用户名: 密码: 验证码:
农田排水沟渠对氮磷的去除效应及管理措施
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化肥、农药大量施用引起的农业面源污染是目前农业生产过程中关注的热点。农田排水沟渠具有线性湿地的特性,在截留净化农业面源污染物过程中发挥着重要作用。农田排水沟渠不仅能够调节农田生态系统水分和改变区域水文情势,还可通过排水沟渠内底泥/土壤吸附、植物拦截与吸收、微生物降解等作用截留净化农田排水中的污染物。本文以三江平原为例,通过野外试验和小区模拟试验,研究了氮磷在排水沟渠水体、底泥以及植物中的迁移转化特征,揭示了植草沟渠对氮磷的截留,探讨了影响排水沟渠截留能力的主要因素,构建了基于面源污染截留的三江平原生态沟渠设计方案。通过研究得出以下主要结论:
     (1)充分利用农田排水沟渠蓄积农田排水,既可以提高地下水的利用率,还可以增加对地下水的补给,减少灌溉对地下水的抽取量。
     (2)水田施肥、人工排水、暴雨径流、侧渗均可导致排水沟渠水质的突变。三江平原水田集中区排水沟渠水质长期处于V类水,其中铵态氮(NH_4-N)浓度为0.21-6.91mg/L,硝态氮(NO_3-N)浓度为1-4mg/L,磷酸盐磷(PO_4-P)浓度为0.04-0.45mg/L。目前三江平原水稻生产过程中的排水,尤其是生长阶段的排水中的营养物质对下游受纳水体具有潜在的影响,有必要对三江平原农田排水水质加以调控。
     (3)排水沟渠截留净化面源污染物氮磷的主要途径是通过沟渠底泥和土壤吸附、植物吸收利用以及微生物代谢。在现有农田排水管理条件下,三江平原农田排水沟渠对农田退水中氮磷具有截留净化能力。
     (4)对排水沟渠水流速、干湿变化、水位、污染物浓度等对排水沟渠截留能力的研究结果表明,低流速延长了水力停留时间,有利于沟壁土壤和沟底底泥对流水中NH_4-N和PO_4-P的吸附截留,有利于沟底植物幼苗的保育,同时减缓对沟壁冲刷;沟渠短期(约8天)干涸再淹水,有利于沟渠底泥对氮的去除,表明排水沟渠因降雨径流出现的干湿交替过程有利于沟渠底泥对水中氮的去除。排水沟渠高水位可减少沟渠植物生物量、降低孔隙水中营养物质浓度、加速沟壁滑塌,使排水沟渠出现水质分层,但高水位对底泥中TN、TP和Corg的影响较小。水田排水中N、P浓度较低时,排水沟渠对NH_4-N和PO_4-P的去除率在70%以上;水田排水中N、P浓度较高时,排水沟渠对污染物的去除率降低,但去除速率加快。沟渠上覆水中氮磷浓度影响底泥孔隙水中的氮磷浓度。植物在不同生长阶段截留净化排水沟渠上覆水中氮磷的能力不同,但对孔隙水中氮磷浓度的影响不大。
     (5)在充分利用沟壁土壤颗粒吸附能力的前提下,为防止过高水位诱发沟壁滑塌,建议排水沟渠中水位不易高于沟渠深度的2/3;在不影响农田正常排水条件下,利用闸阀调控排水沟渠流速与水位,有利于对排水沟渠水中污染物的去除。
     (6)沟渠建基质坝、植芦苇(Phragmites communis)可增加对水中NH_4-N、NO_3-N、PO_4-P的截留。与对照沟渠相比,植草沟渠对NH_4-N、NO_3-N、PO_4-P的去除率提高7%~10%。植草沟渠中构筑的基质坝可延长水力停留时间,也能吸附水中的氮磷,其中基质坝基质平均截留氮、磷0.40g/kg、0.23g/kg。沟壁、沟底植物分别可吸收氮139.3kg/hm~2、123.3kg/hm~2,可吸收磷29.4kg/hm~2、25.7kg/hm~2。植物生长期末,芦苇、稗草(Echinochloa crusgalli)径叶中的营养物质会向根部转移,为了防止植株吸收的营养物质分解时再释放到沟渠系统,建议适时收割沟渠植物。
     (7)沟渠底泥中总有机碳(Corg)和TN表现出明显的分层现象,0~10cm土层含量高于10~20cm土层;在整个生长季,沟渠底泥中Corg和TN含量较稳定,而底泥中TP含量有所减少,说明排水沟渠过水或积水对底泥中Corg和TN影响不大,但促进了底泥中磷的释放。因此,沟渠适时清淤能减小沟渠底泥内源磷的释放,建议的清淤频次为每3-5年一次。
     (8)在现有耕作模式和农田排水管理条件下,推广应用生态沟渠,既能削减面源污染物的浓度峰值,又能增加对水田面源污染物的阻断作用,减少面源污染物的输出负荷;同时,生态沟渠作为一种生态廊道,也有利于区域生物多样性的恢复与保育。
Agricultural nonpoint source pollution caused by massive use ofchemical fertilizers and pesticides in the process of agriculturalproduction has attracted much interest and concern presently. The linearwetland characteristic of agricultural drainage ditches makes it importantin mitigation and interception of agricultural nonpoint source pollutants.Agricultural drainage ditches function as not only the moisture adjuster offarmland ecosystems, but also hydrological regime changer in the area.Meanwhile, drainage ditches intercept and purify pollutants in ditch watervia sediment and soil adsorption, plant uptake, microbial activities etc.The Sanjiang Plain was chosen as the study area. The plot experimentcombined with the field monitoring experiment were employed, theregular monitoring methods was used in this study. The migration andtransformation mechanism of nitrogen and phosphorus in water,sediments and plants within natural drainage ditches in Sanjiang Plainwas studies; the mitigation capacities of planted drainage ditches andinfluencing factors were revealed; the influence of water environment byagricultural drainage was forecasted; ecological drainage ditches whichwere fit for farmland managements of Sangjiang Plain were designed.The main conclusions were shown as follows:
