用户名: 密码: 验证码:
超磁致伸缩致动器的电—磁—热基础理论研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超磁致伸缩材料(Giant Magnetostrictive Material-简称GMM)是一种具有双向可逆能量转换特性的智能材料。基于超磁致伸缩材料的致动器(GiantMagnetostrictive Actuator-简称GMA)相比传统结构型致动器,具有高精度、高速度、高可靠等特点。在精密运动控制、主动减振、精密流体控制等技术领域具有广阔的应用前景。本文以基于超磁致伸缩材料的致动器为研究对象,对超磁致伸缩材料基本电磁参数耦合规律、等效电路模型以及超磁致伸缩致动器的高均匀驱动磁场设计方法和动态损耗理论进行了研究。研制了不同结构的致动器原理样机,搭建了综合实验平台。研制了超磁致伸缩流量控制阀门(GiantMagnetostrictive Valve-简称GMV)并进行了试验测试。研究成果对超磁致伸缩材料致动器的设计和应用具有普遍指导意义,研制的超磁致伸缩阀门微流量控制领域具有现实应用价值。
     以磁致伸缩材料的线性压磁方程为出发点,基于自由能极小原理和磁畴偏转理论,推导了简化的超磁致伸缩材料应力-应变线性关系数学方程,直观表达出材料的电磁参数与输入激励之间的耦合规律,并定性地进行了试验分析验证。建立了超磁致伸缩材料的集总参数等效电路模型闭合磁回路下GMA等效电路模型,直观的表达了材料工作过程中宏观位移输出与外电路激励参数之间的耦合规律。
     在分析总结超磁致伸缩材料致动器磁路结构特点的基础上,利用等效磁路法对不同磁路结构螺线管线圈的驱动磁场变化规律进行了研究分析,得到了螺线管几何尺寸和磁路结构对驱动磁场均匀性和驱动效率的影响制约关系。研究结果表明:闭合磁路结构下,驱动线圈与磁致伸缩材料棒轴向长度一致时,材料棒的轴向磁场分布均匀性最好。导磁块的接触面直径对材料棒端部径向磁场分布规律影响最大。采用分段电流驱动的方式可以有效的改善材料棒轴向磁场均匀性,但是实现起来较困难。结合超磁致伸缩材料致动器的等效电路模型,推导了致动器电感参数的解析表达式。考虑磁致伸缩材料工作过程中磁导率变化特性,利用有限元方法分析了GMA电感参数的变化规律。进一步建立完善了GMA高均匀性驱动磁场和稳定电磁参数的优化设计准则。
     针对超磁致伸缩致动器中的基础热问题展开研究。基于磁畴偏转理论建立完善了超磁致伸缩材料磁化曲线的数值计算方法。对超磁致伸缩材料动态励磁条件下的磁场建立过程和损耗进行了分析计算,明确了超磁致伸缩致动器动态励磁下的各种损耗分配规律并进行仿真计算和分析。在此基础上,研究总结了超磁致伸缩致动器中的热传递、热平衡以及温升特性规律。研究结果表明:超磁致伸缩致动器的驱动频率将影响材料中的磁能损耗,导致超磁致伸缩致动器内部温度分布规律发生改变。低频下,磁致伸缩材料棒的端部温度高于中间位置;而高频下,材料棒中间位置的温度高于端部温度。
     最后,研制了基于超磁致伸缩材料的致动器。设计了专用驱动电流源,构建了GMA综合测试平台。针对GMA静态、动态位移输出特性进行了试验测试分析。结果表明GMA的动态响应取决于驱动电流源的响应时间,由于动态磁滞和涡流效应的影响,随着驱动电流频率的增加,GMA输出位移略有降低。研制了两种采用不同形状GMM棒的超磁致伸缩阀门。测试结果表明在稳态流量相同的情况下,具有位移放大机构的GMV较传统电磁阀的响应时间提高了近15倍;内部冷却型GMV单次开关的流量仅为0.0099g/s,结合PWM控制技术,非常适合在高压、高速、高精度的流量控制系统中应用。
Giant magnetostrictive material (GMM) is a kind of smart materials withbidirectional reversible energy conversion characteristics. Compared to thetraditional actuators, actuators based on giant magnetostrictive material have manymerits, such as high precision, high speed, high reliability, etc. It has broadapplication prospects in precision motion control, active damping, precision fluidcontrol technology, et al. In this thesis, different types of GMA are put into forward,and the problems of stress-strain linear relationship model, the equivalent circuitmodel, highly uniform driven magnetic field design method and dynamic lossesnumerical method have been studied. Different kinds of GMA are developed and acomprehensive experimental platform is built. Two kinds of giant magnetostrictiveflow control valves (GMV) are developed and tested. The results have a universalsignificance for the design and application of GMA. And the development of GMVhas a practical application value.
