用户名: 密码: 验证码:
煤油在冷态超声速气流中喷射和雾化现象的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究煤油在超声速气流中的喷射、雾化和混合现象。该问题是煤油超声速燃烧的基本现象,也是研制煤油超燃冲压发动机(特别是燃烧室设计)的关键技术难题。在学术方面,该问题伴随超声速流动、激波、湍流、射流破碎与雾化、两相流非平衡效应和雾化流场光学诊断等学科交叉,急需解决超声速气流(即大速差)气流中的射流破碎、湍流两相流和雾化参数在线测量等问题。因此,本文研究有重要的工程应用前景和学术意义。自60年代以来,煤油超燃雾化问题的研究一直得到重视,但由于两相湍流和射流破碎雾化等核心问题的理论研究没有取得实质性进展,因此,该问题的理论分析、数值模拟与实验结果对比还是相差甚远,人们对该问题的现象认识也尚待深入。为此,本文采用实验研究方法,主要说明如下:
     (1)以煤油雾化参数在线测量为目标,为避免尺度效应的影响,建造了和单模块超燃发动机燃烧室和喷嘴尺寸相同的直连式煤油超燃冷态雾化实验台,力图获得和实际发动机相近的流场特征、雾化现象和参数分布。
     (2)以先进光学诊断为核心,以平面激光诱导荧光(PLIF)和激光散射、高速纹影测量为主要手段,以雾化参数的定量和半定量测量为目标,开展煤油超燃雾化现象的测量研究。其中,采用高时间/空间分辨率的PLIF方法研究煤油的喷射和扩散范围是本文主要特色,得到的煤油液滴SMD(Sauter mean diameter)分布也是国际上首次公布的在线测量数据。
     (3)采用先进的光学测量方法,首次较为系统地研究了不同结构和几何参数的凹槽流动机理及其对煤油超燃雾化、混合现象的影响。
     本文主要内容概述如下:
     (1)第一章指出本文研究背景、相关研究进展,介绍了本文主要内容和特色。
     (2)为开展实验研究,第二章主要介绍本文研制的直连式煤油超燃冷态雾化实验台以及相关的测量系统。重点介绍了喷管、实验段设计和加工以及配套的光学测量系统。结果表明:实验段内气流较为均匀、杂乱波系较弱,可满足煤油超燃雾化现象的实验要求。
     (3)针对直通道(平板)燃烧室,第三章主要介绍煤油在超声速气流中喷射、混合的实验研究,给出了煤油扩散范围、穿透深度和液滴直径分布等流场图象和数据。结果表明:射流和来流的动压比对穿透深度、射流柱破碎和雾化有重要影响。动压比越大,穿透深度增大,促进了煤油射流的破碎和雾化,但射流激波变强、总压损失增大。表面波是引起射流柱破碎的重要因素。当动压比较小,射流的表面波发展受抑制,只有经过较长平滑初始段后才出现明显的表面波。增大动压比,在射流柱初始弯曲处出现表面波并迅速向下游发展,表面波振幅也增大。表面波是三维、非定常的。
     (4)针对两种典型的开式和闭式凹槽,第四章介绍了煤油在含凹槽通道内的喷射和雾化现象的实验和测量研究。重点研究不同几何参数和结构(前后缘角、导流槽和波状后缘)对闭式凹槽的流场特征和煤油喷射、混合现象的影响。结果表明:
     ●对开式凹槽(L/D=3),其产生的波系较弱,流场总压损失小,自激振荡较弱,但槽内流向和横向漩涡较强,可增强煤油与主气流的横向输运和掺混,煤油射流的雾化情况(激波和液滴SMD)与平板相近,但穿透深度降低。与凹槽激波相比,射流激波可以忽略不计。
     ●对于闭式凹槽(L/D=15),无煤油喷射的凹槽激波较强,导致了上壁面边界层的分离,总压损失较大,凹槽后缘流场的自激振荡较强。减小后缘倾角和采用波状后缘,可减弱闭式凹槽的后缘激波。减小前缘倾角和采用导流槽,闭式凹槽的剪切层和前缘激波变化不大。当有煤油喷射时,射流激波和凹槽激波相比可忽略不计。相对于开式凹槽,闭式凹槽的后缘气流偏转使煤油射流穿透深度显著增大。采用波状后缘,闭式凹槽的后缘激波和上壁面边界层分离均消失。改变凹槽几何结构和煤油喷射参数,除了凹槽内的煤油略有改变外,对主气流的煤油射流扩散、混合影响不大。进一步分析还表明:在含凹槽燃烧室中,由于当地气流速度很大,煤油射流的雾化不是难点,重点是要减弱凹槽产生的波系和增强煤油的扩散混合。凹槽类型不仅取决于几何特征参数(长深比),而且和凹槽结构、来流参数等相关。
     ●在超声速气流中,通道内是否有无凹槽,对煤油雾化后液滴SMD几乎无影响,但对煤油的扩散混合影响较大,特别是闭式凹槽。
     本文主要特色和创新之处为:
     (1)本文利用煤油自身受激荧光(磷光)辐射特性和PLIF方法,研究煤油在超声速气流中的扩散混合问题,为煤油超燃雾化问题的测量研究提供了新的手段。众所周知,PLIF方法在燃烧流场小分子自由基诊断方面得到了广泛运用,国外也将PLIF方法用于内燃机的柴油喷雾流场测量研究,但针对煤油在超声速气流中的雾化流场测量研究方面,本文是公开文献首次给出该方法的运用和测量结果。与高速纹影等传统方法相比,PLIF可准确地反应煤油扩散边界及其表面波的三维非定常特性,给出的穿透深度等数据也更准确。基于纹影方法,美国在70~80年代给出的射流穿透深度拟合经验公式存在较大误差,不能作为煤油超燃发动机燃烧室设计的数据。可以预计,PLIF方法将成为有潜力的煤油超燃雾化场测量研究方法。