     (1) Intercepting and accumulating drainage water in drainage ditchesis in favour of increasing the utilization rate of groundwater andgroundwater recharge, and reducing the extraction of groundwater in theSanjiang Plain.
     (2) Farmland fertilization, artificial drainage, and storm runoff canlead to mutation of water quality in drainage ditches. At present, waterquality of drainage ditches in paddy fields of Sanjiang Plain belongs tocategory V of surface water during the long-term period:ammonia-nitrogen (NH_4-N), nitrate-nitrogen (NO_3-N) andphosphate-phosphorus (PO_4-P) concentrations are0.21-6.91mg/L,1-4mg/L, and0.04-0.45mg/L, respectively. The results show thatnutrients which drainage water carries in the process of agriculturalproduction, especially in crop growth periods, have the potential pollutionrisk for downstream receiving waters. Hence, it is necessary regulate andcontrol of farmland drainage in Sanjiang Plain.
     (3) Drainage ditches for the mitigation of non-point-source nitrogenand phosphorus pollutants is mainly by ditch sediment/soil adsorption,plant uptake, and microbial metabolism. Under the existing agriculturalditch management condition, drainage ditches have ability to interceptand purify nitrogen and phosphorus in water.
     (4) Low flow rate can extend the hydraulic retention time, enhancethe adsorbing NH_4-N and PO_4-P capacity of ditch sediments and soil,increase the survival rate of plant seedlings, and weaken the ditchsidewall scour as well as decreasing water and soil loss. It was useful todry ditch sediments for the short-term drying (8days) and rewetting forthe N removal, which indirectly shows that drying and wetting changescuasing by rainfall runoff is helpful to remove N from ditch water inSanjing Plain. Water level also affects the nutrient removal of drainageditches. High water level decrease the biomass of ditch plants and thenutrient concentrations in pore water, accelerate the landslide of ditchsidewall soil, and lead to the stratification of water quality, however,water level has little influence on variation of TN, TP and Corg contents of ditch sediments. Meanwhile, initial influent concentrations may affectthe N and P removal. Under low initial influent concentrations, theremoval efficiencies of NH_4-N, NO_3-N and PO_4-P were enhanced, andwere about70%, however, their removal rates were increased under highinitial influent concentrations; and N and P concentrations of overlyingwater affect the concentrations of pore water. Besides, the nitrogen andphosphorus removal capacities of drainage ditches were different atdifferent growth stages of plants, and nitrogen and phosphorusconcentrations in pore water were similar at different growth stages ofplants.
     (5) For avoiding massive landslides of ditch sidewall soil andmaking full use of the adsorption capacity of ditch soil, it is suggestedthat the water level of drainage ditches is no higher than2/3of ditchdepth, and inlet flow velocity of drainage ditches is adjusted by sluicevalves without effect on normal farmland drainage. Without affectingnormal agricultural drainage, it is in favour of pollutant removal to adjustthe flow velocity and water level by sluice valves.
