用户名: 密码: 验证码:
管式膜液固两相流清洗系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜分离技术中的浓差极化和膜污染在某些方面限制了膜的应用和发展。本课题的目的在于用海绵橡胶球对污染的管式膜进行清洗,以解决一些传统的清洗方法所不能解决的问题。
     首先,以硅橡胶为主要原料合成生产了海绵橡胶球;另外,以聚偏氟乙烯(PVDF)为主要原料用管式膜一体化技术生产了管式膜,并通过自行设计的检漏装置对管式膜进行检测。接着,研制了固液两相清洗系统,其中射流器、分球漏斗、管式膜支架是比较关键的几个部分。
     其次,在膜领域首次提出了固液两相流体的“混流”研究方法。利用“混流”模型,建立了两相流体的剪应力模型、固体颗粒与垢层的碰撞模型和固体颗粒的运动速度模型;通过计算和理论分析,系统地考察了操作参数、颗粒物性、颗粒体积分率等对固液两相流剪应力、颗粒对垢层的碰撞力、颗粒与垢层的最大接触时间和最大接触面积的影响。
     第三,通过分别测量原始样品、污染样品和海绵橡胶球清洗样品的水通量和截留率,发现三种类型的样品的通量和截留率趋势相同。而且,具体的讨论了海绵橡胶球在不同压力、海绵橡胶球数目、直径和料液的浓度等条件下对水通量的影响。为了进一步研究固液两相清洗系统,与传统的大量水冲洗法进行了比较,发现前者的恢复率较后者高出10个百分点左右。并且通过测定各个样品对卵清蛋白的截留率表明海绵橡胶球清洗并没有造成管式膜的破损。
     第四,采用X射线光电子能谱(XPS)技术分析了可溶性淀粉在聚偏氟乙烯膜表面的吸附,并将XPS技术与电子显微镜技术相结合,对原始样品、污染样品和海绵橡胶球清洗样品进行了测试和分析。通过对C元素和O元素的XPS谱线解叠分析,结果表明,可溶性淀粉在聚偏氟乙烯膜面的吸附量较大,以物理沉积为主。经过海绵橡胶球清洗后效果明显增强。
Concentration polarization and membrane fouling in membrane process severally limit its application and development. The paper is aimed to clean the fouled tubular membrane with rubber sponge balls in order to solve the problem which is not able to do with some traditional cleaning methods.
    First, rubber sponge balls are mainly synthesized with silicone rubber. In addition, tubular membrane is dominatingly made of polyvinylidene fluoride(PVDF) with the integrated production technology and the membrane is tested with self-made leak hunting device. In succession, we manufacture the solid-liquid two phase cleaning system, in which the shooting liquid device, phase break device and tubular membrane bracket are the key factors.
    Second, "mixed flow" is proposed for the first time as a method in membrane field. Three models are proposed as follows by applying the model of "mixed flow" : the stress of increasing fluid on fouling, collision between solid particles and fouling, and solid particles movement velocity; the effects of operating parameters, properties of particles, and the volume fraction of particles on stress in solid-liquid two phase flow, collision stress between solid particles and fouling, maximal contacting area between solid particles and fouling and maximal contacting time between solid particles and fouling are investigated systematically by calculating and theoretical analysis.
    Third, according to the water flux and the rejection ratio of original sample, the fouled sample and the washed sample with rubber sponge balls, we know that the same change current of the three samples. Moreover, some effect factors to water flux are discussed as follow: the operation pressure, the number and diameter of rubber sponge ball, the soluble-starch concentration, and so on. In order to study solid-liquid two phase washing system further,
    
    
    we compare that method with traditional mass water washing method and get the over 10% recovery ratio of the former than the latter. In addition, we test the rejection ratio of very sample and get the result of the rubber sponge ball no damnification to the membrane.
    Fourth, the advanced surface analysis technique -X ray photoelectron spectrum is employed to study the adsorption of soluble-starch on the PVDF membrane. Then we test by using XPS combined with SEM the original sample, the fouled sample and the washed sample with rubber sponge balls. According to the analysis of the fitting spectrum of carbon and oxygen, the result indicates that soluble-starch is adsorbed much on the membrane, but it physically deposits on the membrane. Also, the washing effect of rubber sponge balls is better.
引文
[1] 王湛编,膜分离技术基础,北京:化学工业出版社,2000,1-8.
    [2] 国家环境保护局科技标准司/环境工程科技协调发展委员会主持 膜法分离技术及其应用1-4.
    [3] 高以炬,叶凌碧编著,膜分离技术基础,北京:科学出版社,1989:1-11,286-294.
    [4] Graham, T.,Phil. Trans. Roy. Soc.,1861,151-183.