     (2)基于在线测量和实际燃烧室尺度等条件,本文给出了有、无凹槽的煤油雾化液滴直径分布,这也是公开文献首次给出的煤油在超声速气流中雾化的在线测量数据。利用PDPA,尽管LIN测量了水自直径2mm喷孔在超声速气流中喷射的液滴SMD分布,但其实验条件与超燃发动机工况相差较大。本文测量数据表明:由于气液相对速差大,因此,煤油在超声速气流中的雾化不是决定燃效率的主要因素,降低煤油点火和燃烧的化学延时是关键。凹槽等强化措施有助于增强煤油的扩散和混合,但对雾化后的液滴直径分布无明显贡献。
     (3)通过煤油扩散的PLIF图象和液滴直径测量数据,为煤油超燃冷态雾化现象提供了新的认识。特别是有关凹槽流动机理及其凹槽几何结构的影响,这些认识校正了过于基于压力测量和直觉想象得到的不正确判断,为研究煤油超燃现象和设计超燃发动机燃烧室提供了新的数据和思路。要说明的是:相关看法或结论还需要更多的实验图象和数据进行验证。
In this thesis, experimental and numerical studies were carried out on kerosene injection, mixing and atomization in a supersonic air-stream. The phenomenon is crutially important not only for understanding kerosene-fueled supersonic combustion but also related to spray strategy of a scramjet combustor. In such a topic, complex flow physics are involved among supersonic flow, shock waves, shear layer, turbulence, jet breakup and atomization, phase exchanges of mass, momentum and energy as well as optical diagnostic on spray and atomization. Theoretical consideration on jet breakup in high slip velocity flows and spray measurement on line are especially challenged due to scramjet development and academic interests. Although some experiments have been conducted on jet breakup and atomization in a supersonic air-stream since 1960's, no anticipated progresses have been achieved in jet breakup model and numerical methods. Thus, this thesis focus on experimental studies on liquid spray in a supersonic air-stream by planar laser induced fluorescence (PLIF) and laser scattering. The purpose is to obtain more high resolution images and droplet size distribution on line for deep understanding the kerosene spray in a supersonic flow. The experiments are summarized as follows:
     (1) A test rig based on supersonic wind tunnel was established for experimental studies on spray in a Mach 2.2 supersonic flow. The test section is almost identical to a single scramjet combustor to avoid the scale effects and satisfy requirements of online measurement. Also, some optic measurements and fuel supply ranged in variety of different injection pressure and orifice diameter are combined to this direct-connected facility.