     (6) Laying matrix dams and planting Phragmites communis canefficiently enhance the removal capacities of NH_4-N, NO_3-N and PO_4-Pin ditch water. Compared with the natural ditch, the removal efficienciesof planted ditches were increased about7-10%. Matrix dams in theplanted ditch can extend the hydraulic retention time, and the matrix ofmatrix dams can adsorb nitrogen (N) and phosphorus (P) from water. Theadsorbing amounts of N and P by the matrix were30.26g and17.81grespectively in the planted ditch. The absorbing amounts of N by plants inditch sidewalls and bottom were139.3kg/hm~2and123.3kg/hm~2,respectively, and the absorbing amounts of P were29.4kg/hm~2and25.7kg/hm~2, respectively. Because nutrients of Phragmites communis and Echinochloa crusgalli can migrate from aboveground part to roots at theend of plant growth, ditch plants should be harvested at the first andmiddle decade of September for preventing N and P of the plantsreleasing into ditch systems due to plant decomposition in order toprevent plant nutrients releasing to ditch systems.
     (7) There were obvious stratifications of total organic carbon (Corg)and total nitrogen (TN) contents of ditch sediments, and Corg and TNcontents in the0-10cm layer were significantly higher than that in the10-20cm layer. On the whole, Corg and TN contents did not decrease orincrease during the whole experiment, but total phosphorus (TP) contentsdecrease. The results show that running water, stagnant water, anddrying-wetting changes maybe not affect Corg and TN contents of ditchsediments, but the release of TP contents. Hence, the release ofendogenous phosphorus will be decreased by sediment dredging, and wesuggest that dredging frequency of ditches is once every3-5years.
     (8) Under the current cultivation mode and farmland management,the extension of ecological ditches can subtracte the peak of pollutantconcentrations, increase the mitigation capacity of nonpoint sourcepollutants from paddy fields, and reduce the output load of non-pointsource pollutants; as an ecological channel, the ecological ditch isbeneficial to the restoration and conservation of regional biodiversity.
引文
Al-Omari A, Fayyad M. Treatment of domestic wastewater by subsurface flow constructedwetlands in Jordan. Desalination.2003,155:27–39.
    Berg B, McClaugherty C. Plant Litter. Decomposition, Humus Formation, Carbon Sequestration.2ndEdition. Springer Verlag, Berlin.2003.
    Boers P C M. Nutrient Emission from Agriculture in the Netherlands, Causes and Remedies.Water Science and Technology,1996,33(4):183-189.
    Chescheir G M, Skaggs R W, Gilliam J W. Evaluation of wetland buffer areas for treatment ofpumped agricultural drainage water. Transactions of the Asae,1992,35(1):175-182.
    Cooper P F, Findlater B C. Contracted wetland and in water pollution control. Pergamon Press,1990.77-96.
    Daloglu I, Cho K H, Scavia D. Evaluating Causes of Trends in Long-Term Dissolved ReactivePhosphorus Loads to Lake Erie. Environmental Science&Technology,2012,46(19),10660-10666.
    Delgado J A, Berry J K. Advances in precision conservation. Advances in Agronomy,2008,98:1-44.
    Drizo A, Frost C A, Smith K A, et al. Phosphate and ammonium removal by constructed wetlandswith horizontal subsurface flow, using shale as a substrate. Water Science andTechnology,1997,35(5):95-102.
    Fabre A C. Inorganic-phosphrate in exposed sediments of the River Garonne. Hydrobiologia,1992,228(1):37-42.
    Gao F, Deng J C, Li Q Q, et al. A new collector for in situ pore water sampling in wetlandsediment. Environmental Technology,2012,33(3):257-264.
    Gopal B. Natural and constructed wetlands for wastewater treatment potential and problems.WaterScience and Technology,1999,40(3):27-35.
    Guo L, Ma, K M. Seasonal dynamics of nitrogen and phosphorus in water and sediment of amulti-level ditch system in Sanjiang Plain, Northeast China. Chinese Geographical Science,2011,21:437–445.
    Hart S C, Nason G E, Myrold D D, et al. Dynamics of gross nitrogen transformations in anold-growth forest: the carbon connection. Ecology,1994,75:880-891.
    Herzon I, Helenius J. Agricultural drainage ditches, their biological importance and functioning.Biological Conservation,2008,141(5):1171-1183.
    Hickey C W, Gibbs M M. Lake sediment phosphorus release management-Decision support andrisk assessment framework. New Zealand Journal of Marine and Freshwater Research,2009,43(3):819-854.
    Huang T L, Ma X C, Cong H B, et al. Microbial effects on phosphorus release in aquaticsediments. Water Science and Technology,2008,58(6):1285-1289.
    Janes J H, Van Puijenbroek P J T M. Effects of eutrophication in drainage ditches. EnvironmentalPollution,1998,102(SUPPL.1):547-552.
    Jiang C L, Fan X Q, Cui G B, et al. Removal of agricultural non-point source pollutants by ditchwetlands: implications for lake eutrophication control. Hydrobiologia,2007,581:319–327.
