用户名: 密码: 验证码:
超声速燃烧室中凹腔上游横向喷注燃料的流动、混合与燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用流场显示技术和数值仿真,对超声速燃烧室中凹腔上游横向喷注燃料的流动、混合与燃烧特性进行了深入研究。论文分为三个部分:(1)平面激光诱导荧光(PLIF:Planar Laser-Induced Fluorescence)技术的基础研究与应用、(2)超声速燃烧室中横向喷注燃料的冷流研究、(3)超声速燃烧室中横向喷注燃料的反应流研究。
     在PLIF技术的基础研究与应用方面,详细推导了PLIF信号强度的数学表达式,给出了PLIF探测OH基浓度的方案以及PLIF探测丙酮浓度与流场密度的方案;通过设计PLIF测量系统中的控制时序,实现了在曝光门宽低于50ns的条件下对短脉宽PLIF信号的完整捕获;设计了高浓度丙酮蒸气加注系统,解决了在激发光能量较低的情况下丙酮PLIF信号的信噪比较低的问题。同时基于上述研究成果,应用丙酮PLIF技术对欠膨胀自由射流的密度场进行了显示与测量,取得了较好的效果。
     在超声速燃烧室中横向喷注燃料的冷流研究方面,以添加了丙酮蒸气的氦气模拟燃料,利用丙酮PLIF成像和数值仿真,研究了无凹腔燃烧室中壁面喷注燃料以及带凹腔燃烧室中凹腔上游喷注燃料的流动与混合特性,分析了喷注参数和凹腔结构参数的影响。
     研究发现:横向喷入的燃料在向来流方向急剧转向阶段,由于受大尺度运动和流向涡运动的强化,混合速率会大大提高。当增加燃料喷注流量时,采用提高喷注总压的手段较采用增大喷孔直径的手段更有利于增强扩散与混合。在凹腔上游横向喷注气态燃料时,燃料多分布于凹腔上方,少量会伴随凹腔剪切层的空间发展和湍流扩散而进入凹腔;提高喷注总压会减少进入凹腔的燃料质量;增大凹腔长深比有利于燃料进入凹腔,而增加凹腔深度或后壁倾角则相反;凹腔内部的低速流场有利于进入其中的燃料进行扩散和混合,能够扩大近壁面附近燃料的展向分布。
     在超声速燃烧室中横向喷注燃料的反应流研究方面,分别以氢气和乙炔作为燃料;利用OH基自发辐射成像、OH基PLIF成像以及数值仿真等手段,分别研究了凹腔上游喷注氢气燃烧的贫燃熄火当量比、火焰分布、火焰结构等特性,分析了喷注参数和凹腔结构参数的影响;利用高速摄影和CH基自发辐射成像等手段,分别研究了凹腔上游喷注乙炔的引导氢气点火过程、乙炔自燃点火过程以及乙炔燃烧反应区的火焰特性,分析了乙炔喷注位置和凹腔结构的影响。
     研究发现:在氢气喷口下游布置凹腔有利于氢气的自燃点火,加长凹腔时更有利于氢气自燃点火。在氢气喷注流量相同时,采用高总压喷注较采用低总压喷注更有利于自燃点火且燃烧效率更高。氢气燃烧火焰主要分布在凹腔上方或凹腔下游,火焰呈管状结构,管壁火焰包裹在氢气流的外围。增加氢气的当量比可使火焰区前移、火焰区范围和火焰强度增大。增大凹腔长深比或凹腔后壁倾角也可使火焰区前移、火焰强度增大。流经凹腔的新鲜混气和高温燃气进入凹腔,维持凹腔内部高温且富含活化分子的流场环境,而凹腔又通过传热传质不断向流经凹腔的新鲜混气供给热量和活化分子使其着火,从而形成了稳定的火焰。当利用引导氢气点燃乙炔时,点火时的火焰扩展平缓,改变凹腔结构或乙炔喷注位置对乙炔实现点火影响不大。壁面布置凹腔有利于乙炔自燃点火,乙炔发生自燃点火时火焰扩展迅速,改变凹腔结构或乙炔喷注位置对乙炔实现自燃点火影响很大;后壁较陡的凹腔有利于乙炔的自燃点火,乙炔在凹腔底壁前部横向喷注最易实现自燃点火,在凹腔上游或凹腔底壁中部横向喷注次之,在凹腔底壁后部横向喷注或在凹腔后壁逆向喷注均不易实现自燃点火。
This research studies the flow, mixing and combustion properties of the transverse fuel injection upstream of the cavity in a supersonic combustor by means of experimental investigation and numerical simulation. The main contents of this research include three parts: (1) the fundamental research and application of planar laser-induced fluorescence (PLIF) technique, (2) the research of non-reacting properties of the transverse fuel injection in a supersonic combustor, (3) the research of reacting properties of the transverse fuel injection in a supersonic combustor.
     In the fundamental research and application of PLIF technique, the expression of PLIF intensity is deduced in detail and the detecting methods for hydroxyl radical (OH) concentration, acetone concentration and density of the flowfield are presented. By designing of the scheduling control system in the PLIF measurement system, we are able to obtain the short pulse width PLIF signal integrally at an exposure time less than 50ns. At the same time we designed the high concentration acetone vapor injection system to solve the problem of the signal-to-noise ratio of the acetone PLIF intensity being too low under the weak exciting laser. Based on these research results, we employed an acetone PLIF technique to visualize and measure the density flowfield of under-expanded free jet satisfactorily.
