crossflow Using an Upwind Relaxation Scheme[R]. AIAA 89-1869, 1989.
    [140] Clark S W, Chan S C. Numerical Investigation of a Transverse Jet for Supersonic Aerodynamic Control[R]. AIAA 92-0639, 1992.
    [141] Aso S, Okuyama S. Experimental Study on Mixing Phenomena in Supersonic Flows with Slot Injection[R]. AIAA 91-0016, 1991.
    [142] Praharaj S C, Roger R P, Chan S C, et al. CFD Computations to Scale Jet Interaction Effects from Tunnel to Flight[R]. AIAA 97-0406, 1997.
    [143] Hudson D J, Trolier J W, Harris T B. Hot Jet and Mach Number Effects on Jet Interaction Upstream Separation[R]. AD-A356407, 1998.
    [144] Ebrahimi H B. Numerical Investigation of Jet Interaction in a Supersonic Freestream[R]. AIAA 2005-4866, 2005.
    [145] Srivastava B. CFD Analysis and Validation of Lateral Jet Control of a Missile[R]. AIAA 96-0288, 1996.
    [146] Srivastava B. Lateral Jet Effectiveness Studies for a Missile Using Navier-Stokes Solution[R]. AD-A319941, 1997.
    [147] Srivastava B. Asymmetric Lateral Jet Interaction Studies for a Supersonic Missile: CFD Prediction and Comparison to Force and Moment Measurements[R]. AD-A329063, 1997.
    [148] Srivastava B. Lateral Jet Control of a Supersonic Missile: Computational Studies with Forward, Rear Missile Body and Wing Tip Mounted Divert Jets[R]. AIAA 97-2247, 1997.
    [149] Srivastava B. Computational Analysis and Validation for Lateral Jet Controlled Missiles[J]. AIAA Journal, 1997, 34(5): 584-592.
    [150] Srivastava B. Computation and Validation of Asymmetric Force and MomentCoefficients for Lateral Jet Controlled Supersonic Missile[R]. AIAA 98-2410, 1998.
    [151] Srivastava B. Aerodynamic Performance of Supersonic Missile Body- and Wing-Mounted Lateral Jets [J]. AIAA Journal, 1998, 35(3): 278-286.
    [152] Srivastava B. Asymmetric Divert Jet Performance of a Supersonic Missile: Computational and Experimental Comparisons[J]. AIAA Journal, 1999, 36(5): 621-632.
    [153]吴晓军,邓有奇,周乃春,等.尖拱弹身横向喷流数值模拟[J].空气动力学学报, 2003, 21(4): 464-469.
    [154]杨彦广,刘君.高超声速主流中横向喷流干扰非定常特性研究[J].空气动力学学报, 2004, 22(3): 298-302.
    [155]邓有奇,吴晓军,郑鸣,等.超声速和高超声速横向喷流数值模拟[J].推进技术, 2005, 26(5): 417-419.
    [156]邓有奇,阎超,吴晓军,等.战术导弹横向喷流数值模拟[J].北京航空航天大学学报, 2005, 31(4): 477-480.
    [157]杨彦广,章起华,刘君.高超声速主流中完全气体横向喷流干扰特性研究[J].空气动力学学报, 2005, 23(3): 299-306.
    [158]陈坚强,赫新,张毅锋,等.跨大气层飞行器RCS干扰数值模拟研究[J].空气动力学学报, 2006, 24(2): 182-186.
    [159]杨彦广,刘君,唐志共.横向喷流干扰中的真实气体效应研究[J].空气动力学学报, 2006, 24(1): 28-33.
    [160]周伟江,马汉东,杨云军,等.侧向控制喷流干扰流场特性数值研究[J].空气动力学学报, 2004, 22(4): 399-403.
    [161]周伟江.钝头飞行器高超声速侧向喷流干扰流场特性研究[J].宇航学报, 2008, 29(4): 1137-1141.
    [162]王正华,王承尧.轴对称横向喷流强干扰流场的巨型机向量并行计算[J].宇航学报, 1995, 16(1): 43-45.