    [5] Loeb, S. and S. Sourirajan, 1963, Sea water demineralization by means of an osmotic membrane, Advances in Chemistry Series, 38-117.
    [6] 赵之平,王志,王世昌,现代分析测试技术在膜结构与性能研究中的应用[J],膜科学与技术,2001,21(6):34-39.
    [7] 樊亚绒,聚合物分离膜应用及发展趋势,24-24.
    [8] Schulz G.,Ripperger, Concentration polarization in cross flow microfiltration, J of Membrane Sci.,1989(40):173-187
    [9] Porter M C, Concentration polarization with membrane ultrafi]tration, Ind Eng Chem Prod Res Dav, 1972,11:234.
    [10] 刘忠洲,续曙光,李锁定,微滤、超滤过程中的膜污染与清洗[J],水处理技术,1997,23(4):187-193.
    [11] 陆晓峰,陈仕意等,超滤膜的吸附污染研究[J],膜科学与技术,1997,17(1):37-41.
    [12] 梁国明,陆晓峰等,聚醚酮超滤膜的污染及其对滤速影响的研究[J],水处理技术,1999,25(1):14-18.
    [13] Marijana D. Caric, Spasenija D. Milanaic, Darko M. Krstic, Miodrag N. Tekic. Fouling of inorganic membranes by adsorption of whey proteins[J],Membr Sci, 2000,165:83-88.
    [14] Kimberly L. Jones, Charles R.O' Melia. Ultrafiltration of protein and humic substances:effect of solution chemistry on fouling and flux decline[J],Membr Sci, 2001,193:163-173.
    [15] Eric M. Vrijenhoek, Seungkwan Hong, Menachem Elimelech, Influence of membrane surface properities on initial rate of colloidal fouling of reverse osmosis and
    
    nanofiltrarion membranes[J],Membr Sci, 2001,188:115-128.
    [16] 刘昌胜,邬行彦等,膜的污染及其清洗[J],膜科学与技术,1996,16(2):25-30.
    [17] Mika Mnttri, Liisa Puro, Jutta Nuortila-Jokinen, Marianne Nystrm, Fouling effects of polysaccharides and humic acid in nanofiltration[J],Membr Sci, 2000,165:1-17.
    [18] J. Brinck, A.S. Jnsson, B. Jnsson, J. Lindau, Influence of PH on the adsorptive fouling of ultrafiltration membranes by fatty acid[J],Membr Sci, 2000,164:187-194.
    [19] 刘茉娥,超滤膜污染机理的研究及控制[J],水处理技术,1989,15(3):163-169.
    [20] 刘振丽,欧兴长,杜启云,操作条件对中药四妙勇安汤超滤的影响[J],膜科学与技术,1999,19(2):54-56.
    [21] Piotr Czekaj, Francisco Lpez, Carme Güell, Membrane fouling during microfiltration of fermented beverages[J],Membr Sci, 2000,166:199-212.
    [22] 贺立中,药液超滤过程中的膜污染及其防治[J],膜科学与技术,2000,20(5):49-54.
    [23] 刘茉娥等编,膜分离技术应用手册,北京:化学工业出版社,2001:47-52.
    [24] 祝生杰,超滤器的膜污染控制与处理[J],膜科学与技术,1997,17(2):1—4.
    [25] Ren Deqian, Cleaning and regeneration of membrane. Desalination, 1987, 63: 363.
    [26] 陈平,电渗析中的膜垢膜污染的防止与清洗[J],膜科学与技术,2000,20(1):37-40.
    [27] Zahid.Amjad主编,殷琦,华耀祖译,反渗透-膜技术·水化学和工业应用,北京:化学工业出版社,1999:202-263.
    [28] 钱俊青,陈铭,膜的氧化清洗再生方法研究[J],膜科学与技术,1998.18(3):58-61.
    [29] 钟璟,徐南平,时钧,经自来水污染后的无机陶瓷微滤膜再生方法研究[J],膜科学与技术,1996,16(3):46-51.
    [30] Marcel Mulder著,李琳译,膜技术基本原理,北京:清华大学出版社,1999:292-293.
    [31] 陈伟光,刘恩华,管式膜一体化生产工艺的研究,水处理技术,2000,26(3):145-149.
    [32] Hatch. L.P, Wegh G.G Research and Development Progress Report, No. 571,1970.
    [33] Allen C.A, Grimmett E.S. Heat Exchanger Design Parameter, Under Contract-I-(322)-15103,1978,4.
    [34] LixiuWen Jianping, Gu Junjie. Flow Boiling Heat Transfer with Fluidized Solid Particles, Chinese Journal of Chemical Engineering, 1995,3(3):163-167.