     In the research of non-reacting properties of the transverse fuel injection in a supersonic combustor, a helium jet adulterated with acetone vapor was employed to simulate a fuel jet. Using PLIF imaging of the acetone and numerical simulation, we researched the flow and mixing properties of the fuel injected from the wall in the non-cavity combustor and the fuel injected upstream of the cavity in the cavity-carrying combustor. And then the effects of the injection parameters and the cavity geometry parameters on these properties are analyzed.
     The research results show the mixing degree is enhanced by the large-scale movement and streamwise vortex movement when jets turn sharply toward the airstream, which increases the speed of the mixing of the fuel and the air remarkably. When the mass rate of the fuel is increased, diffusion and mixing can be enhanced more by increasing the injection stagnation pressure of the fuel than by increasing the diameter of the injection port. When the gaseous fuel is injected upstream of the cavity transversely, most of the fuel mass distributes above the cavity and a little fuel mass enters the cavity by going with the spatial evolution of the cavity shear layer and by the turbulent diffusion in the cavity shear layer. Increasing the injection stagnation pressure of the fuel will decrease the fuel mass entering the cavity. Increasing the length-to-depth ratio of the cavity is helpful in causing the fuel to enter the cavity. However, increasing the cavity depth or the aft ramp angle has opposite effects. The low speed flowfield in the cavity is helpful in making the fuel diffuse and mix and extending the spanwise distribution of the fuel near the wall.
     In the research of reacting properties of the transverse fuel injection in a supersonic combustor, hydrogen and acetylene were employed as the fuel. By means of spontaneous radiation imaging and PLIF imaging of OH and numerical simulation, the properties of lean blowout equivalence ratio, flame distribution and flame structure were researched. And then the effects of the injection parameters and the cavity geometry parameters on these properties are analyzed. By means of high speed photography and spontaneous radiation imaging of the hydrocarbon radical (CH), the ignition properties of the transverse injection of acetylene upstream of the cavity ignited by the pilot hydrogen flame and by its self-ignition and the flame properties of the combustion reaction area are studied. The influences of injection locations of the acetylene and the cavity geometry parameters on these properties are analyzed.
     The research results show that the cavity installed downstream of the hydrogen port is helpful in hydrogen's self-igniting and lengthening the cavity helps even more. Under equal hydrogen mass rate, the injection under high stagnation pressure makes self-ignition easier and achieves higher combustion efficiency than injection under low stagnation pressure. Most of the hydrogen flame distributes above the cavity and downstream of the cavity. The flame structure is tubelike and the flame lying in the tube wall encloses the hydrogen jets. Increasing the equivalence ratio of the hydrogen causes the flame to move upstream and increase the flame area and the flame intensity. Increasing the length-to-depth ratio of the cavity or the cavity aft ramp angle causes the flame to move upstream and to increase its intensity. The unburned and mixed gas and the high temperature burning gas enter the cavity and keep the cavity flowfield at high temperature and abundant with active molecules. At the same time, the heat and active molecules are transferred continuously from the cavity to the unburned and mixed gas passing the cavity. And then the stable flame is formed. When the acetylene is ignited by the hydrogen pilot flame, the flame extends gently in the ignition process. At the same time, changing the cavity structures or the acetylene injection locations has little influence on the acetylene ignition properties under this condition. The cavity is helpful in self-igniting the acetylene. In the acetylene self-ignition process, the flame extends rapidly. Changing the cavity structures or the acetylene injection locations has great influence on the acetylene self-ignition properties. Increasing the cavity aft ramp angle makes the self-ignition of the acetylene to be easier. Transverse injection from the foreside of the cavity bottom wall is easiest to self-ignite, and transverse injection upstream the cavity or from the middle of the cavity bottom wall is second easiest, and transverse injection from the backside of the cavity bottom wall or reverse injection from the cavity back wall is not easy to self-ignite.
引文
[1]W.H.Heiser,D.T.Pratt.Hypersonic airbreathing propulsion.Washington,DC:American Institute of Aeronautics and Astronautics,1994.
    [2]梁春华.战斗机发动机发展模式和研制途径分析.中国航空学会第六届动力年会论文集(上),2006年11月:CSAA06-P-015
    [3]张明,田宏伟,梁彦.冲压发动机在战术导弹上的应用.飞航导弹,2005年第6期:50-53
    [4]郑日恒.冲压发动机技术的发展动向与评论.飞航导弹,2004年第1期:44-48
    [5]王登云,凌文辉.固液冲压发动机技术在中远程对空导弹中的应用前景.二○○五年冲压发动机技术交流会论文集(上集),2005年8月:1-3
    [6]秦绪山,吴勋,孟宪君,等.冲压发动机在陆基超音速巡航导弹上的应用与发展分析.二○○五年冲压发动机技术交流会论文集(上集),2005年8月:4-7
    [7]J.J.bertin,R.M.Cummings.Fifty years of hypersonics:where we've been,where we're going.Progress in Aerospace Science,2003,39:511-536
    [8]占云.超燃冲压发动机的第一个40年.飞航导弹,2002年第9期:31-40
    [9]乐嘉陵,胡欲立,刘陵.双模态超燃冲压发动机研究进展.流体力学实验与测量,2000,14(1):1-12
    [10]刘敬华.超燃冲压发动机试验研究的国外动态.飞航导弹,2002年第3期:46-48
    [11]刘卫东,梁剑寒.超燃冲压模型发动机试验研究.中国国防科学技术报告,2003年.