    [163]李桦.三维超音速/高超音速复杂流场分区多机并行数值计算与实验验证[D]: [博士学位论文],长沙:国防科学技术大学, 1996.
    [164]徐春光.复杂喷流流场数值模拟及应用研究[D]: [硕士学位论文],长沙:国防科学技术大学, 2002.
    [165]刘君,杨彦广.带有横喷控制的导弹流场数值模拟[J].空气动力学学报, 2004, 22(3): 309-312.
    [166]刘君,杨彦广.带有横喷控制的导弹非定常流场数值模拟[J].空气动力学学报, 2005, 23(1): 25-28.
    [167]赵海洋,刘伟,任兵.非定常俯抑振荡下的横向喷流数值模拟[J].力学季刊, 2007, 28(3): 363-368.
    [168]王江峰.具有横向喷流的超音速流场数值模拟[D]: [博士学位论文],南京:南京航空航天大学, 2000.
    [169]刘学强,伍贻兆.用DES数值模拟具有横向喷流的紊流流场[J].航空学报, 2004, 25(3): 209-213.
    [170]刘学强,伍贻兆,程克明.用基于M-SST模型的DES数值模拟喷流流场[J].力学学报, 2004, 36(4): 401-406.
    [171]徐敏.大气层内拦截弹侧向喷流控制技术研究[D]: [博士学位论文],西安:西北工业大学, 2003.
    [172]徐敏,陈刚,陈志敏,等.侧向脉冲喷流瞬态干扰流场探讨[J].推进技术, 2005, 26(2): 120-124.
    [173]孙得川,贾晓洪,李有年,等.带侧向喷流的导弹非定常流场模拟[J].固体火箭技术, 2006, 29(1): 25-27.
    [174]马明生,邓有奇,郑鸣,等.超声速侧向多喷流干扰特性数值模拟[J].空气动力学学报, 2007, 25(4): 468-473.
    [175]乔阳,刘勇,徐敏,等.基于多块对接网格的多侧喷流瞬态干扰特性研究[J].固体火箭技术, 2007, 30(2): 98-101.
    [176]孙得川,王广,贾晓洪,等.双喷流对空空导弹直接力控制的影响[J].固体火箭技术, 2007, 30(3): 188-190.
    [177]刘耀峰,徐文灿,吴甲生.超声速来流与横向喷流干扰流场冻结流数值模拟[J].战术导弹技术, 2006(5): 11-15.
    [178]刘耀峰,徐文灿,吴甲生.导弹构形横向喷流干扰流场数值模拟[J].北京理工大学学报, 2006, 26(1): 5-9.
    [179]刘耀峰,徐文灿,吴甲生.翼身组合体超声速来流与横向喷流干扰流场的数值模拟[J].兵工学报, 2007, 28(8): 965-969.
    [180]王树军,胡俊,吴甲生,等.旋转导弹横向喷流/超声速来流干扰数值模拟[J].兵工学报, 2008, 29(10): 1220-1226.
    [181]高旭东,武晓,王晓鸣.高速旋转侧喷流场数值分析[J].弹道学报, 2005, 17(2): 8-12.
    [182]周维,刘宏,刘嘉,等.超音速来流中侧向喷流干扰流场的数值模拟[J].航空学报, 2004, 25(2).
    [183]孙得川,贾晓洪,李有年,等.大气层内导弹侧向喷流干扰流场的数值模拟[J].固体火箭技术, 2005, 28(2): 95-97.
    [184]朱荣丽,曹义华.侧向喷流与飞行器三维绕流干扰流场特性的DSMC/EPSM数值模拟[J].空气动力学学报, 2007, 25(2): 266-270.
    [185] Scherrer D, Montmayeur N, Ferrandon O, et al. Scramjet Injectors Calculation and Design[R]. AIAA 93-5171, 1993.
    [186] Williams S, Hartfield R J, Jr. An Analytical Investigation of Angled Injection into a Compressible Flow[R]. AIAA 96-3142, 1996.
    [187] Rodriguez C G, White J A, Riggins D W. Three-Dimensional Effects in Modeling of Dual-Mode Scramjets[R]. AIAA 2000-3704, 2000.