    Kelderman P, Wei Z, Maessen M. Water and mass budgets for estimating phosphorus sedimentwater exchange in Lake Taihu, China. Hydrobiologia,2005,544:167-175.
    Kielland K. Amino acid absorption by arctic plants: Implications for plant nutrition and nitrogencycling. Ecology,1994,75(8):2373-2383.
    Kleinmanp P J A. Managing drainage ditches for water quality. Journal of Soil and WaterConservation,2007,62(4):80A.
    Kr ger R, Cooper C M, Moore M T. A preliminary study of analternative controlleddrainagestrategy in surface drainage ditches: Low-grade weirs.Agricultural Water Management,2008,95(6):678-684.
    Kr ger R, Moore M T, Locke M A, et al. Evaluating the influence of wetland vegetation onchemical residence time in Mississippi Delta drainage ditches. Agricultural WaterManagement.2009,96(7):1175-1179.
    Kronvang B, Graesboll P, Larsen S E, et al. Diffuse Nutrient Losses in Denmark. Water Scienceand Technology,1996,33(4):81-88.
    Li EH, Li W, Wang X L, et al. Experiment of emergent macrophytes growing in contaminatedsludge: Implication for sediment purification and lake restoration. Ecological Engineering,2010,36(4):427-434.
    Liikanen A, Murtoniemi T, TanskanenH, et al. Effects of temperature and oxygen availability ongreenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake.Biogeochemistry,2002,59(3):269-286.
    Lindau C, Bollich P, Bond Soybean J. Best Management Practices for Louisiana, USA,Agricultural Nonpoint Source Water Pollution Control. Communications in Soil Science andPlant Analysis,2010,41(13):1615-1626.
    Liu M, Hou L, Xu S, et al. Adsorption of phosphate on tidal flat surface sediments from theYangtze Estuary. Environmental Geology,2002,(42):657-665.
    Luo Z X, Zhu B, Tang J L, et al. Phosphorus retention capacity of agricultural headwater ditchsediments under alkaline condition in purple soils area, China. Ecological Engineering,2009,35(1):57-64.
    Ma E D, Zhang G B, Ma J, et al. Effects of rice straw returning methods on N2O emission duringwheat-growing season. Nutrient Cycling in Agroecosystems,2010,88(3):463-469.
    Ma J, Xu H, Yagi K, et al. Methane emission from paddy soils as affected by wheat strawreturning mode. Plant and Soil,2008,313(1-2):167-174.
    Martin H W, Ivanoff D B, Graetz D A, et al. Water table effects on Histosol drainage water carbon,nitrogen, and phosphorus. Journal of Environmental Quality,1997,26(4):1062-1071.
    Milsom T P, Sherwood A J, Rose S C, et al. Dynamics and management of plant communitiesinditches bordering arable fenland in eastern England. Agriculture, Ecosystems&Environment,2004,103(1):85-99.
    Moustafa M Z. Analysis of phosphorus retention in free-water surface treatment wetlands.Hydrobiology,1999,392:41-53.
    Needelman B A, Kleinman P J A, Strock J S, et al. Improved management of agricultural drainageditches for water quality protection: An overview. Journal of Soil and Water Conservation,2007,62(4):171-178.
    Ng H Y, Tan C S, Drury C F, et al. Controlled Drainage and Subirrigation Influences Tile NitrateLoss and Corn Yields in a Sandy Loam Soil in Southwestern Ontario. Agriculture.Ecosystems and Environment,2002,90(1):81-88
    Nguyen L, Sukias J. Phosphorus fractions and retention in drainage ditch sediments receivingsurface runoff and subsurface drainage from agricultural catchments in the NorthIsland, NewZealand. Agriculture, Ecosystems&Environment,2002,92(1):49-69.
    Olli G, Darracq A, Destouni G. Field study of phosphorous transport and retention in drainagereaches. Journal of Hydrology,2009,365(1-2):46-55.
    Olson D M, Wackers F L. Management of field margins to maximize multiple ecological services.Journal of Applied Ecology,2007,44(1):13-21
    Ongley E D. Non-point source water pollution in China: current status and future prospects. WaterInternational,2004,29(3),299–306.
    Penn C J, Bryant R B, Kleinman P J A, et al. Removing dissolved phosphorus from drainage ditchwater with phosphorus sorbing materials. Penn C J. Journal of Soil and Water Conservation,2007,62(4):269-276.
    Prakasa Rao E V S, Puttanna K. Nitrates, agriculture and environment. Current Science,2000,79(9),1163–1168.
    Qin Y M, Liu S W, Guo Y Q, et al. Methane and nitrous oxide emissions from organic andconventional rice cropping systems in Southeast China. Biology and Fertility of Soils,2010,46(8):825-834.