    [12]徐旭,蔡国飙.氢/碳氢燃料超声速燃烧的数值模拟.推进技术,2002,23(5):398-401
    [13]孙英英,司徒明,傅维镳.煤油-空气预混气流超声速燃烧数值研究.推进技术,2004,25(2):101-106
    [14]沈剑.2004年美国成功的高超声速飞行试验.飞航导弹,2005年第6期:34-39
    [15]D.A.Ogorodnikov,V.A.Vinogradov,Y.M.Shikhman,et al.Russian research on experimental hydrogen-fueled dual-mode scramjet:conception and preflight tests.Journal of Propulsion and Power,2001,17(5):1041-1048
    [16]曲寿江,陈贵清,孟松鹤,等.超燃冲压发动机研究现状及其防热.二○○五年冲压发动机技术交流会论文集(上集),2005年8月:95-96
    [17]A.Ben-Yakar.Experimental investigation of mixing and ignition of transverse jets in supersonic crossflows.Ph'D Dissertation,Stanford University,2000,12.
    [18]刘欧子,胡欲立,蔡元虎,等.超声速燃烧凹槽火焰稳定的研究动态.推进技术,2003,24(3):265-271
    [19]刑建文,乐嘉陵.超燃冲压发动机中的凹槽流动研究动态.冲压发动机技术交流会论文集(上集),2005年8月:202-209
    [20]C.T.Bowman,R.K.Hanson,M.G.Mungal,et al.Research on supersonic reacting flows.Final Technical Report.AFOSR Grant No.F49620-94-1-0152
    [21]R.K.Hanson.Advanced diagnostics for reacting flows.Final Technical Report:Grant AFOSR F49620-98-1-0010
    [22]R.K.Hanson.Advanced laser diagnostics for reacting flows.AIAA Paper 2002-0196
    [23]N.T.Clemens.Flow imaging.Encyclopedia of imaging science and technology,Wiley,New York,2002..390-419
    [24]J.M.Seiner.Historical survey on enhanced mixing in scramjet engines.AIAA Paper 99-4869
    [25]J.Swithenbank,N.A.Chigier.Vortex mixing for supersonic combustion.12~(th)Symposium(International) on Combustion,Poitiers,France.The Combustion Inst.,Pittsburgh,PA,1969:1153-1162
    [26]T.G.Tillman,W.P.Patrick,R.W.Paterson.Enhanced mixing of supersonic jets.Journal of Propulsion and Power,1991,7(6):1006-1014
    [27]L.S.Jacobsen,J.A.Schetz,S.D.Gallimore,et al.Mixing enhancement by jet swirl in a multiport injector array in supersonic flow.FEDSM99-7248,3'rd ASME/JSME,1999
    [28]J.W.Naughton,L.N.Cattafesta,G.S.Settles.An experimental study compressible-turbulent mixing enhancement in swirling jets.Journal of Fluid Mechanics,1997,330:271-305
    [29]F.E.Marble,G.J.Hendricks,E.E.Zukoski.Progress toward shock enhancement of supersonic combustion processes.AIAA Paper 87-1880
    [30]O.Metwally,G.Settles.An experimental study of shock wave/vortex interaction.AIAA Paper 89-0082
    [31]J.Kim,H.Huh,Y.Yoon,et al.Effects of shock waves on a supersonic hydrogen-air jet flame in a model scramjet combustor.The second Asia-Pacific conference on combustion,May 9-12,1999,Tainan,Taiwan.
    [32]S.Menon.Shock-wave-induced mixing enhancement in scramjet combustors.AIAA Paper 89-0104
    [33]R.C.Rogers,D.P.Capriotti,R.W.Guy.Experimental supersonic combustion research at NASA Langley.AIAA Paper 98-2506
    [34]J.S.Fox,M.J.Gastont,A.F.P.Houwingf,et al.Instantaneous mole-fraction PLIF imaging of mixing layers behind hypermixing injectors.AIAA Paper 99-0774
    [35]R.J.Hartfield,S.D.Hollo,J.C.McDaniel.Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence.Journal of Propulsion and Power,1994,10(1):129-135
    [36]T.M.Abdel-Salam,S.N.Tiwari,T.O.Mohieldin.Effects of ramp swept angle in supersonic mixing.AIAA Paper 2000-2377
    [37]T.M.Abdel-Salam,S.N.Tiwari,T.O.Mohieldin.Dual-mode flowfield in scramjet combustor.AIAA Paper 2001-2966
    [38]S.K.Cox,R.P.Fuller,J.A.Schetz,et al.Vortical interactions generated by an injector array to enhance mixing in supersonic flow.AIAA Paper 94-0708
    [39]R.P.Fuller,P.K.Wu,A.S.Nejad,et al.Comparison of physicaland aerodynamic ramps as fuel injectors in supersonic flow.Journal of Propulsion and Power,1998,14(2):135-145
    [40]S.L.N.Desikan,K.Job.Mixing studies in supersonic flow employing strut based hypermixers.AIAA Paper 2005-3643
    [41]S.Tetsuji.Experimental study of strut injectors in a supersonic combustor using OH-PLIE AIAA Paper 2005-3304
    [42]王晓栋,乐嘉陵,宋文艳.带支板的冲压燃烧室的燃烧性能研究.空气动力学学报,2004,22(3):274-278
    [43]P.J.Strykowski,A.Krothpali,D.Wishart.The enhancement of mixing in high-speed heated jets using a counterflowing nozzle.AIAA Paper 92-3262
    [44]R.L.Panton.Effect of orifice geometry on helmholtz resonator excitation by grazing flow.AIAA Journal,1990,28(1 ):60-65
    [45]B.Mader.Scramjet ignition technology.ME 8362,April 30,2002.