    [188] Mohieldin T O, Tiwari S N, Olynciw M J. Asymmetric Flow-Structures in Dual Mode Scramjet Combustor with Significant Upstream Interaction[R]. AIAA 2001-3296, 2001.
    [189] Menter F R. Improved Two-Equation k-ωTurbulence Models for Aerodynamic Flows[R]. NASA TM-103975, 1992.
    [190] Adams B R, Cremer M A, Montgomery C J, et al. Scramjet Combustor Simulations Using Reduced Chemical Kinetics for Practical Fuels[R]. AFRL-PR-WP-TR-2004-2011, 2003.
    [191] Wang H, Laskin A, M D Z, et al. A Comprehensive Mechanism of C2Hx and C3Hx Fuel Combustion[C]. Eastern States Section of the Combustion Institute Meeting, Raleigh, NC, 1999.
    [192] Génin F, Chernyavsky B, Menon S. Large Eddy Simulation of Scramjet Combustion Using a Subgrid Mixing/Combustion Model[R]. AIAA 2003-7035, 2003.
    [193] Génin F, Menon S. LES of Supersonic Combustion of Hydrocarbon Spray in a Scramjet[R]. AIAA 2004-4132, 2004.
    [194]陈坚强.超声速燃烧流动及漩涡运动的数值模拟[D]: [博士学位论文],绵阳:中国空气动力研究与发展中心, 1995.
    [195]王晓栋.超声速燃烧冲压发动机内部流场的数值模拟[D]: [博士学位论文],绵阳:中国空气动力研究与发展中心, 2001.
    [196]赵慧勇.超燃冲压整体发动机并行数值模拟[D]: [博士学位论文],绵阳:中国空气动力研究与发展中心, 2005.
    [197]杨顺华,乐嘉陵.乙烯超燃冲压发动机数值模拟[C]//二○○五年冲压发动机技术交流会论文集(上集). 2005: 137-142.
    [198]王兰.超燃冲压发动机整机非结构网格并行数值模拟研究[D]: [博士学位论文],绵阳:中国空气动力研究与发展中心, 2006.
    [199]刘敬华,刘陵.超声速燃烧室流场的数值模拟研究[J].推进技术, 1999, 20(2): 28-32.
    [200]王春,陆惠萍.双燃式冲压发动机中超燃燃烧室冷态流场数值模拟[J].推进技术, 1999, 20(5).
    [201]梁剑寒.超燃发动机氢/空气混合增强与燃烧流场的并行数值模拟[D]: [博士学位论文],长沙:国防科学技术大学, 1998.
    [202]邢建文.超声速燃烧室流场的数值模拟及与实验结果的比较[D]: [硕士学位论文],长沙:国防科学技术大学, 2002.
    [203]郑忠华.双模态冲压发动机燃烧室流场的大规模并行计算及试验验证[D]: [博士学位论文],长沙:国防科学技术大学, 2003.
    [204]刘君,周松柏,郭正.双模态冲压发动机燃烧室非平衡流动数值模拟[C]//二○○五年冲压发动机技术交流会论文集(上集). 2005: 159-162.
    [205]王兰.超音速燃烧冲压发动机燃烧室数值模[D]: [硕士学位论文],西安:西北工业大学2001.
    [206]王晓栋,乐嘉陵,宋文艳,等.冲压燃烧室内的燃料扩散性能研究[J].空气动力学学报, 2004, 22(2): 147-150.
    [207]王晓栋,宋文艳.燃料引射方式对超燃冲压燃烧室混合及燃烧效率的影响[J].航空学报, 2004, 25(6): 556-559.
    [208]王晓栋,宋文艳.支板构型超燃冲压燃烧室流场数值模拟[J].推进技术, 2005, 26(1): 5-9.
    [209]林宏军.超音速燃烧室实验和数值模拟研究[D]: [硕士学位论文],西安:西北工业大学, 2007.
    [210]王靛,蔡元虎,宋文艳,等.超燃冲压发动机燃烧室亚/超燃模态数值研究[J].固体火箭技术, 2007, 30(1): 26-29.