    Qiu S, Mccomb A J. Effects of oxygen concentration on phosphorus release from refloodedair-dried wetland sediments. Australian Journal of Marine and Freshwater Research,1994,45(7):1319-1328.
    QIU S, MCCOMB A J. Effects of oxygen concentration on phosphorus release from refloodedair-dried wetland sediments. Australian Journal of Marine and Freshwater Research,1994,45(7):1319-1328.
    Rat-Valdambrini M, Belkacemi K, Hamoudi S. Removal of ammonium cations from aqueoussolution using arene-sulphonic acid functionalised SBA-15as adsorbent. Canadian Journal ofChemical Engineering,2012,90(1):18-25.
    Reddy K, Conner O, Gale P M. Phosphorus sorption capacities of wetland soils and streamsediments impacted by dairy effluent. Journal of Environmental Quality,1998,27(2):438-447.
    Rogers K H, Breen P F, Chick A J. Nitrogen removal in experimental wetland treatment systemsevidence for the role of aquatic plants. Research Journal of the Water Pollution ControlFederation,1991,63(7):934-941.
    Sakadevan K, Bavor H J. Phosphate adsorption characteristics of soils, slags and zeolite to be usedas substrates in constructed wetland systems. Water Research,1998,32(2):393-399.
    Schick J, Caullet P, Paillaud J L, et al. Phosphate uptake from water on a Surfactant-ModifiedZeolite and Ca-zeolites. Journal of Porous Materials,2012,19(4):405-414.
    Sharpley A N, Chapra S C, Wedepohl R, et al. Managing agricultural phosphorus for protection ofsurface waters issues and options. Journal of Environmental Quality,1994,23(3):437-451.
    Skaggs R W, Youssef M A, Evans RO. Agricultural drainage management effects onwater conservation, N loss and crop yields. P.41. In Proceedings of2ndAgricultural Drainage and Water Quality Field Day, August19,2005. Lamberton,MN: University of Minnesota.
    Smith D R, Warnemuende EA, Haggard B E, et al. Dredging of drainage ditches increasesshort-term transport of soluble phosphorus. Journal of Environmental Quality,2006,35(2):611-616.
    Strock J S, Dell C J, Schmidt J P. Managing natural processes in drainage ditches for nonpointsource nitrogen control.Journal of Soil and Water Conservation,2007,62(4):188-196.
    Tanner C C, Nguyen M L, Sukias J P S, et al. Nutrient removal by a constructed wetland treatingsubsurface drainage from grazed dairy pasture. Agriculture Ecosystems&Environment,2005,105(1-2):145-162.
    Tanner C C, Sukias J P S, Upsdell, M P. Relationships between loading rates and pollutantremoval during maturation of gravel-bed constructed wetlands. Journal of EnvironmentalQuality,1998,27(2):448-458.
    Tian Y W, Huang Z L, Xiao W F, et al. Reductions in non-point source pollution through differentmanagement practices for an agricultural watershed in the Three Gorges Reservoir Area.Journal of Environmental Sciences-China,2010,22(2):184-191.
    Tilman D, Cassman K G, Matson, P A, et al. Agricultural sustainability and intensive productionpractices. Nature,2002,418,671–677.
    Tilman D. Global environmental impacts of agricultural expansion: The need for sustainable andefficient practices. Proceedings of the National Academy of Sciences of the United States ofAmerica,1999,96(11),5995–6000.
    Towprayoon S, Smakgahn K, Poonkaew S. Mitigation of methane and nitrous oxide emissionsfrom drained irrigated rice fields. Chemosphere,2005,59:1547-1556
    Twisk W, Noordervliet M A W, Terkeurs W J.The nature value Of the ditch vegetation in peatareas inrelation to farm management. Aquatic Ecology,2003,37(2):191-209.
    Tyler H L, Moore M T, Locke M A. Potential for phosphate mitigation from agricultural runoff bythree aquatic macrophytes. Water Air and Soil Pollution,2012,223(7),4557-4564.
    Vaughan R E, Needelman B A, Kleinman PJA, et al. Spatial variation of soil phosphorus within adrainage ditch network. Journal of Environmental Quality,2007,36(4):1096-1104.
    Vymazal J. Nutrient cycling and retention in natural and constructed wetlands. Leiden, TheNetherlands: Backhuys,1999.1-17.
    Wang W W, Li D J, Zhou J L, et al. Nutrient dynamics in pore water of tidal marshes near theYangtze Estuary and Hangzhou Bay, China. Environmental Earth Sciences,2011,63(5):1067-1077.
    Willian S P, Whitfield M, Biggs J, et al. Comparative biodiversity of rivers, streams, ditches andponds in an agricultural landscape in Southern England. Biological Conservation,2004,115(2):329-341.