    [46]司徒明,王春,陆惠萍,等.一种研究煤油超燃的新方案.流体力学实验与测量,2001,15(3):7-12
    [47]俞刚,李建国,陈立红等.煤油-氢双燃料超声速点火特性研究,流体力学实验与测量,2000,14(1):63-71
    [48]宋文艳,黎明,蔡元虎,等.超音速燃烧室碳氢燃料点火实验研究.中国航空学报(英文版),2004,17(2):65-71
    [49]A.J.Harrison,F.J.Weinberg.Flame stabilization by plasma jets.Proceedings of the Royal Society of London,1971,321(1544):95-103
    [50]A study of plasma ignition enhancement for aeroramp injectors in supersonic combustion applications.
    [51]G.Masuya,T.Komuro,A.Murakami,et al.Ignition and combustion performance of combustors with fuel injection struts.Journal of Propulsion and Power,1995,11(2):301-307
    [52]余勇,丁猛,刘卫东,等.煤油超声速燃烧的试验研究.国防科技大学学报,2004,26(1):1-4
    [53]丁猛.基于凹腔的超声速燃烧火焰稳定技术研究.博士学位论文,国防科学技术大学研究生院,2005,10.
    [54]丁猛,余勇,梁剑寒,等.碳氢燃料超燃冲压发动机点火技术试验.推进技术,2004.25(6):566-569
    [55]T.Cain,C.Walton.Review of experiments on ignition and flameholding in supersonic flow.AIAA Paper 2002-3877
    [56]P.J.Waltrup.Hypersonic airbreathing missile propulsion.AGARD-CP-600,1997,3.
    [57]司徒明,王春,陆惠萍,等.双燃式冲压发动机中富油燃气射流的超燃研究.推进技术,2001,22(3):237-240
    [58]孙英英,司徒明,王春,等.双燃烧室中煤油超燃试验研究.流体力学实验与测量,2000,14(1):51-56
    [59]T.Wagner,W.O'Brien,G.Northam,et al.Plasma torch igniter for scramjets.Journal of Propulsion and Power,1987,5(5):548-554
    [60]C.Segal,M.G.Owens,S.Tehranian,et al.Flameholding configurations for kerosene combustion in a Mach 1.8 airflow.AIAA Paper 97-2888
    [61]T.Niioka,K.Terada,H.Kobayashi,et al.Flame stabilization characteristics of strut divided into two parts in supersonic airflow.Journal of Propulsion and Power,1995,11(1):112-116
    [62]A.Brandstetter,S.R.Denis,H.-P.Kau.Flame stabilization in supersonic combustion.AIAA Paper 2002-5224
    [63]S.Takahashi,N.Sato,M.Tsue,et al.Control of flame-holding in supersonic air-flow by secondary air injection.Journal of Propulsion and Power,1998,14(1 ):18-23
    [64]刘君.超声速完全气体和H_2/O_2非平衡气体的复杂喷流流场数值模拟.博士学位论文,中国空气动力研究与发展中心研究生部,1993,5.
    [65]杨彦广,章起华,刘君.高超声速主流中完全气体横向喷流干扰特性研究.空气动力学学报,2005,23(3):299-306
    [66]赵桂林,彭辉,胡亮,等.超声速流动中侧向喷流干扰特性的实验研究.力学学报,2004,36(5):577-582
    [67]王军旗,李素循.平板超声速湍流/喷流干扰流场特性.全国第十三届高超声速气动力(热)学术交流会议论文集:338-342
    [68] A.Ben-Yakar, M.Kamel, C.Morris, et al. Experimental investigation of H_2 transverse jet combustion in hypervelocity flows. AIAA Paper 97-3019
    [69] J.A.Schetz, F.S.Billig. Penetration of gaseous jets injected into a supersonic stream.AIAA Journal, 1966, 3 (11): 1658-1665
    [70]R.C.Orth, J.A.Funk. An experimental and comparative study of jet penetration in supersonic flow. Journal of Propulsion and Power, 1967, 4(9): 1236-1242
    [71]F.S.Billig, R.C.Orth, M.Lasky. A unified analysis gaseous jet penetration. AIAA Journal, 1971, 9 (6): 1048-1058
    [72]D.Papamoschou, D.G.Hubbard. Visual observations of supersonic transverse jets.Experiments in Fluids, 1993, 14: 468-476
    [73]D.E.Everett, M.A.Woodmansee, J.C.Dutton, et al. Wall pressure measurements for a sonic jet injected transversely into a supersonic crossflow. Journal of Propulsion and Power, 1998, 14 (6) : 861-868.