    [211]王靛,宋文艳,曹玉吉,等.台阶和扩张形式对超燃燃烧室影响的数值研究[J].计算机仿真, 2008, 25(10): 82-85.
    [212]徐旭,蔡国飙.氢/碳氢燃料超声速燃烧的数值模拟[J].推进技术, 2002, 23(5): 398-401.
    [213]金哲岩.典型超燃冲压发动机燃烧室流场数值模拟研究[D]: [硕士学位论文],北京:北京航空航天大学, 2004.
    [214]徐旭,蔡国飙.单模块超燃冲压发动机一体化流场数值计算[J].宇航学报, 2004, 25(1): 114-118.
    [215]王元光,徐旭,蔡国飙.超燃冲压发动机燃烧室设计计算方法的研究[J].北京航空航天大学学报, 2005, 31(1): 69-73.
    [216]王元光,徐旭,蔡国飙.超燃冲压发动机缩比燃烧室流场数值模拟[J].航空动力学报, 2006, 21(1): 56-60.
    [217]杨事民,唐豪,黄玥.凹腔超声速燃烧室氢气燃烧流场数值模拟[J].火箭推进, 2008, 34(1): 12-16.
    [218]杨事民,唐豪,黄玥.凹腔超声速燃烧室燃烧流场数值模拟[J].南京工业大学学报(自然科学版), 2008, 30(1): 39-44.
    [219]杨事民,唐豪,黄玥.带凹腔的超声速燃烧室燃烧流场数值模拟[J].航空发动机, 2008, 34(3): 35-38.
    [220]徐胜利,岳朋涛,张梦萍.采用斜坡凹槽稳焰器强化H2超燃的数值研究[J].推进技术, 2001, 22(6): 505-509.
    [221]岳朋涛.超燃冲压发动机燃烧室若干问题的研究[D]: [博士学位论文],合肥:中国科学技术大学, 2002.
    [222]黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值模拟(Ⅰ)数值校验及总体流场特征[J].推进技术, 2004, 25(6): 484-490.
    [223]黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值研究(Ⅱ)导流型凹槽对增强掺混和火焰稳定的影响初探[J].推进技术, 2005, 26(1): 10-15.
    [224]黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值研究(Ⅲ)煤油在超燃流场中的多步化学反应特征[J].推进技术, 2005, 26(2): 101-105.
    [225]徐胜利,刘国昭,曹春丽,等.煤油两相超燃模型及初步的流场数值模拟[C]//二○○五年冲压发动机技术交流会论文集(上集). 2005: 148-151.
    [226]周建兴,朴英,岂兴明,等.超声速燃烧室内氢气燃烧的三维数值研究[J].航空动力学报, 2007, 22(12): 1984-1988.
    [227]周建兴,朴英,陈美宁,等.三种不同结构超声速燃烧室流场的数值研究[J].航空动力学报, 2008, 23(1): 150-155.
    [228]王晓栋,乐嘉陵,宋文艳.带支板的冲压燃烧室的燃烧性能研究[J].空气动力学学报, 2004, 22(3): 274-278.
    [229] Sch?nfeld T. The AVBP Handbook(Version 4.6)[R]. CERFACS, Toulouse, 2001.
    [230] Chen K-H, Fricker D, Lee J, et al. ALLSPD-3D User Guide(Version 2.0a)[M]. USA: NASA Lewis Research Center.
    [231] Sportisse B. An Analysis of Operator Splitting Techniques in Stiff Case[J]. Journal of Computational Physics, 2000, 161: 140-168.
    [232] Baldwin B S, Lomax H. Thin Layer Approximation and Algebraic Model for Separeted Turbulent Flows[R]. AIAA 78-257, 1978.
    [233] Thornber B. Implicit Large Eddy Simulation for Unsteady Multi-Component Compressible Turbulent Flows[D]: [PhD Thesis], Cranfield: Cranfield University, 2007.
    [234]张涵信,沈孟育.计算流体力学-差分方法的原理和应用[M].北京:国防工业出版社, 2003.
    [235]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
    [236] Harten A. High Resolution Schemes for Hyperbolic Conservation Laws[J]. Journal of Computational Physics, 1983, 49: 357-393.