     Based on free energy minimization principle and the magnetic domaindeflection theory, this thesis derived a simplified giant magnetostrictive materialstress-strain linear mathematical model from the micro actuating mechanism ofGMM. The lumped equivalent circuit model and distributed parameter equivalentcircuit model of GMM are established. Considering the eddy hysteresis loss and theinfluence of high magnetic permeability material to the external magnetic circuit,the equivalent circuit model of the GMM under closed magnetic loop is analyzedand established. It can express the coupled rules between the macro displacementoutput and the excitation parameters during the GMM’s work process, intuitively.
     Based on the analysis of the magnetic circuit structure feature for GMA, thevariation of the magnetic field with different driving solenoid magnetic structuresare studied, using the equivalent circuit method. The influences of the geometry ofsolenoid and the magnetic structure on the driving magnetic field homogeneity anddrive efficiency are derived. The results show that: with a closed magnetic circuitstructure, the GMM rod has the highest axial uniformity magnetic field when thedrive coil has the same axial length of the GMM rod. The diameter of the magneticblocks is most impact of the radial magnetic field distribution at the ends of GMMrod. Using segmented current-driven approach can effectively improve theuniformity of axial magnetic field in GMM rod, but more difficult to be realized.The analytical expression of the GMA’s inductance parameters is derived. Thevariation of the GMA’s inductor parameters is studied using the finite elementmethod, considering the changes with permeability characteristics of GMM. And then, the optimized design guidelines for GMA are established.
     A further research is carried on the thermal problem of GMA. Based onmagnetic domain deflection theory, the magnetization curve numerical method ofGMM is derived. The establishing process of the magnetic field and the loss ofGMA is analyzed and calculated. And the loss and heat under dynamic excitationare analyzed by simulation. Then the heat transfer, heat balance and temperaturecharacteristics of GMA are summarized. The results showed that: the drivefrequency of GMM will affect the magnetic energy loss, changing the distributionin GMA temperature. Under low frequency, the temperature in the end portion ofGMM rod is higher than that in the middle. Corresponding to the high frequencysituation, the temperature of the middle part in GMM rod is higher.
     Finally, the actuator based on the giant magnetostrictive material isdeveloped.A special current source is designed and the integrated test platform forGMA is constructed. The static and dynamic displacement output characteristics ofGMA are tested and analyzed.The results show that, dynamic response of GMAdepends on the response time of driving current source. Due to the dynamichysteresis and eddy current effects, the output position of GMA is slightly lower asthe drive current frequency increases.Two kinds of GMV with different shape ofGMM rod are designed.Test results show that, under the same steady flow rate state,the response time of the GMV with a displacement amplification mechanism isnearly15-times less than the conventional solenoid valve.The flow rate of singleswitch period of the GMV with internal cooling structure is only0.0099g/s.Combined with PWM control technology, it is suitable for high-pressure,high-speed, high-precision flow control system applications.
引文
[1]孙宝元.现代执行器技术[M].长春:吉林大学出版社,2003:1-13.
    [2]杨华勇.机械工程学科发展战略报告(2011-2020)[M].北京:科学出版社,2010:48-74.