    [74]S.D.Hollo, J.C.McDaniel, R.J.Hartfield. Characterization of supersonic mixing in a nonreacting Mach 2 combustor. AIAA Paper 92-0093
    [75]J.C.Hermanson, M.Winter. Mie scattering imaging of a transverse sonic jet in supersonic flow. AIAA Journal, 1993, 31 (1): 129-132
    [76]E.J.Fuller, R.B.Mays, R.H.Thomas, et al. Mixing studies of helium in air at high supersonic speeds. AIAA Journal, 1992, 30 (9): 2234-2243
    [77]M.R.Gruber, A.S.Nejad, T.H.Chen, et al. Mixing and penetration studies of sonic jets in a Mach 2 freestream. Journal of Propulsion and Power, 1995, 11 (2):315-323
    [78]M.P.Lee, B.K.McMillin, J.L.Palmer, et al. Planar fluorescence imaging of a transverse jet in a supersonic crossflow. Journal of Propulsion and Power, 1992, 8(4) : 729-735
    [79] A.Ben-Yakar, R.K.Hanson. Supersonic combustion of cross-flow jets and the influence of cavity flame-holders. AIAA Paper 99-0484
    [80]C.Segal, J.C.McDaniel, R.B.Whitehurst, et al. Mixing and chemical kinetics interactions in a Mach 2 reacting flow. Journal of Propulsion and Power, 1995, 11(2): 308-314
    [81]D.P.Rizzatta. Numerical simulation of slot injection into a turbulent supersonic stream. AIAA Journal, 1992, 30 (10): 2434-2439
    [82]S-H.Won, I-S.Jeung. DES study of two-dimensional transverse injection jet into a supersonic cross flow. Asian Joint Conference on Propulsion and Power 2006,Beijing, April 2006: AJCPP2006-22204
    [83]A.S.Roudakov, Y.Schikhmann, V.Semenov, et al. Flight testing an axisymmetric scramjet- russian resent advances. IAF Paper 93-S.4.485, 44~(th) IAF Congress, Graz,Austria, Oct. 1993.
    [84]C.Lada, K.Kontis. Fluidic control of cavity configurations at subsonic and supersonic speeds. AIAA Paper 2005-1298
    [85]N.Zhuang, F.S.Alvi, C.Shih. Another look at supersonic cavity flows and their control. AIAA Paper 2005-2803
    [86] A.Ben-Yakar, R.K.Hanson. Cavity flameholders for ignition and flame stabilization in scramjets: review and experimental study. AIAA Paper 98-3122
    [87]A.Morgenstern,.Jr, N.Chokani. Hypersonic flow past open cavities. AIAA Paper 93-2969
    [88] X.Zhang, J.A.Edwards. Experimental investigation of supersonic oscillatory cavity flows driven by thick shear layers. Aeronautical Journal, 1990, 94 (940): 355-364
    [89]R.Burnes, T.P.Parr, K.J.Wilson. Investigation of supersonic mixing control using cavities: effect of fuel injection location. AIAA Paper 2000-3618
    [90]V.A.Nenmeni, K.Yu. Cavity-induced mixing enhancement in confined supersonic flows. AIAA Paper 2002-1010
    [91]M.R.Gruber, R.A.Baurle, T.Mathur, et al. Fundamental studies of cavity-based flameholder concepts for supersonic combustors. Journal of Propulsion and Power,2001, 17 (1): 146-153
    [92]R.A.Baurle, C.-J.Tam, S.Dasgupta. Analysis of unsteady cavity flows for scramjet applications. AIAA Paper 2000-3617
    [93]N.Sato, A.Imamura, S.Shiba, et al. Advanced mixing control in supersonic airstream with a wall-mounted cavity. AIAA Paper 96-4510
    [94]K.H.Yu, K.C.Schadow. Cavity-actuated supersonic mixing and combustion control.Combustion and Flame, 1994, 99: 295-301
    [95]A.Zang, T.Tempel, K.Yu, et al. Experimental characterization of cavity-augmented supersonic mixing. AIAA Paper 2005-1423
    [96]K.-Y.Hsu, C.Carter, J.Crafton, et al. Fuel distribution about a cavity flameholder in supersonic flow. AIAA Paper 2000-3585
    [97]K.-Y.Hsu, L.P.Goss. Characteristics of a trapped-vortex combustor. Journal of Propulsion and Power, 1998, 14 (1): 57-65
    [98]V.R.Katta, W.M.Roquemore. Study on trapped-vortex combustor—effect of injection on flow dynamics. Journal of Propulsion and Power, 1998, 14 (3):273-281
    [99]K.H.Yu,K.J.Wilson,K.C.Schadow.Effect of flame-holding cavities on supersoniccombustion performance.Journal of Propulsion and Power,2001,17(6):1287-1295
    [100]C.C.Rasmussen,J.F.Driscoll,K.-Y.Hsu,et al.Blowout Limits of Supersonic Cavity- Stabilized Flames.AIAA Paper 2004-3660
    [101]G.Yu,J.G.Li,X.Y.Chang,et al.Investigation of kerosene combustion characteristics with pilot hydrogen in model supersonic combustors.Journal of Propulsion and Power,2001,17(6):1263-1272
    [102]李麦亮.激光光谱诊断技术及其在火箭发动机燃烧研究中的应用.博士学位论文,国防科学技术大学研究生院,2004,10.
    [103]范洁川.近代流动显示技术.北京:国防工业出版社,2002.