    Wim V R, Johannes F P M. Ammonium adsorption in superficial North Sea sediments.Continental Shelf Research,1996,16(11):1415-1435.
    Wu H T, Lu X G, Wu D H, et al. Biogenic structures of two ant species Formica sanguinea andLasius flavus altered soil C, N and P distribution in a meadow wetland of the Sanjiang Plain,China. Applied Soil Ecology,2010,46(3),321-328.
    Xia M, Craig P M, Wallen C M, et al. Numerical simulation of salinity and dissolved oxygen atperdido bay and adjacent coastal ocean. Journal of coastal research,2011,27(1):73-86.
    Xiong J B, Mahmood Q. Adsorptive removal of phosphate from aqueous media by peat.Desalination,2010,259(1-3):59-64.
    Yan X Y, Shi SL, Du L J, Xing G X. Pathways of N2O emission from rice paddy soil. SoilBiology&Biochemistry,2000,32:437-440.
    Yang Y H,Yan B X, Shen W B. Assessment of point and nonpoint sources pollution in Songhuariver basin, Northeast China by using revised water quality model.Chinese GeographicalScience,2010,20(1):030-036.
    Yang Y, Chen, Y., Zhang X L, Ongley E, Zhao, L. Methodology for agricultural and rural NPSpollution in a typical county of the North China Plain. Environmental Pollution.2012,168,170-176.
    Zhang B H, Wu D Y, Wang C, et al. Simultaneous removal of ammonium and phosphate byzeolite synthesized from coal fly ash as influenced by acid treatment. Journal ofEnvironmental Sciences-China,2007,19(1):540-545.
    Zhang L, Xia M, Zhang L, et a.l.Eutrophication status and control strategy of Taihu Lake.Frontiers of Environmental Science&Engineering in China,2008,2(3):280-290.
    Zhang M K, He Z L, Calvert D V, et al. Spatial and temporal variations of water quality indrainage ditches within vegetable farms and citrus groves. Agricultural Water Management,2004,65(1):39-57.
    Zou J W, Huang Y, Zheng X H, Wang YS. Quantifying direct N2O emissions in paddy fieldsduring rice growing season in mainland China: Dependence on water regime. AtmosphericEnvironment,2007,41:8030-8042.
    Kronvang B, Graesboll P, Larsen S E, et al. Diffuse Nutrient Losses in Denmark. Water Scienceand Technology,1996,33(4):81-88.
    鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2005.
    成水平,吴振斌,况琪军.人工湿地植物研究.湖泊科学,2002,14(2):179-184.
    崔力拓,李志伟,王立新,等.农业流域非点源磷素迁移转化机理研究进展.农业环境科学学报,2006,25:353-355.
    邓焕广,张菊,张超.干湿交替对徒骇河沉积物磷的吸附解吸影响研究.土壤通报,2009,40(5):1040–1043.
    第一次全国污染源普查公报,2007. http://www.stats.gov.cn/tjgb/qttjgb/qgqttjgb/t20100211_402621161.htm
    段亮,段增强,四清.农田氮、磷向水体迁移原因及对策.中国土壤与肥料,2007,(4):6-11.
    范英英,刘永,郭怀成,等.基于景观生态学的湖区沟渠保护研究.应用生态学报,2005,16(3):481-485.
    何明珠,夏体渊,李立池,达良俊.滇池流域农田生态沟渠杂草氮磷富集效应的研究.华东师范大学学报,2012,4:157-163.
    何元庆,魏建兵,胡远安,等.珠三角典型稻田生态沟渠型人工湿地的非点源污染削减功能.生态学杂志,2012,31(2):394-398.
    黑龙江农垦勘测设计研究院.黑龙江垦区水利工程详查报告.黑龙江省农垦总局水利局,2000.
    侯翠翠.水文条件变化对三江平原沼泽湿地土壤碳蓄积的影响。长春:中国科学院东北地理与农业生态研究所,2012.
    胡绵好,奥岩松,朱建坤,等. pH和曝气对水生植物去除富营养化水体中氮磷等物质的影响.水土保持学报,2008,22(4):168-173.
    胡颖.河流和沟渠对氮磷的自然净化效果的试验研究.南京:河海大学,2005.
    姜翠玲,崔广柏,范晓秋,等.沟渠湿地对农业非点源污染物的净化能力研究.环境科学,2004,25(2):125-128.
    姜翠玲,范晓秋,章亦兵.农田沟渠挺水植物N、P的吸收及二次污染防治.中国环境科学,2004,24(6):702-706.
    姜翠玲,崔广柏.湿地对农业非点源污染的去除效应.农业环境保护,2002,21(5):471-473,476.
    姜翠玲.沟渠湿地对农业非点源污染物的截留和去除效应.南京:河海大学博士学位论文.2004.