    [3]张德林,杨凯,贺晋华,辜承林.基于电-磁(热)-力转换功能材料的新型执行器研究与应用[J].微电机,2007,40(10):72-76.
    [4]王莉.我国液体火箭发动机的发展及其标准体系探讨[J].航天标准化,2006,(3):23~25.
    [5]温邦彦,孙丽丽.中国电磁阀技术的新发展[J].通用机械,2004,(10):72~75.
    [6] R.C.奥汉德利.现代磁性材料原理和应用[M].北京:化学工业出版社.2004:256~258.
    [7]王博文.磁致伸缩材料与器件[M].北京:冶金工业出版社,2008:23-82.
    [8]杨凯,辜承林.21世纪新型功能材料-形状记忆合金[J].金属功能材料,2004,11(6):35-39.
    [9] Haluk Karaca, Ibrahim Karaman, Burak Basaran, Yang Ren, etl. MagneticField-Induced Phase Transformation in NiMnCoIn Magnetic Shape-MemoryAlloys-A New Actuation Mechanism with Large Work Output[J]. AdvancedFunctional Materials,2009,19(7):983-998.
    [10]杨耀华,刘庆民,纪华伟.磁控形状记忆合金微位移执行器的研究与应用[J].机电工程,2010,27(5):13-17.
    [11]邬义杰.超磁致伸缩材料发展及其应用现状研究[J].机电工程,2004,21(4):55-59.
    [12]唐鸿洋,张洪平,张羊换,张胤.超磁致伸缩合金TbDyFe组织与性能研究现状[J].金属功能材料,2013,20(4):45-51.
    [13]胡权霞,于敦波,杨红川,李扩社. Fe-Ga磁致伸缩材料研究进展[J].稀有金属,2013,37(1):164-170.
    [14]窦青青. SmNdFe负超磁致伸缩材料研究[D].杭州:浙江大学,2012:21-36.
    [15]袁惠群,孙华刚,周卓.超磁致伸缩材料的制备技术研究进展[J].材料与冶金材料,2003,2(2):115-119.
    [16]刘敬华,张天丽,王敬民,蒋成保.巨磁致伸缩材料及应用研究进展[J].中国材料进展,2012,31(4):1-12.
    [17]唐志峰.超磁致伸缩执行器的基础理论与实验研究[D].杭州:浙江大学,2005:17-18.
    [18]方紫剑,王传礼.超磁致伸缩材料的应用现状[J].煤矿机械,2006,27(5):725-727.
    [19]蒋成保,宫声凯,徐惠彬.超磁致伸缩材料及其在航空航天工业中的应用[J].航空学报,2000,21:35-38.
    [20] S. Karunanidhi, M. Singaperumal. Design, analysis and simulation ofmagnetostrictive actuator and its application to high dynamic servo valve[J].Sensors and Actuators A,2010,(157):185-197.
    [21] F. Claeyssen, N. Lhermet. Actuators based on giant magnetostrictivematerials[C].8th International Conference on New Actuators, Bremen,Germany,2002:158-153.
    [22]贺西平.稀土超磁致伸缩换能器[M],北京:科学出版社,2006.
    [23]莫喜平.让声纳系统耳目一新:新型水声换能器与换能器新技术[J].物理,2006,35(5):414-419.
    [24]贾振元,杨兴,武丹.超磁致伸缩执行器及其在流体控制元件中的应用[J].机床与液压,2000,(2):3-4.
    [25]宣振兴,邬义杰,王慧忠,张雷.超磁致伸缩材料发展动态与工程应用研究现状[J].轻工机械,2011,29(1):116-119.
    [26] Engdahl Svensson. Simulation of the magnetostrictive performance ofterfenol-D in mechanical devices[J].Journal of Applied Physics,1988,63(8):3924-3926.
    [27] Tiberg H, Berggvist A,Kvarnsjo L, Engdahl G.A method of computingelectro-mechanical transfer function for magnetostrictive functionalunits[J].IEEE Transactions on Magnetic,1992(28):2808-2818.