    [104]A.Ben-Yakar,R.K.Hanson.Ultra-fast-framing schlieren system for studies of the time evolution of jets in supersonic crossflows.Experiments in Fluids,2002,32:652-666
    [105]T.Rossmann,M.G.Mungal,R.K.Hanson.Acetone PLIF and schlieren imaging of high compressibility mixing layers.AIAA Paper 2001-0290
    [106]熊红亮,袁格,李潜,等.可压缩自由剪切层纹影试验研究.流体力学实验与测量,2003,17(2):74-83
    [107]M.R.Kamel,C.I.Morris,R.K.Hanson.Simultaneous PLIF and schlieren imaging of hypersonic reactive flows around blunted cylinders.AIAA Paper 97-0913
    [108]C.I.Morris,M.R.Kamel,A.Ben-Yakar,et al.Combined schlieren and OH PLIF imaging study of ram accelerator flowfields.AIAA Paper 98-0244
    [109]A.Ben-Yakar,R.K.Hanson.GTTC student design winner:hypervelocity combustion studies using simultaneous OH-PLIF and schlieren imaging in an expansion tube.AIAA Paper 99-2453
    [110]A.Ben-Yakar,C.I.Morris,M.R.Kamel,et al.Hypersonic combustion and mixing studies using simultaneous OH-PLIF and schlieren imaging.AIAA Paper 98-0940
    [111]盛森芝,许宏庆,徐月亭,等.粒子图像测速技术(简称PIV)及其新进展.北京大学特赛流动测量研究中心(培训资料).
    [112]杨枝伟,王存诚,王同庆.超跨声速喷流流场的PIV测量.流体力学实验与测量,2000,14(2):92-97
    [113]S.A.Ritchie,N.J.Lawson,K.Knowles.Application of particle image velocimetry to transonic cavity flows.AIAA Paper 2005-1060
    [114]F.F.J.Schrijer,F.Scarano,B.W.van Oudheusden.Application of PIV in a Mach 7 double-ramp flow.Experiments in Fluids,2006,41:353-363
    [115]W.J.A.Dahm,J.F.Driscoll.High resolution measurements of supersonic mixing and combustion in coflowing turbulent jets.Final Report No.032839-5,AFOSR Contract No.F49620-95-1-0115,the University of Michigan,August 1998.
    [116]W.J.A.Dahm,J.F.Driscoll.High resolution measurements of supersonic shear flow mixing and combustion.Final Report No.036407-3,AFOSR Contract No.F49620-98-1- 00003,the University of Michigan,October 2001.
    [117]J.Panda,R.G.Seasholtz.Velocity and temperature measurement in supersonic free jets using spectrally resolved rayleigh scattering.AIAA Paper 99-0296
    [118]胡志云,刘晶儒,关小伟,等.燃烧场参数的激光诊断技术研究.强激光与粒子束,2002,14(5):702-706
    [1 19]刘建胜,刘晶儒,张振荣,等.利用拉曼散射测量燃烧场的组分浓度和温度.光学学报,2000,20(9):1263-1267
    [120]C.Dreyer,T.Parker,M.A.Linne.Raman scattering at 532 and 355nm in atmospheric pressure propane/air flames,with and without liquid fuels.Applied Physics B,2004,79:121-130
    [121]M.B.Long,P.S.Levin,D.C.Fourguette.Simultaneous two-dimensional mapping of species concentration and temperature in turbulent flames.Optics Letters,1985,10(6):267-269
    [122]C.M.Gittins,S.U.Shenoy,H.R.Aldag,et al.Measurements of major species in a high pressure gas turbine combustion simulator using Raman scattering.AIAA Paper 2000-0772
    [123]T.Sander,T.Sattelmayer.Application of spontaneous Raman scattering to the flowfield in a scramjet combustor.Institute of Theoretical and Applied Mechanics Institutskaya,Novosibirsk,Russia,23Aug.2002. by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor.Aerosp.Sci.Technol.2001,5.- 347-355
    [130]R.E.Foglesong,S.M.Green,R.ELucht,et al.Dual-pump coherent anti-stokes Raman scattering technique for simultaneous measurement of pressure and temperature.AIAA Paper 97-0606
    [131]赵建荣,杨仕润,俞刚.CARS在超音速燃烧研究中的应用.激光技术,2000,24(4):207-212
    [132]杨仕润.CARS在超音速燃烧中的应用.博士论文,中国科学院力学研究所,1998.
    [133]G.Martins,G.Cabot,B.Taupin,et al.Experimental study of a lifted LPP flame:LDV,CH chemiluminescence,acetone PLIF measurements.
    [134]K.T.Walsh,M.B.Long,M.A.Tanoff,et al.Experimental and computational study of CH,CH~*,and OH~* in an axisymmetric laminar diffusion flame.Twenty-seventh symposium(international) on combustion,1998:615-623
    [135]耿辉,桑艳,翟振辰,等.利用OH基的自发辐射图像研究凹腔在超音速燃烧中的作用.液体火箭推进技术发展研讨会论文集,中国三亚,2005年11月:274-279.
    [136]J.W.Daily.Laser induced fluorescence spectroscopy in flames.Prog.Energy Combust.Sci.,1997,23:133-199(R.W.Wood.Phil.Mag.,1905,10,513)
    [137]http://navier,stanford.edu/hanson/plif/basic.html
    [138]孙汉文.原子光谱分析.北京:高等教育出版社,2002:226-228
    [139]A.C.Eckbreth.Laser diagnostics for combustion temperature and species.Abacus Press,U.K.,1987
    [140]肖洋,唐洪武.平面激光诱导荧光技术及其在紊流拟序结构研究中的应用.激光杂志,2003,24(2):41-43
    [141]http://www.ic.sunysb.edu/Class/che133/lectures/beerslaw.html 或http://dwb.unl,edu/calculators/activities/Beers_Law.html
    [142]M.C.Thurber.Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows.Topical Report TSD- 120,March,,1999.