    [237] Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Berlin: Springer-Verlag, 1999.
    [238]张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报, 1988, 6: 143-165.
    [239] Bigarella E D V, Azevedo J L F. A Numerical Study of Turbulent Flows over Launch Vehicle Configurations[R]. AIAA 2003-0602, 2003.
    [240] MacCormack R W. A Perspective on a Quarter Century of CFD Research[R]. AIAA 93-3291-CP, 1993.
    [241]邓小刚,宗文刚,张来平,等.计算流体力学中的验证与确认[J].力学进展, 2007, 37(2): 279-288.
    [242] Sturek W B, Lauzon M, Housh C, et al. The Application of CFD to the Prediction of Missile Body Vortices[R]. AIAA 97-0637, 1997.
    [243] Josyula E. Computational Study of High-Angle-of-Attack Missile Flows Using Two-Equation Turbulence Models[R]. AIAA 38-0525, 1998.
    [244] Bookey P B. An Experimental Study of Shock/Turbulent Boundary Layer Interactions at DNS Accessible Reynolds Numbers[D]: [Master Thesis], Princeton: Princeton University, 2005.
    [245] Yan H, Knight D, Zheltovodov A A. Large Eddy Simulation of Supersonic Flat Plate Boundary Layer(PartⅠ)[R]. AlAA 2002-0132, 2002.
    [246]欣茨J O.湍流[M].周光坰,魏中磊,译.北京:科学出版社, 1987.
    [247] Sommer T P, So R M C, Gatski T B. Verification of Morkovin's Hypothesis for the Compressible Turbulence Field Using Dierect Numerical Simulation Data[R]. AIAA 95-0859, 1995.
    [248] Van Driest E R. Turbulent Boundary Layer in Compressible Fluids[J]. Journal of Aeronautical Sciences, 1951, 18: 145-160.
    [249] Holder D A, Barton C J. Shock Tube Richtmyer-Meshkov Experiments: Inverse Chevron and Half Height[C]//Proceedings of the 9th IWPCTM. 2004.
    [250] Puranik P B, Oakley J G, Anderson M H, et al. Experimental Study of the Richtmyer–Meshkov Instability Induced by a Mach 3 Shock Wave[J]. Shock Waves, 2004, 13(6): 413-429.
    [251] Lehr H F. Experiments on Shock-Induced Combustion[J]. Aeronautica Acta, 1972, 17(5): 589-597.
    [252] Wilson G J. Computation of Steady and Unsteady Shock-Induced Combustion over Hypervelocity Blunt Bodies[D]: [PhD Thesis], California: Stanford University, 1991.
    [253] Yungster S, Eberhardt S, Bruckner A P. Numerical Simulation of Hypervelocity Projectiles in Detonable Gases[J]. AIAA Journal, 1991, 29(2): 187-200.
    [254] Sussman M A. Numerical Simulation of Shock-Induced Combustion[D]: [PhD Thesis], California: Stanford University, 1994.
    [255] Ahuja J K. Numerical Investigation of Shock-Induced Combustion Past Blunt Projectiles[D]: [PhD Thesis], Old Dominion University, 1995.
    [256] Clutter J K. Computation of High-Speed Reacting Flows[D]: [PhD Thesis], Florida: University of Florida, 1997.
    [257] Choi J-Y. Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion(Part 1 and Part 2)[J]. AIAA Journal, 2000, 38(7): 1179-1195.
    [258] Choi J Y, Jeung I-S, Yoon Y. Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion[J]. AIAA Journal, 2000, 38(7): 1451-1462.
    [259]刘君.非平衡流计算方法及其模拟激波诱导振荡燃烧[J].空气动力学学报, 2003, 21(1): 53-58.
    [260] Ess P R, Allen C B. Parallel Computation of Two-Dimensional Laminar Inert and Chemically Reactive Multi-Species Gas Flows[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2005, 15(3): 228-256.
    [261] Yuan L, Tang T. Resolving the Shock-Induced Combustion by an Adaptive Mesh Redistribution Method[J]. Journal of Computational Physics, 2007, 224: 587-600.