    [28] Tiberg H, Berggvist A, Engdahl G.Evaluation of a magnetostrictive driveelement model[J]. Journal of Applied Physics.1993,73:5851-5854.
    [29] Kvarnsjo L, Engdahl G. Nonlinear2-D transient modeling of Terfenol-DRods[J].IEEE Transactions on Magnetic,1999,27(6):5349-5351.
    [30] Delince F, Genon A, Gillard J M, et a1. Numerical computation of theMagnetostrictive effect in ferromagnetic materials[J]. Journal of AppliedPhysics.1991,69:5794-5710.
    [31] Benatar J G, Flatau A B. FEM implementation of a magnetostrictivetransducer[J]. Smart Structures and Materials,2005,5764:482-493.
    [32] Karim Azoum, Mondher Besbes.3D FEM of magnetostriction phenomenausing coupled constitutive laws[J]. International Journal of AppliedElectromagnetics and Mechanics,2004(19):367-371.
    [33]贺西平,孙进才,李斌.低频大功率稀土磁致伸缩弯张换能器的有限元设计理论及实验研究:理论部分[J].声学学报,2000,25(6):521-527.
    [34] Carman G P, Mitrovic M. Nonlinear constitutive relations for magnetostrictivematerials with applications to l-D problems[J].Journal of Intelligent MaterialSystems and Structures,1995,6(5):673-683.
    [35] Roberts M, Mitrovic, Carman. Nonlinear behavior of coupled magnetostrictivematerial systems analytical experimental[J]. Smart Materials,1995,(24):341-355.
    [36] Carman G P, M. Mitrovic. Nonlinear behavior of magnetostrictivematerials[C]. Engineering Mechanics,Proceedings of the10th Conference ofthe ASCE, Boulder,1995:714-718.
    [37] Carman G. P, Mitrovic M. Nonlinear constitutive relations for magnetostrictivematerials[C].Proceedings of the2th International Conference on IntelligentMaterials,1994:265-278.
    [38] Benbouzid MEH,Reyne G and Meunier G. Variational formulation fornonlinear FE modeling of terfenol-D rods using surface splines for material indata[J].Magnetoelastic Effects and Applications,1993:185-191.
    [39] Hom C, Shankar. A Finite element method for electrostrictive ceramicdevices[J]. International Journal for Solids and Structures,1995(12):1757-1779.
    [40] Dapino M J, Smith R, Faidley L E. A coupled structural magnetic strain andstress model for magnetostrictive transducers[J]. Jouranl of IntelligentMaterial Systems and Structures,2000(2):135-152.
    [41] M. Dapino, R. Smith, A.Flatau. Structural magnetic strain model formagnetostrictive transducers[J]. IEEE Transactions on Magnetics,2000,36(3):545-556.
    [42] Kannan K S. Galerkin finite element scheme for magnetostrictive structuresand composites[D].Department of Mechanical Engineering, University ofMaryland,1997.
    [43] Aparicio J, Sosa H. A continuum three dimensional, fully coupled,dynamic, nonlinear finite element formulation for magnetostrictivematerials[J]. Smart Materials and Structures,2004,13:493-502.
    [44] M Kaltenbacher, S Schneider, R Simkovics. Nonlinear finite element analysisof magnetostrictive transducers[C]. Proceedings of SPIE8th AnnualInternational Symposium on Smart Structures and Materials,2000,43(26):160-168.
    [45] Jaehwan Kim, Eunmi Jung. Finite element analysis for acoustic characteristicsof a magnetostrictive transducer[J]. Smart Materials and Structures,2005(14):1273-1280.
    [46]树学锋,于文芳,李志刚.采用磁致伸缩模型进行磁弹性有限元分析的基本理论[J].太原理工大学学报,2004,35(1):6-8.
    [47]陈海燕,杨庆新,刘素贞等.超磁致伸缩薄膜磁-机械特性的弱耦合与强耦合模型的比较研究[J].河北工业大学学报,2004,33(4):70-75.