    [143]M.C.Thurber,F.Grisch,B.J.Kirby,et al.Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics.Applied Optics,1998,37(21):4963-4978
    [144]G.F.King,R.P.Lucht,J.C.Dutton.Instantaneous dual-tracer PLIF measurements of molecular mixing in axisymmetric jets.AIAA Paper 97-0152
    [145]M.S.Tsurikov,N.T.Clemens.Scalar/velocity imaging of the fine scales in gas-phase turbulent jets.AIAA Paper 2001-0147
    [146]E.Murakami,D.Papamoschou.Experiments on mixing enhancement in dual-stream jets.AIAA Paper 2001-0668
    [147]C.J.Bourdon,J.C.Dutton.Visualization of a central bleed jet in an axisymmetric,compressible base flow.AIAA Paper 2002-0293
    [148]A.Lozana,S.H.Smith,M.G.Mungal,et al.Concentration measurements in a tranverse jet by planar laser-induced fluorescence of acetone.AIAA Journal,1993,32(1):218-221
    [149]T.R.Meyer,J.C.Dutton,R.P.Lucht.Turbulent molecular mixing in fully-developed planar shear flows.AIAA Paper 2001-0287
    [150]D.D.Thomsen,R.V.Ravikrishna,C.S.Cooper,et al.Concentration measurements in a mixing module for lean,premixed,gas-turbine combustors.Journal of Propulsion and Power,2000,17(1 ):218-222
    [151]J.Hult,M.Richter,J.Nygren,et al.Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines.Applied Optics,2002,41(24):5002-5014
    [152]H.Geng,J.Zhou,Z.C.Zhai,et al.Reveal the mixing and combustion in supersonic flowfield by using planar laser induced fluorescence technology.Asian Joint Conference on Propulsion and Power 2006,Beijing,April 2006:AJCPP2006-22191
    [153]陈军.超声速流场中的凹腔火焰稳定器的点火与稳焰研究.硕士学位论文,国防科学技术大学研究生院,2006,11.
    [154]B.D.Ritchie,J.M.Seitzman.Quantitative acetone PLIF in two-phase flows.AIAA Paper 2001-0414
    [155]B.D.Ritchie,J.M.Seitzman.Simultaneous droplet size and mixture fraction using acetone PLIF.AIAA Paper 2002-0826
    [156]R.J.H.Klein-Douwel,J.B.Jeffi'ies,J.Luque.CH and formaldehyde structures in partially-premixed methane/air coflow flames.CST-01-01-30C,submitted to Combustion Science and Technology,2001,4.
    [157]V.Sick,N.Wermuth.Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable Nd:YAG laser.Applied Physics B,2004,79:139-143
    [158]M.Versluis,M.Boogaarts,R.Klein-Douwel,etal.Laser-induced fluorescence imaging in a 100kW natural gas flame.Applied Physics B,1992,55:164-170
    [159]A.Koch,A.Chryssostomou,P.Andresen,et al.Multi-species detection in spray flames with tunable excimer lasers.Applied Physics B,1993,56:165-176
    [160]A.Koch,H.Voges,P.Andresen,et al.Planar imaging of a laboratory flame and of internal combustion in an automobile engine using UV Rayleigh and fluorescence light.Applied Physics B,1993,56:177-184
    [161]L.M.Cohen,D.M.Jassowski,J.I.Ito.Performance of a Titan rocket engine using laser-induced fluorescence of OH.AIAA Journal,2001,39(10):1926-1935
    [162]Li Mailiang,Zhou Jin,Geng Hui.Investigations on Function of Cavity in Supersonic Combustion Using OH PLIF.AIAA Paper 2004-3657
    [163]R.A.Bryant,A.Ratner,J.F.Driscoll.Using PLIF determined flame structure to analyze supersonic combustion efficiencies.AIAA Paper 99-0445
    [164]W.Allen,P.I.King,M.R.Gruber,et al.Fuel-air injection effects on combustion in cavity-based flameholders in a supersonic flow.AIAA Paper 2005-4105
    [165]T.E.Parker,M.GAllen,R.R.Foutter,et al.Measurements of OH and H_2O for reacting flow in a supersonic combusting ramjet combustor.Journal of Propulsion and Power,1995,11(6):1154-1161
    [166]杨仕润,赵建荣,俞刚,等.超音速燃烧室氢氧基平面激光诱导荧光测量.激光技术,2004,28(1):20-22
    [167]耿辉,翟振辰,桑艳,等.利用OH-PLIF技术显示超声速燃烧的火焰结构.国防科技大学学报,2006,28(2):1-6
    [168]K.A.Watson,K.M.Lyons,J.M.Donbar,et al.Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flames.Combustion and Flames,2000,123:252-265
    [169]F.Hoffmann,B.Bauerle,F.Behrendt,et al.2D-LIF investigation of hot spots in the unburnt end gas of I.C.engines using formaldehyde as tracer.International SymposiumCOMODIA,1994:517-522
    [170]W.G.Bessler,C.Schulz,T.Lee,et al.Quantitative NO-LIF imaging in high-pressure flames.Applied Physics B,2002,75:97-102
    [171]J.Haumann,J.M.Seitzman,R.K.Hanson.Quantitative two-dimensional imaging of CO in combustion gases using LIE Instrumentation for combustion and flow in engines,Kluwer Academic Publishers,1989:141-150
    [172]B.J.Kirby,R.K.Hanson.Linear excitation schemes for IR planar-induced fluorescence imaging of CO and CO_2.Applied Optics,2002,41(6):1190-1201
    [173]B.J.Kirby,R.K.Hanson.CO_2 imaging with saturated planar laser-induced vibrational fluorescence.Applied Optics,2001,40(33):6136-6144
    [174]T.Lee,W.G.Bessler,C.Schulz.UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame.Applied Physics B,2004,79:427-430
    [175]V.Sick.Exhaust-gas imaging via planar laser-induced fluorescence of sulfur dioxide.Applied Physics B,2002,74:461-463[176]赵建荣,陈立红,俞刚,等.显示OH浓度分布图像的平面激光诱导荧光技术.光学技术,2000,26(5):429-434
    [177]赵建荣,陈立红,俞刚,等.平面激光诱导荧光显示火焰中OH的浓度分布图像.流体力学实验与测量,2000,14(2):67-71
    [178]W.G.Bessler,C.Schulz.Quantitative multi-line NO-LIF temperature imaging.Applied PhysicsB,2004,78:519-533
    [179]P.C.Palma,S.G.Mallinson,S.B.O'Byrne.Temperature measurements in a hypersonic boundary layer using planar laser-induced fluorescence.AIAA Journal,1999,38(9):1769-1772
    [180]P.C.Palma.Laser-induced fluorescence imaging in free-piston shock tunnels.A thesis submitted for the degree of doctor of philosophy of the Australian National University,1999.