     (2) Optical diagnostic including PLIF, Mie scattering and schlieren with high-speed photography were employed to experimentally study the kerosene atomization in a supersonic flow. The quantitative or semi-quantitative data are emphasized in the spray measurement. Different from schiliren images, PLIF ones with high temporal and spatial resolution can supply database on kerosene jet breakup and spreading. The unsteady and three dimensional surface waves appear on PLIF images of kerosene jet. Thus, jet penetration and spreading can be precisely measured from these images by kerosene fluorescence. Meanwhile, droplets' SMD (Sauter mean diameter) distribution was also got in these experiments. (3) By the afro-mentioned laser measurements, the flow features with and without kerosene injection were systemically studied when a cavity embedded in a duct with different geometry and aspect ratio to show whether it can enhance jet mixing in a supersonic flow. The main works are described as following
     (1) Chapter one presents problem description and related progress on this topic. The thesis is outlined and innovations are listed either.
     (2) Chapter two describes design and manufacture of this direct-connected test rig for kerosene atomization in a cold supersonic flow, including supplementary system, such as fuel supply and laser instrumentation. The results show that the flow in the test section is quite uniform, the disturbance waves are weak enough to satisfy the requirements of spray experiments.
     (3) Chapter three shows the results on kerosene injected into a supersonic flow in a duct. The photographs, schiliren and PLIF images demonstrate the jet atomization and spreading in a supersonic flow. The jet penetration, droplets' SMD distribution and spreading were obtained in the experiments. The data imply that jet-to-free stream dynamic pressure ratio is a dominant parameter in determining the jet penetration, breakup and atomization. High dynamic pressure ratio increases the penetration and accelerates the breakup and atomization of the jet column. But it induces strong shock wave and large loss of the total pressure. Three-dimensional unsteady surface waves locate on jet surface and the waves enhance the jet breakup. The surfaces wave emit from column initial curvature and wave altitudes increase while they march along jet downstream. When dynamic pressure ratio is low, the surface waves are suppressed and observed obviously after a certain length of the jet column.
     (4) Chapter four demonstrates the experiments conducted in a duct embedded a cavity with different geometry and aspect ratio. The experiments emphasize the flow characteristics and kerosene jet mixing to show the effects of different
     geometries of a closed cavity, such as angles of front and rear wall, leading slot and wavelike rear wall. Some conclusions are yielded as follows
     The open cavity (L/D=3) induces weak shock waves, low loss of the total pressure. Moreover, the cavity self-sustained oscillation can be neglected due to its low amplitude. The longitudinal and transverse vortex are strong inside the cavity and they enhance the kerosene mixing both inside and outside the cavity. The distributions of droplets' SMD in a duct with and without a cavity are almost identical but penetration height decreases slightly. The jet shock can be ignored relative to those induced by the cavity.
     In contrasted to the open cavity, the closed cavity (L/D=15) induces strong shock waves that lead to boundary layer separation on the opposite wall. Meanwhile, loss of total pressure is high and the self-sustained oscillation is observed obviously. Such flow oscillation can be suppressed by reducing the rear wall angle or employing wavelike rear wall. The front wall angle and leading slot have no significant effects on the shear layer and the induced shock near front wall. With kerosene injection, the jet shock can still be ignored relative to the cavity shock waves. At the same time, shear layer and free stream deflects upwards the rear wall and penetration height increases greatly. Shock wave upwards the rear wall and boundary layer separation on the opposite wall both disappear when the wavelike rear wall is employed. Furthermore, jet atomization is not difficult due to the high slip velocity, but the problem is how to weaken the cavity shock and enhance kerosene spreading in a supersonic flow. The cavity flow pattern depends on aspect ratio, the cavity geometry together with jet and incoming flow conditions.