    [48]王福吉,贾振元,刘巍等.超磁致伸缩薄膜磁致伸缩耦合机理的有限元分析[J].中国机械工程,2005,16(18):1654-1657.
    [49]曹志彤,蔡炯炯,陈宏平等.超磁致微致动器能量耦合转换有限元分析[J].浙江大学学报(工学版),2005,39(7):939-942.
    [50]闫荣格,王博文,曹淑瑛等.巨磁致伸缩材料的磁致伸缩模型与计算[J].河北工业大学学报,2002,31(4):30-32.
    [51]杨庆新,阎荣,徐桂芝.超磋致伸缩器件的数值计算模型[J].电工技术学报,1999,14(4):17-20.
    [52]黄文美,王博文,闫荣格,曹淑瑛.超磁致伸缩换能器有限元动态模型的研究[J].河北工业大学学报,2004,33(5):1-4.
    [53]孟爱华,项占琴,吕福在.微型超磁致伸缩高速阀致动器的优化设计[J].浙江大学学报(工学版),2006(02):216-220.
    [54]李明范,项占琴,吕福在.超磁致伸缩换能器磁路设计及优化[J].浙江大学学报(工学版),2006(02):192-196.
    [55] Jie Bi. A study of Magnetostrictive mini actuators[D].Maryland,USA:1997.
    [56] Fan, X. Experimental Study on Giant Magnetostrictive Transducer [J].Transactions of China Electrotechnical Society,1999.
    [57]王宏,张登友,杨百炼,刘晓珍.反应堆用磁致伸缩材料设计.功能材料,2007(05):694-699.
    [58]任绍俊,程宜杰.噪声信号源超磁致伸缩换能器设计方法研究.海洋技术,2007(01):64-68.
    [59]彭剑,张天丽,蒋成保.巨磁致伸缩材料作动器及其谐振频率研究.航空学报,2007(02):470-475.
    [60] Frank C, Nicolas L, Ronan L. Design and Construction of a ResonantMagnetostrictive Motor[J]. IEEE Transactions on Magnetics,1996,32(5):4749-4751.
    [61] Won J, James G, Michael J, Jerome E, John R. Extended-Range LinearMagnetostrictive Motor With Double-Sided Three-Phase Stators[J]. IEEETransactions on Industry Applications,2002,38(3):651-659.
    [62] Mohamed E, Rachid B, Gilbert R, Gerard M. Finite Element Modeling ofTerfenol-D Magneto-Mechanical Coupling:Application to a DirectMicro-Stepping Rotary Motor[C]. IEEE International Electric Machines andDrives Conference Record,1997:261-263.
    [63] T. Ueno, C. Keat, T. Higuchi. Linear Step Motor Based on Magnetic ForceControl Using Composite of Magnetostrictive and Piezoelectric Materials.IEEE Transactions on Magnetics,2007,43(1):11-14.
    [64] J. Vranish, D. Naik, J. Restorff, J. Teter. Magnetistrictive Direct Drive RotaryMotor Development[J]. IEEE Transactions on Magnetics,1991,27(6):5355-5357.
    [65]万红,李再轲,邱轶,斯永敏. TbDyFe超磁致伸缩薄膜的低场磁敏特性[J].中国有色金属学报,2004,14(1):37-41.
    [66]王福吉,刘巍,贾振元,刘慧芳,赵显嵩.超磁致伸缩薄膜悬臂梁静力学分析[J].大连理工大学学报,2011,51(3):346-350.
    [67]邬义杰,刘楚辉.超磁致伸缩驱动器设计准则的建立[J].工程设计学报,2004,11(4):187-191.
    [68]常红然.超磁致伸缩直线电机的结构设计及特性分析[D].河北工业大学硕士论文,2012:4-7.
    [69] H. Park, H. Choi. Development of Inverse Magnetostrictive Actuator. IEEETransactions on Magnetics,2008,44(11):4309-4312.
    [70]谢鹏程等.超磁致伸缩材料微位移驱动器的设计与实验研究[J].宇航学报,2008(3):1031-1035.