    [181]M.C.Thurber,B.J.Kirby,F.Grisch,et al.Instantaneous temperature imaging with single-wavelength acetone PLIF.AIAA Paper 97-0151
    [182]E.R.Lachney,N.T.Clemens.PLIF imaging of mean temperature and pressure in a supersonic bluff wake.Experiments in Fluids,1998,24:354-363
    [183]B.Hiller,R.K.Hanson.Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence.Applied Optics,1988,27:33-48
    [184]P.Paul,M.P.Lee,R.K.Hanson.Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO.Optic Letters,1989,14:417-419
    [185]J.L.Palmer,R.K.Hanson.PLIF Measurements of temperature and velocity in a reacting supersonic free jet with OH.AIAA Paper 94-0618
    [186]G..L.Pellett,C.Bruno,W.Chinitz.Review of air vitiation effects on scramjet ignition and flameholding combustion processes.AIAA Paper 2002-3880
    [187]陈晖,姜春林.发动机燃烧与流动过程实验测控系统设计研究.计量与测试学术交流会论文集,哈尔滨,2005,9:200-202
    [188]S.Gordon,B.J.Mcbride.Computer Program for the Calculation of Complex Equilibrium Compositions,Rocket Performance,Incident and Reflected Shocks and Chapman-Jouguet Detonations.NASA SP-273,1976.
    [189]余勇.超燃冲压发动机燃烧室工作过程理论和试验研究.博士学位论文,国防科学技术大学研究生院,2004,10.
    [190]吴海燕.三组元液体火箭发动机推力室燃烧与再生冷却仿真研究.硕士学位论文,国防科学技术大学研究生院,2004,11.
    [191]G.S.Settles,D.R.Willians,B.K.Baca,et al.Reattachment of a Compressible Turbulent Free Shear Layer.AIAA Journal,1982,20(1 ):60-67
    [192]C.C.Horstman,G.S.Settles,D.R.Williams,et al.AReattaching Free Shear Layer in Compressible Turbulent Flow.AIAA Journal.1982,20(1 ):79-85
    [193]S.Aso,S.Okuyama,M.Kawai,et al.Experimental Study on Mixing Phenomena in supersonic flows with slot injection.AIAA Paver 91-0016
    [194]田长霖,J.H.林哈特著,顾毓沁译.统计热力学.北京:清华大学出版社,1987.
    [195]G.H.Dieke,H.M.Crosswhite.The Ultraviolet Bands of OH:Fundamental Data.Journal of Quantitative Spectroscopy Radiative Transfer,1962,2:97-199
    [196]G.F.King,J.C.Dutton,R.P.Lucht.Instantaneous,quantitative measurements of molecular mixing in the axisymmetric jet near field.Physics of Fluids,1999,11(2):403-416
    [197]童景山.流体的热物理性质.北京:中国石化出版社,1996.
    [198]Exciton laser dyes.Exciton Inc.,USA,1992.或 http://www.exciton.com
    [199]申功炘,晋健.LIF喷流混合浓度场定量测量.力学学报,1992,24(4):488-492
    [200]陈朝泉,李玉梁,陈家范等.PLIF图像处理技术在潮流污染物排放混合特性研究中的应用.高技术通讯,1997,2:25-29
    [201]陈军,耿辉,翟振辰,等.平面激光诱导荧光图像处理技术及应用.湖南省宇航学会推进技术专业委员会等2005年度学术年会论文集(航天分册),湖南长沙,2005年12月:189-194
    [202]耿辉,翟振辰,周松柏,等.欠膨胀自由射流密度场的丙酮平面激光诱导荧光显示与测量.实验流体力学,2006,20(3):85-90
    [203]J.Luque,R.J.H.Klein-Douwel,et al.Quantitative laser-induced fluorescence of CH in atmospheric pressure flames.Applied Physics B,2002,75:779-790

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700