     The distribution of droplets' SMD is not related to the duct with or without cavity in a supersonic flow. But a closed cavity enhances kerosene spreading and mixing much more than those of an open one.
     The innovations in thesis are as follows:
     (1) PLIF and fluorescence (phosphorescence) of kerosene excited by UV laser were employed to show jet spreading and mixing. These approaches have been a new way of studying kerosene atomization in supersonic combustion. PLIF has extensively applied in combustion diagnostics for measuring molar fraction of small radicals or temperature as well as spray detection on gasoline or diesel engine, but it is firstly used to study kerosene atomization of in a supersonic flow. In contrast to shadowgraph and schlieren, PLIF can detect jet mixing zone and surface waves accurately. Therefore, empirical formulas of penetration height of liquid jet based on schlieren images are not so precisely as to compare to PLIF ones. Therefore, updated database are suggested to build up by these fresh PLIF images. It is anticipated PLIF has great potential application in studying kerosene atomization in a supersonic airstream.
     (2) With or without a cavity, the distribution of droplets' SMD in a duct which is identical to a single scramjet combustor is presented in this thesis. Although LIN got data of droplets' SMD when water is injected into a supersonic flow from an orifice which diameter is 2mm, the flow filed is quite different from that of a scramjet combustor configuration. The results imply that kerosene atomization in a supersonic flow is not a dominant in determining combustion efficiency, but the key is to reduce time delay of ignition and combustion. Cavity contributes much more to kerosene spreading and mixing, but less to decreasing droplets' SMD.
     (3) Based on obtained PLIF images and droplet's SMD, physical understanding has been improved to know the phenomena of kerosene spreading and mixing in a supersonic airstream, especially on the flow patterns in a duct embedded a cavity with different geometry and aspect ratio. Some knowledge has been updated or revised which are from previous wall pressure measurement or intuition. The methods in this thesis provide a way to study the supersonic combustion of kerosene and development of a scramjet combustor.
引文
1.Daines R,Segal C.Combined Rocket and Airbreathing Propulsion Systems for Space-Launch Applications.Journal of Propulsion and Power,1998,14(5):605-612
    2.Ben-Yakar Adela,Hanson R.K.Cavity flame-holders for ignition and flame stabilization in scramjets:an overview.Journal of propulsion and power,2001,Vol.17(4):869-877
    3.Reichenbach,Horn.Investigation of injectant properties on jet penetration in a supersonic stream.AIAA Journal,1971,9(3):469-472,
    4.Edward,Kush and Schetz.Liquid jet injection into a supersonic flow.AIAA Journal,1973,11(9):1223-1224
    5.Prakash,Joshi and Schetz.Effect of injector shape on penetration and spread of liquid jets.- ~AIAA Journal,1975,13(9):1137-1138