    [35] Klaren D.G., Selbstreinigendes Konzept, Chem. Andagen Verfahren, 1995,28(5):163-167.
    [36] 李秀伦,新型气液固三相循环流化床蒸发器性能研究[硕士研究生论文,天津大学化工系,
    
    1998, 1.
    [37] Taprogge Gesellschaft mbh Schliemannstr, TAPROGGE CCS: the energy saving programme, 1997,5.
    [38] 住友/R0 Pak,东京:住友出版社,1992,1-29.
    [39] 江原胜也,膜。洗净,化学工厂,1976,20-69.
    [40] 杨祖荣,Woon-Young Yoon,W.J.Frederick,蒸发器中结垢速率研究,化工学报, 43(2):154-159(1992).
    [41] 钱倩长,叶开沅,弹性力学,科学出版社,北京(1956).
    [42] 梁五更,张书良,金芷青等,液固循环流化床的研究(Ⅱ),化工学报,44(6):672-676(1993).
    [43] Chunming Qi and Ihab H. Farag, Heat transfer Mechanism Due to particle Convection in circulating Fluidized Bed, Can. J. chem..Eng., 72(4):354-357(1994).
    [44] 刘大有,二相流体动力学,高等教育出版社,北京(1993).
    [45] D.Y. Liu, K. Anders and A. Forhn, Drag Coefficients of Single Droplets Moving in an Infinite Droplet chain on the Axis of A Tube, Int. J. of Multiphase Flow, 14:217-232(1988).
    [46] C.K.W. Tam, The Drag on A cloud of Spherical in low Reynolds Number Flow, J. Fluid Mech, 38:537-546(1969).
    [47] J.F. Richardson, W.N. Zaki, Sedimentation and Fluidization:Part Ⅰ, Trans. Instn. Chem. Eng rs., 32:35-53(1994).
    [48] S. Timoshenko, J.N. Goodier, Theory of Elaxticity, New York:McGray-Hill Book Company, 372-384(1951).
    [49] 祝振鑫,吴立明,胡晓郡,用鸡蛋清中的卵清蛋白测定常用超滤膜的切割分子量,膜科学与技术,1999,19(5):44-50.
    [50] 张武最等,化工产品手册-合成树脂与塑料、合成纤维,化学工业出版社.
    [51] 吴玉凯,海绵橡胶球状冷水可溶性淀粉的综述[J],粮油食品科技,1998(5):25-26.
    [52] Sarko A, Wu H C H. The Crystal Structures of A-,B- and C-Polymorphs of Amylose and Starch[J].Cereal Chem, 1997(74):171-175.
    [53] Jane J, Craig S ,Seib P A. Characterization of Granular Cold-Water-Soluble Starch[J], Starch/Starke, 1986(38):258-263.
    [54] Cory M, Bryant, Bruce, Hamaker R. Effect of Lime on Gelatinization of Com Flour and
    
    Starch[J],Cereal Chem, 1997(74):171-175.
    [55] Eastman J E, Moore C. O. Cold Water Soluble Granular Starch for Gelled Food Composition[P].U S Patent:4 465 702,1984.
    [56] 王世农,刘刚伟,可溶性淀粉还原性研究,松辽学刊(自然科学版),1997(2):51—53.
    [57] 张力田,变形淀粉[M],广州:华南理工大学出版社,1992.
    [58] 二国二郎[日],淀粉科学手册,轻工业出版社,1990;260—262.
    [59] 王典芬,X射线光电子能谱在非金属材料研究中的应用,武汉:武汉工业大学出版社,1994.
    [60] 王建祺,吴文辉,冯大明,电子能谱学(XPS/XAES/UPS)引论,北京:国防工业出版社,1992.
    [61] 筏羲人[日],高分子表面的基础和应用,徐德恒等译,北京:化工出版社,1990.
    [62] 潘承瑛,赵良仲,电子能谱学基础,北京:科学出版社,1981.
    [63] 陆家和,陈长彦等,表面分析技术,北京:电子工业出版社,1987:244-245.
    [64] J.H. Choi, C.K. Yi and J.E. Son, Axial Voidage Profile in A cold mode CFB, By P Base(ed.), Press, 131-135,1990.
    [65] P. Zehner, et al.,Chem. Eng. Sci.,51(10):1735,1996.
    [66] H. Takeuchi, T. Kirama, Flow Visualization in the Riser of A circulating fluidized bed Technology Ⅲ, oxford:Pergamon Press, 177-182,1990.
    [67] R.C. Chen, L.S. Fan, Particle image velocimetry for characterizing the Flow Structure in three-dimensional Gas-Liquid-Solid Fluidized Beds, Chem. Eng. Sci.,47(13-14): 3615-3622(1992).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700