    姜浩,廖立兵,郑红,等.赤泥吸附垃圾渗滤液中COD和氨氮的实验研究.安全与环境工程,2007,14(3):69-73.
    姜敬龙,吴云海.底泥磷释放的影响因素.环境科学与管理,2008,33(6):43-46.
    蒋小欣,阮晓红,邢雅囡,等.城市重污染河道上覆水氮营养盐浓度及DO水平对底质氮释放的影响.环境科学,2007,28(1):87-91.
    孔莉莉,张展羽,夏继红.灌区非点源氮在排水沟渠中的归趋机理及控制问题.中国农村水利水电,2009,(7):48-51.
    李强坤,胡亚伟,孙娟.农业非点源污染物在排水沟渠中的迁移转化研究进展.中国生态农业学报,2010,18(1):210-214.
    李如忠,李峰,周爱佳.巢湖十五里河水花生生长区沉积物及间隙水中营养盐的基本特性.环境科学,2012,33(9):3014-3023.
    李睿华,管运涛,何苗,等.河岸荆三棱带改善河水水质的中试研究.环境科学,2007,28(6):1198-1203.
    李玉凤,刘红玉,王翠晓.农业排水渠结构对别拉洪河流域湿地景观结构的影响.自然资源学报,2009,24(9):1573-1581.
    刘鸣达,陶伟,刘婷,等.不同条件下高炉渣吸附水中无机磷的研究.环境工程学报,2008,2(6):840-843.
    刘双全.三江平原地区高效施肥对水稻产量及品质的影响.黑龙江农业科学,2008,(5):56-58.
    刘秀奇,阎百兴,祝惠,等.一种污染水体的氨氮吸附材料及制备方法.专利号: CN102091602A.2011-06-15.
    刘艳丽,张斌,胡锋,等.干湿交替对水稻土碳氮矿化的影响.土壤,2008,40(4):554-560.
    刘振乾,吕宪国,翟金良,等.三江平原农业转型中的水资源安全分析.农业环境保护,2001,40(1):202-205.
    芦苇编写组.芦苇.北京:轻工业部出版社,1982:35-461.
    陆海明,孙金华,邹鹰,等.农田排水沟渠的环境效应与生态功能综述.水科学进展,2010,21(5):719-725.
    栾兆擎,章光新,邓伟,等.三江平原50a来气温及降水变化研究.干旱区资源与环境,2007,21(11):39-43.
    马学慧,刘兴土.中国湿地生态环境质量现状分析与评价方法.地理科学,1997,17(增刊).
    聂晓.三江平原寒地水稻水热过程及节水增温灌溉模式研究.长春:中国科学院东北地理与农业生态研究所博士学位论文,2012。
    司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化.土壤,2000,(4):188-193.
    孙志高,刘景双,王金达,等.三江平原不同群落小叶章种群生物量及氮、磷营养结构动态.应用生态学报,2006,17(2):221-228.
    唐莲,白丹,蒋任飞,等.农业活动非点源污染与地下水的污染与防治.水土保持研究,2003,10(4):212-214.
    王栋,孔繁翔,刘爱菊,等.生态疏浚对太湖五里湖湖区生态环境的影响.湖泊科学,2005,17(3):263-268.
    王宁,朱颜明,李顺.松花湖水体营养物质动态变化及成因分析.环境科学研究,1999,12(5):27-30.
    王宁.松花湖流域非点源污染研究.长春:中国科学院东北地理与农业生态研究所博士学位论文,2001.
    王沛芳,王超,胡颖.氮在不同生态特征沟渠系统中的衰减规律研究.水利学报,2007,38(9):1135-1139.
    王世岩.三江平原沼泽湿地退化过程及其驱动力研究.长春:中国科学院东北地理与农业生态研究所,2003.
    王晓翠,刘红玉.水利工程对别拉洪河流域湿地景观结构的影响.自然资源学报,2009,24(4):718-728.
    王岩,王建国,李伟,等.三种类型农田排水沟渠氮磷拦截效果比较.土壤,2009,41(6):902-906.
    王岩,王建国,李伟,等.生态沟渠对农田排水中氮磷的去除机理初探.生态与农村环境学报,2010,26(6):586-590.
    王云跃,黄学文.农业排水沟渠水质影响因素分析及管理对策.水土保持应用技术,2009,4:35-36.
    王正烈,周亚平,李松林,等.物理化学(4版).下册.北京:高等教育出版社,2001.
    魏林宏,张斌,程训强.水文过程对农业小流域氮素迁移的影响.水利学报,2007,38(9):1145-1150.
    邬建国.景观生态学:格局、过程、尺度与等级.北京:高等教育出版社,2000.