    6.Schetz,Kush and Joshi.Wave phenomena in liquid jet breakup in a supersonic crossflow.AIAA Journal,1980,18(7):774-778
    7.Nejad and Schetz.Effects of Properties and location in the plume on droplet diameter for injection in a supersonic stream.AIAA Journal,1983,21(7):956-961
    8.Nejad and Schetz.Effects of viscosity and surface tension on a jet plume in supersonic crossflow.AIAA Journal,1984,22(4):458-459
    9.Fuller,Wu,Kirkendall and Nejad.Effects of injection angle on atomization of liquid jets in transverse airflow.AIAA Journal,2000,38(1):64-72
    10.徐胜利、Archer、Milton、岳朋涛.煤油在超声速气流中横向喷射的实现.中国科学(E辑),2000,30(2):179-186
    11.俞刚、张新宇、李建国.超声速气流中的煤油喷雾研究.流体力学实验与测量,2001,15(4):12-14
    12.俞刚、李建国、赵震、王冬.超声速模型燃烧室中气化煤油喷注研究.推进技术,2005,26(2):97-100
    13.Parrent G.B.,Thompson B.J.Opt Acta,1964,(11):183-193
    14.王德中、黄震、张连方.激光技术在燃油喷雾测试中应用的进展,激光技术,1995,19(1):26-33
    15.叶梓丰,刘白鸽,刘小廷,沈哲,邹建军,张青藩.旋转雾场粒子分布的全息测量,南 京航空航天大学学报,1996,28(3):364-370
    16.张蒙正,张泽平,李鳌,王玫.两股互击式喷嘴雾化性能实验研究,推进技术,2000,21(1):57-59
    17.何勇灵,郗大光,刘宁.一种用于研究柴油喷雾的高速多分幅激光全息摄影系统,农业工程学报,19(1):87-90
    18.Goix P.J.,Edwards C.F.,Cessou A,Dunsky C.M.,Stepowski D.Structure of a methanol air coaxial reacting spray near the stabilization region,combustion and flame,1994,98(3):205-219
    19.Boedec T,Simoens S.Instantaneous and simultaneous planar velocity field measurements of two phases for turbulent mixing of high pressure sprays,experiments in fluids,2001,31(5):506-518
    20.Becker J,Hassa C.Breakup and atomization of a kerosene jet in crossflow at elevated pressure,atomization and sprays,2002,12(1-3):49-67
    21.宗南,潘建平,杨基明,韩肇元.激波作用下液体喷射雾化的实验研究,实验力学,2000,15(2):132-136
    22.刘联胜,吴晋湘,傅茂林,王恩宇.气泡雾化喷嘴雾化特性实验,2001,燃烧科学与技术,7(1):63-66
    23.岳连捷,俞刚.气泡雾化喷嘴液雾特性,推进技术,2003,24(4):348-352
    24.熊姹,王治武,严传俊,邱华.脉冲爆震发动机头部雾化、掺混实验研究,西北工业大学学报,2005,23(6):742-745
    25.Wu P.K.,Kirkendall K.A.,Fuller R.P.and Nejad A.S.Spray structures of liquid jets atomized in subsonic erossflows,Journal of propulsion and power,1998,14(2):173-182
    26.Lin K.C.,Kirkendail K.A.,Kennedy P.J.and Jackson T.A.Spray structures of aerated-liquid jets in subsonic crossflows,AIAA Paper,2001,2001-0330
    27.Lin K.C.,Kennedy P.J.and Jackson T.A.Structures of aerated-liquid jets in high speed erossflows,2002,AIAA 2002-3178
    28.Lin,Kennedy and Jackson.Structures of water jets in a math 1.94 supersonic crossflow.2004,AIAA 2004-971
    29.诸惠民,汪来胜,王明瑞.燃油液雾的相移多普勒激光诊断试验,航空发动机,1995,第3期,45-52
    30.曾卓雄,姜培正,谢蔚明.喷嘴雾化粒径的实验研究,西安交通大学学报,2000,34(4):75-77
    31.乔信起,肖进.黄震,吕兴才,陈剑,张光德.含甲缩醛柴油喷雾和燃烧排放特性的试验研究,工程热物理学报,2005,26(1):174-176
    32.Wu Z.J.,Zhu Z.Y.and Huang Z.An experimental study on the spray structure of oxygenated fuel using laser-based visualization and particle image velocimetry,Fuel,2006,85(10-11):1458-1464
    33.Tomimatsu S.,Fujisawa N.and Hosokawa A.PIV measurement of velocity field in a spray combustor,Journal of visualization,2003,6(3):273-281
    34.Rottenkolber G,Gindele J,Raposo J,Dullenkopf K,Hentschel W,Wittig S,Spicher U and Merzkirch W.Spray analysis of a gasoline direct injector by means of two-phase PIV,experiments in fluids,2002,32(6):710-721