    [262]刘瑜.化学非平衡流的计算方法研究及其在激波诱导燃烧现象模拟中的应用[D]: [硕士学位论文],长沙:国防科学技术大学, 2008.
    [263] Kychakoff G, Howe R D, Hanson R K, et al. Visualization of Turbulent Flame Fronts with Planar Laser-Induced Fluorescence[J]. Science, 1984, 224: 382-384.
    [264]耿辉,翟振辰,周松柏,等.欠膨胀自由射流密度场的丙酮平面激光诱导荧光显示与测量[J].实验流体力学, 2006, 20(3): 85-90.
    [265]童景山.流体的热物理性质[M].北京:中国石化出版社, 1996.
    [266]耿辉,翟振辰,桑艳,等.利用OH-PLIF技术显示超声速燃烧的火焰结构[J].国防科技大学学报, 2006, 28(12): 1-6.
    [267] Edelman R B, Spadaccini L J. Analytical Investigation of the Effects of Vitiated Air Contamination on Combustion and Hypersonic Airbreathing Engine Ground Tests[R]. AIAA 69-338, 1969.
    [268] Srinivasan S, Erickson W D. Influence of Test-Gas Vitiation on Mixing and Combustion at Mach 7 Flight Conditions[R]. AIAA 94-2816, 1994.
    [269] Lai H. Numerical Study of Contaminant Effects on Combustion of Hydrogen, Ethane, and Methane in Air[R]. AIAA 95-6097, 1995.
    [270] Srinivasan S, Erickson W D. Interpretation of Vitiation Effects on Testing at Mach 7 Flight Conditions[R]. AIAA 95-2719, 1995.
    [271] Krauss R H, Gauba G, Whitehurst R B, et al. Experimental and Numerical Investigation of Steam-Vitiated Supersonic Hydrogen Combustion[R]. AIAA 96-0856, 1996.
    [272] Powell E S, Stallings D W. A Review of Test Medium Contamination Effects on Test Article Combustion Processes[R]. AIAA 98-0557, 1998.
    [273] McDaniel J C, Jr., Krauss R H, Whitehurst W B, et al. Test Gas Vitiation Effects in a Dual-Mode Combustor[R]. AIAA 2003-6960, 2003.
    [274]刘陵,刘敬华,张榛,等.超音速燃烧与超音速燃烧冲压发动机[M].西安:西北工业大学出版社, 1993.
    [275] Mathur T, Gruber M, Jackson K, et al. Supersonic Combustion Experiments with a Cavity-Based Fuel Injector[J]. Journal of Propulsion and Power, 2001, 17(6): 1305-1312.
    [276] Denis S R, Kau H-P, Brandstetter A. Experimental Study on Transition between Ramjet and Scramjet Modes in a Dual-Mode Combustor[R]. AIAA 2003-7048, 2003.
    [277] McClinton C R. Interaction Between Step Fuel Injectors on Opposite Walls in a Supersonic Combustor Model[R]. NASA TP-1174.
    [278] Cox S K, Fuller R P, Schetz J A, et al. Vortical Interactions Generated by an Injector Array to Enhance Mixing in Supersonic Flow[R]. AIAA 94-0708, 1994.
    [279] Fuller R P, Wu P K, Nejad A S, et al. Comparison of Physical and Aerodynamic Ramps as Fuel Injectors in Supersonic Flow[J]. Journal of Propulsion and Power, 1998, 14(2): 135-145.
    [280]陈坚强,张涵信,高树椿.激波诱导混合增强数值研究[J].计算物理, 2002, 19(5): 408-412.
    [281] Chinzei N, Komuro T, Kudou K, et al. Effects of Injector Geometry on Scramjet Combustor Performance[J]. AIAA Journal of Propulsion and Power, 1993, 9(1): 146-152.
    [282] Harten A, Lax P D, van Leer B. On Upstreaming Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws[J]. SIAM Rev. , 1983, 25: 35.
    [283] Batten P, Clarke N, Lambert C, et al. On the Choice of Wave Speeds for the HLLC Riemann Solver[J]. SIAM J. Sci. Comput., 1997, 18: 1553–1570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700