    [71]赵海涛,何忠波,李中伟.超磁致伸缩驱动器磁路优化设计[J].兵器材料科学与工程,2008(05):72-75.
    [72] Guan, X.C., P. Guo, J.P. Ou, Uniformity design of magnetic field ofmagnetostrictive actuators generated by permanent magnet bias[C].Proceedings of SPIE International Society for Optical Engineering.2007:Harbin.
    [73]刘楚辉.基于超磁致伸缩材料的微位移致动器设计与研究[D].杭州:浙江大学,2004.
    [74]黄赞.超磁致伸缩驱动器器件研制关键问题研究[D].西安:西北工业大学,2005.
    [75]李恒菊.磁致伸缩材料在微动工作台中的应用[D].武汉:武汉理工大学,2005.
    [76]李明范,项占琴,吕福在.超磁致伸缩换能器磁路设计及优化[J].浙江大学学报(工学版),2006,40(2):192-196.
    [77]孟爱华,项占琴,吕福在. GMM换能器的设计优化[J].传感技术学报,2005,18(4):771-776.
    [78]杨斌堂,陶华, BONISM等. Terfenol-D磁致伸缩微小驱动器磁路设计[J].机械科学与技术,2005,24(3):293-295.
    [79]邬义杰,刘楚辉.超磁致伸缩驱动器设计方法的研究[J].浙江大学学报(工学版),2004,38(6):747-750.
    [80] Jie Bi.A study ofmagnetostrictive mini-acutators[D]. Maryland, USA:1997.
    [81] B. Philippe, U. Kenji. Combined Finite Element Analysis-Genetic AlgorithmMethod for the Design of Ultrasonic Motors[J]. Journal of IntelligentMaterial Systems and Structures,2003(14):657-667.
    [82] Xiaojing Zheng, Le Sun. A one-dimension coupled hysteresis model for giantmagnetostrictive materials[J]. Journal of Magnetism and Magnetic Materials,2007,309:263-271.
    [83] K. Prajapati, A. Jenner, R. Greenough. Magnetoelastic behavior of aluminumsubstituted Terfenol-D at elevated temperatures[J].IEEE Transactions onMagnetics,1995,3l(6):3976-3978.
    [84]贾振元,杨兴,郭东明,侯璐景.超磁致伸缩材料微位移执行器的设计理论及方法[J].机械工程学报,2001,37(11):46-49.
    [85]卢全国,陈定方,钟毓宁,陈敏.超磁致伸缩致动器热变形影响及温控研究[J].中国机械工程,2007,18(1):16-19.
    [86]严自力,王宏升.相变温控材料[J].中国个体防护装备,2001,(1):23-24.
    [87] S. Krishnan,S. Garimella, S. Kang. A novel hybrid heat sink using phasechange materials for transient thermal management of electronics[J].IEEETransactions on Components and Packaging Technologies,2005,28(2):281-289.
    [88] C. Mall, E. Glakpe, J. Cannon, T. Kerslake. Parametric analysis of cyclicphase change and energy storage in solar heat receivers[C]. Proceedings of the32nd Energy Conversion Engineering Conference,1997:446-453.
    [89] R. Elwell, R. Garman, M. Doyle.Thermal management techniques for anadvanced linear motor in an electric aircraft recovery system[J]. IEEETransactions on Magnetics,2001,37(1):476-479.
    [90]苏亚欣,何传俊.空间站太阳能热动力发电系统吸热器研究[J].能源工程,2003,(4):14-18.
    [91]梁久来,何玉贤.温控储热相变材料及在医药工业中的应用[J].长春中医学院学报,1996,12(58):62.
    [92]宫惠峰.相变贮能材料的研究进展[J].邢台职业技术学院学报,2006,23(1):33-35.
    [93]孙永人.相变温控实验及在航天器上应用[J].国外导弹与航天运载器,1991,(8):62-66.
    [94]钟学明,肖金辉,姜亚龙,李才生.相变贮热材料及其在太空中的应用[J].江西科学,2004,22(5):l35-158.