    35.汪剑鸣,杨延相,刘昌文,刘杰.在线式PIV系统应用于旋流射流的研究,天津大学学报,2001,34(5):674-677
    36.成晓北,黄荣华,余群,朱梅林.直喷式柴油机近斜壁撞击雾化燃烧系统研究,小型内燃机与摩托车,2002,31(6):1-6
    37.张大鹏,强永平,孙柏刚.高压共轨燃油喷雾PIV测试研究,柴油机,2006,28(2):30-32
    38.McMillin BK,Palmer JL,Hanson RK.Temporally resolved,2-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross-flow,Applied optics,1993,32(36):7532-7545
    39.Watson KA,Lyons KM,Donbar JM,Carter CD.Scalar and velocity field measurements in a lifted CH4-air diffusion flame.Combustion and Flame,1999,117(1-2):257-271
    40.Najm HN,Paul PH,Mueller CJ,Wyckoff PS.On the adequacy of certain experimental observables as measurements of flame burning rate,Combustion and flame,1998,113(3):312-332
    41.Bradley D,Sheppard CGW,Woolley R.,Greenhalgh DA,Lockett Rd.The development and structure of flame instabilities and cellularity at low Markstein numbers in explosions.Combustion and flame,2000,122(1-2):195-209
    42.Jeffrey M D,Mark R G,Thomas A J et al.OH planar laser-induced fluorescence imaging in a hydrocarbon-fueled scramjet combustion.Proceedings of the combustion Institute,2000,28:679-687
    43.Pintgen F,Shepherd J E.Direct observations of reaction zone structure in propagating detonations.Combustion and Flame,2003,133:211-229
    44.Austin J M.The role of instability in gaseous detonation(Ph D Thesis),California Institute of Technology:California USA,2003
    45.Clemens NT,Mungal MG.Large-scale structure and entrainment in the supersonic mixing layer,Journal of fluid mechanics,1995,284:171-216
    46.杨仕润,赵建荣,俞刚,张新宇.超音速燃烧室氢氧基平面激光诱导荧光测量.激光技术,2004,28(1):20-22
    47.李麦亮,周进,耿辉,翟振辰.平面激光诱导荧光技术在超声速燃烧中的应用.推进技术,2004,25(4):381-384
    48.耿辉,翟振辰,桑艳,林志勇,周进.利用OH-PLIF技术显示超卢速燃烧的火焰结构,国防科技大学学报,2006,28(2):1-6
    49.赵建荣,杨仕润,俞刚,张新宇.火焰结构的平面激光诱导荧光技术观测.分析测试学报,2003,22(2):16-18
    50.关小伟,刘晶儒,黄梅生,胡志云,张振荣,叶锡生.PLIF法定量测量甲烷-空气火焰二维温度场分布,强激光与粒子束,2005,17(2):173-176
    51.关小伟,刘晶儒.利用平面激光诱导荧光技术测量燃烧场内NO的浓度分布,强激光与粒子束,2003,15(7):629-631
    52.雷卫,苏万华.一种新的HCCI柴油机燃油喷雾特性的PLIF法测试装置。汽车工程,2004,26(4):405-408
    53.王昌建,徐胜利,费立森.胞格爆轰反应区结构的平面激光诱导荧光研究.力学学报,2007(待发表)
    54.Vinagradov V,Grachev V,Petrov M,et al.Experimental investigation of 2-D dual mode seramjet with hydrogen fuel at Math 4-6.AIAA 90-5269.
    55.Roudakov A,Sehikhmann Y,Semenov V,et al.Flight testing an axisymmetric scramjet-russian advances.IAF 93-S.4.485.
    56.Krishnamurty K.Acoustic radiation from two-dimensional cutout in aerodynamic surface.NACA TN 3487,1955.
    57.Rizzetta D P.Numerical simulation of supersonic flow over a three-dimensional cavity.AIAA Journal,1988,26(7):799-807
    58.Zhang X,Edwards J A.An investigation of supersonic oscillatory cavity flows driven by thick shear layers.Aeronautical Journal,1990,355-364
    59.Davis D L.Numerical analysis of two and three dimension recessed flame holders for scramjets applications.AFIT/DS/ENY/96-12,1996.
    60.Baurle R A,Gruber M R.A study of recessed cavity flowfield for supersonic combustion applications.AIAA 98-0938.
    61.Gruber M R,Baurle R A,Mathur T,et al.Fundamental studies of cavity-based flame-holder concepts for supersonic combustors.AIAA 99-2248.