    吴建,杨培岭,任树梅,等.沟渠沉积物的氮素迁移转化在干涸期和输水期的试验研究.农业环境科学学报,2009,28(9):1888-1891.
    郗敏,吕宪国.三江平原湿地多级沟渠系统底泥可溶性有机碳的分布特征.生态学报,2007,27(4):1434-1441.
    夏立忠,杨林章.太湖流域非点源污染研究与控制.长江流域资源与环境,2003,12(1):45-49.
    谢成章,张友德.荻和芦的生物学.北京:科学出版社,1993:1-121.
    谢伟芳,夏品华,林陶,等.喀斯特山区溪流上覆水-孔隙水-沉积物中不同形态氮的赋存特征及其迁移—以麦西河为例.中国岩溶,2011,30(1):9-15.
    熊飞,李文朝,潘继征,等.人工湿地脱氮除磷的效果与机理研究进展.湿地科学,2005,3(3):228-234.
    徐红灯,席北斗,王京刚.水生植物对农田排水沟渠中氮、磷的截留效应.环境科学研究,2007,20(2):84-87.
    徐红灯,席北斗,翟丽华.沟渠沉积物对农田排水中氨氮的截留效应研究.农业环境科学学报,2007,26(5):1924-1928.
    徐红灯.农田排水沟渠对流失氮、磷的截留和去除效应.北京:北京化工大学硕士学位论文.2004.
    徐轶群,熊慧欣,赵秀兰.底泥磷的吸附与释放研究进展.重庆环境科学,2003,25(11):147-140.
    薛峰,颜廷梅,乔俊,等.太湖地区稻田减量施肥的环境效益和经济效益分析.生态与农村环境学报,2009,25(4):26-31,51.
    薛峰,颜廷梅,乔俊,等.太湖地区水稻田减量施肥的环境效应和经济效应分析.生态与农村环境学报,2009,25(4):26-31,51.
    闫敏华,邓伟,马学慧.大面积开荒扰动下的三江平原近45年气候变化.地理学报,2001,159-170.
    阎百兴,汤洁.黑土侵蚀速率及其对土壤质量的影响.地理研究,2005,24(4):499-506.
    阎百兴.吉林西部农田非点源污染负荷研究.长春:中国科学院长春地理研究所,2001.
    晏维金,尹澄清,孙濮,等.磷氮在水田湿地中的迁移转化及径流流失过程.应用生态学报,1999,10(3):312-316.
    杨林章,周小平,王建国,等.用于农田非点源污染控制的生态拦截型沟渠系统及其效果.生态学杂志,2005,24(11):1371-1374.
    姚鑫,杨桂山.自然湿地水质净化研究进展.地理科学进展,2009,28(5):825-832.
    殷国玺,张展羽,郭相平,等.减少氮流失的田间地表控制排水措施研究.水利学报,2006,37(8):926-931.
    翟丽华,刘鸿亮,席北斗,等.农业源头沟渠沉积物氮磷吸附特性研究.农业环境科学学,2008,27(4):1359-1363.
    张树楠,肖润林,余红兵,刘锋.水生植物刈割对生态沟渠中氮、磷拦截的影响.中国生态农业学报,2012,20(8):1066-1071.
    张威,张旭东,何红波,等.干湿交替条件下土壤氮素转化及其影响研究进展.生态学杂志,2010,29(4):783-789.
    张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策: Ⅰ21世纪初期中国农业面源污染的形势估计.中国农业科学,2004,37(7):1008-1017.
    张友民,杨允菲,王立军.三江平原沼泽湿地芦苇种群生产与分配的季节动态.中国草地学报,2006,28(4):1-5.
    张友民,王立军,曲同宝,等.芦苇资源的生态管理与芦苇的高产培育.吉林农业大学学报,2005,27(3):280-283,295.
    周根娣,梁新强,田光明,等.田埂宽度对水田无机氮磷侧渗流失的影响.上海农业学报,2006,22(2):68-70.
    周俊,邓伟,刘伟龙.沟渠湿地的水文和生态环境效应研究进展.地球科学进展,2008,23(10):1079-1083.
    周小平.河网区稻田流失氮磷的植物生态拦截技术研究.南京:中国科学院南京土壤研究所,2005:64-77.
    朱萱,鲁纪行,边金钟,等.农田径流非点源污染特征及负荷定量化方法探讨.环境科学,1985,6(5):6-5.
    祝惠,阎百兴.三江平原稻田磷输出及迁移过程研究.湿地科学,2010,8(3):266-271.
    祝惠,阎百兴.三江平原水田氮的侧渗输出研究.环境科学,2011,32(1):108-112.
    祝惠.三江平原水田面源污染物输出机制及负荷.长春:中国科学院东北地理与农业生态研究所,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700