    [95]邬义杰,徐杰.超磁致伸缩执行器热误差补偿及抑制方法研究[J].工程设计学报,2005,12(4):213-218.
    [96] R. E. Simons, R.C. Chu. Application of thermoelectric cooling to electronicequipment:a review and analysis[C].16th IEEE Semi-Thermal Symposium,2000:1-9.
    [97]徐君.超磁致伸缩执行器热误差补偿方法研究及测控平台建立[D].杭州:浙江大学,2007.
    [98]丁凡,姚健娣,笪靖,崔剑,张策.高速开关阀的研究现状[J].中国工程机械学报,2011,9(3):351-358.
    [99]李跃松,朱玉川等.超磁致伸缩执行器驱动的射流伺服阀参数优化.航空学报,2011,32(7):1336-1344.
    [100]Y.H Ma, J.Q Mao. Modeling and Control for Giant Magnetostrictive Actuatorswith Stress-Dependent Hysteresis[C].2008IEEE International conference onAutomation and Logistics,2008:1083-1088.
    [101]Lei W, Tan J.B. and Shan Z. The High Resolution Actuator based on the GiantMagnetostriction [C]. SPIE-Optical Engineering.2008:1552-1552.
    [102]R. Corcolle, L. Daniel, F. Bouillault. Optimal design of magnetostrictivecomposites: An analytical approach[J]. IEEE Transactions on Magnetics,2008,44(1):17-23.
    [103]邬义杰,刘楚辉.超磁致伸缩驱动器设计准则的建立[J].工程设计学报,2004,11(4):187-191.
    [104]王晓明,梁殿印.厚壁圆环线圈磁系磁场特性及分选原理的研究[J].矿冶,2007,16(1):67-72.
    [105]雷银照.轴对称线圈磁场计算[D].北京:中国计量出版社,1991.
    [106]张贵银.磁场强度H与磁介质无关的充要条件及其应用[J].物理与工程,2007,17(2):39-42.
    [107]王新华,肖峰,王思民,马永超.超磁致伸缩驱动器驱动磁场仿真分析[J].现代制造工程,2009,2:11-14.
    [108]J. Restorff, M. Fogle, A.Clark. Temperature and stress dependences of themagnetostriction in ternary and quanternary terfenol alloys[J]. Journal ofApplied Physics,2000,87(9):5786-5788.
    [109]WM Huang, BW Wang, Y Sun, etc. Investigation on Dynamic Properties ofTerfenol-D Actuators[J]. Proceedings of SPIE,2007.
    [110]邬义杰,徐杰.超磁致伸缩执行器热误差补偿及抑制方法研究[J].工程设计学报,2005,12(4):213-218.
    [111]卢全国,陈定方,钟毓宁等.超磁致伸缩致动器热变形影响及温控研究[J].中国机械工程,2007,18(1):13-19.
    [112]E. Stoner, E.Wohlfarth. A Mechanism of Magnetic Hysteresis in HeterogenousAlloys[J]. IEEE Transactions on Magnetics,1991,27(4):3475-3518.
    [113]李立毅,严柏平,张成明,曹继伟. Tb0.3Dy0.7Fe2合金磁畴偏转研究[J].物理学报,2012,61(16):167506.
    [114]Wu Mei, T. Okane, T. Umeda. Magnetostriction of Tb-Dy-Fe crystals[J].Journal of Applied Physics.1998,84(11):6208-6216.
    [115]李立毅,严柏平,张成明.驱动频率对GMA损耗和温升特性的影响[J].电机工程学报,2009,31(18):124-129.
    [116]G. Engdahl. Handbook of Giant Magnetostrictive Materials[M]. SanDiego:Academic Press,2000:127-147.
    [117]R. Smith, S. Seelecke, M. Dapino, et al. A Unified Framework for ModelingHysteresis in Ferroic Materials[J]. Journal of the Mechanics and Physics ofSolids,2006,54:46-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700