    62.Kumar A,Bushnell D M,Hussaini M Y.Mixing augmentation technique for hypervelocity scramjet.Journal of Propulsion and Power,1989,5(5):514-522
    63.Sato N,Imamura R,Shiba S,et al.Advancing mixing control in supersonic airstream with a wall-mounted cavity.Journal of propulsion and power,1999,15(2):358-360
    64.Yu K H,Gutmark E,Smith R A,et al.Supersonic jet excitation using cavity-actuated forcing.AIAA 94-0185.
    65.Yu K H,Schadow K C.Role of large coherent structures in turbulent compressible mixing.Experimental Thermal and Fluid Science,1997,14(1):75-84
    66.Burnes R,Parr T P,Wilson K J,et al.Investigation of supersonic mixing control using cavities:Effect of fuel injection location.AIAA 2000-3618.
    67.Hsu K Y,Carter C,Crafton J,et al.Fuel distribution about a cavity flameholder in supersonic flow.AIAA 2000-3585.
    68.McClinton C,Roudakov A,Semenov V,et al.Comparative flow path analysis and design assessment of an axisymmetric hydrogen fueled scramjet flight test engine at a Mach number of 6.5.AIAA 96-4571.
    69.Owens M G,Tehranian S,Segal C.Flame-holding configurations for combustion in Mach 1.8airflow.Journal of Propulsion and Power,1998,14(4):456-461
    70.Yu K,Wilson K J,Schadow K C.Effect of flame-holding cavities on supersonic combustion performance.Journal of propulsion and power,2001,17(6):1287-1295.
    71.司徒明,王春,陆惠萍.双燃式冲压发动机中富油燃气射流的超燃研究.推进技术,22(3):237-240,2001.
    72.Yu G,Li G J,Chang X Y,et al.Investigation of kerosene combustion characteristic with pilot hydrogen in model supersonic combustors.Journal of Propulsion and Power,2001,17(6):1263-1272
    73.余勇,丁猛,刘卫东,梁剑寒,沈赤兵,周进,王振国.煤油超音速燃烧的试验研究,国防科技大学学报,2004,26(1):1-4
    74.高低速风洞气动与结构设计,国防工业出版社,2003年4月第一版
    75.范洁川等.近代流动显示技术,国防工业出版社,2002年1月第一版
    76.许金钩,王尊本.荧光分析法(第三版),科学出版社,2006,6-8
    77.Dyer M J,Crosley D R.Two-dimensional imaging of on laser induced fluorescence in a flame.Opt.lett.,1982,7(8):382-384
    78.Kychakoff G,Knapp K,Howe R D,Hanson R K.Flow visualization in combustion gases using nitric oxide fluorescence.AIAA Journal,1984,Vol.22(1):153-154
    79.McDanniel J C,Hiller B,Hanson R K.Simultaneous Multiple-point velocity measurements using laser induced iodine fluorescence.Opt.lett.,1983,8(1):51-53
    80.Hiller B,Cohen Lm,Hanson R K.simultaneous measurements of velocity and pressure fields in subsonic and supersonic flows through image-intensified detection of laser-induced fluorescence.AIAA 86-0161
    81.Hanson R K,Jerry M.Seitzman.Planar fluorescence imaging gases,Handbook of flow visualization.Hemisphere publishing corporation,1989,219-230
    82.Vleck H.Van,Weisskopf V F.On the shape of collision broadened lines.Rev.Mod.Phs.,1945,17(2,3):227-236
    83.McDaniel J C.Non-intrusive pressure measurements with laser-induced iodine fluorescence in combustion diagnostics by non-intrusive methods,Progress in astronautics and aeronautics,1984,92,107-131
    84.Mark Clinton Thurber,Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows,topical reports,1999
    85.余皎,赵昌普,苏万华.柴油喷雾撞壁混合过程的研究,内燃机学报,2003,21(3):193-200
    86.Schmidtl G,burkert A,Triebel W.A measurement system to investigate droplet size distribution in dense kerosene sprays,technisches messen,2003,70(1):20-24
    87.Yip B,Miller M.F.,Lozano A,Hanson R.K.A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,experiments in fluids,1994,17,330-336,
    88.Gauba G,Klavuhn K G,McDaniel J C et al.OH planar laser-induced fluorescence velocity measurements in a supersonic combustor,AIAA Journal,1997,35(4):678-686
    89.Lozano A,Yip B and Hanson R.K.Acetone:a tracer for concentration measurement in gaseous flows by planar laser-induced fluorescence,experiments in fluids,1992,13:369-376
    90.Mark Clinton Thurber.Aceton laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows(PHD thesis).Thermosciences division,Department of MechaniCal Engineering,Stanford University,1999
    91.栾和林,姚文,吴萌.煤油的化学组成与稀释性能之间的关系,湿法冶金,2002,21(3):131-135
    92.关亚风,赵景红,刘文民,王涵文.油品族组成的详细分析和燃油中芳烃的分析,色谱,2004,22(5):509-514
    93.花瑞香,阮春海,王京华,路鑫,刘军,肖珂,孔宏伟,许国旺.全二维气相色谱法用于不同石油馏分的族组成分布研究,化学学报,2002,60(12):2185-2191
    94.刘欧子,胡欲立,蔡元虎,刘敬华,凌文辉.超声速燃烧凹槽火焰稳定的研究动态.推进技术,2003,24(3):265-271
    95.Stallings R L Jr,Wilcox F J Jr.Experimental cavity pressure distributions at supersonic speeds.NASA TP-2683,1987
    96.Yang Wen-li.流动显示手册.中国空气动力研究与发展中心,1993
    97.任思根,徐永定等.实验空气动力学.宇航出版社,1996
    98.颜大椿.实验流体力学.高等教育出版社,1992
    99.张毅锋,陈坚强.二维凹槽超声速湍流流动数值模拟,空气动力学学报,2003,21(2):231-236
    100.孙明波,梁剑寒,王振国.二维凹腔超声速流动的混合RANS/LES模拟,推进技术,2006,27(2):119-123
    101.Krishnamurty K.Acoustic radiation from two-dimensional cutout in aerodynamic surface.NACA TN 3487,1955
    102.Donald P.Rizzetta.Numerical simulation of supersonic flow over a three-dimensional cavity.AIAA,1988,26(7):799-807
    103.Samo R.L and Franke M.E.Suppression of flow-induced pressure oscillation in cavities.Journal of aircraft,1994,31(1):90-96
    104.Rossiter J.E.and Kurn A.G.Wind tunnel measurements of the unsteady pressures in and behind a bomb bay.Ministry of aviation,Aeronautical research council,1962
    105.Baysal O,Stallings R.L.Computational and experimental investigation of cavity flowfield,AIAA Journal,1988,26(1):6-8
    106.Perng,S.W.and Dolling,D.S.Passive control of pressure oscillations in hypersonic cavity flow.AIAA-96-0444,1998
    107.Zhang X.,Rona A.and Edwards J.A.The effect of trailing edge geometry on cavity flow oscillation driven by a supersonic shear layer.Aeronautical Journal,1998,129-136
    108.Sarno R.L.and Franke M.E.Suppression of flow-induced pressure oscillation in cavities.Journal of aircraft,1994,31(1):90-96
    109.Vakili A.D.and Gauthier C.Control of cavity flow by upstream mass-injection.Journal of aircraft,1994,34(1):169-174
    110.Lamp A.M.and Chokani N.Computation of cavity flows with suppression using jet blowing.Journal of aircraft,1997,34(4):545-551
    111.黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值模拟(Ⅰ)数值校验及总体流场特征.推进技术,2004,25(6):484-490
    112.黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值模拟(Ⅱ)导流型凹槽对增强掺混和火焰稳定的影响初探.推进技术,2005,26(1):10-15
    113.黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值模拟(Ⅲ)煤油在超燃流场中的多步化学反应特征.推进技术,2005,26(2):101-105
    114.Reitz R.D.Mechanisms of atomization processes in high-pressure vaporizing sprays,atomization and spray technology,1987,3:309-337
    115.Reitz R.D.and Bracco F.V.Mechanism of atomization of a liquid jet,Phys.Fluids.,1982,25:1730-1742

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700