用户名: 密码: 验证码:
基于面向对象的热流体系统建模方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热流体系统广泛应用于工业生产和日常生活,深深影响人类活动,历经经验结合实验的方法之后,仿真技术已逐渐成为热流体系统的重要设计手段之一。现行的热流体系统仿真平台存在模型不对用户开放、同一平台模型仅限于设备模型级别的重用、不同平台之间模型难以共享,同时通用仿真平台由于采用显示状态空间描述模型难以保持热流体系统拓扑结构。针对以上热流体系统建模仿真现存的问题,在国家973计划项目、863计划项目以及自然科学基金项目的支撑下,本文基于多领域统一面向对象建模仿真技术,针对基础热流体系统、相变引起能量传递的两相平衡系统以及一维分布参数热流体系统等主题,围绕热流体系统的模型抽象、模型非因果表达、模型重用等关键技术,对热流体系统模型建立方法和模型库框架构建开展了深入研究,主要包括以下几个方面工作。
     以多领域统一面向对象建模语言Modelica为例,详细分析了面向对象建模仿真的原理及技术特征,结合热流体系统本身的特点,探索了基于面向对象技术的热流体系统分解和层次递进构建方法,继而研究热流体系统模型的非因果表达和重用机制,提出了热流体系统设备模型与工质模型的解耦机制,以上成果提供了热流体系统模型的建立方法和原则。
     探索了基础热流体模型库的建立方法,并制定了基础热流体模型的框架结构,将模型库分为连接器层、基础物理层、元件抽象层和元件层,详细论述了此四个层次模型的抽象过程和实现,进而构建了基础热流体模型库,涵盖了热流体系统最为常用的基础组件:物理现象模型、传热和流体传输修正方程、管道、泵类、阀类、换热类等。并以车用发动机冷却系统为例,展示基于该模型库的行业专用模型库构建方法和工程价值。
     研究了精馏系统模型的构建方法,提出了精馏系统设备模型和混合物工质模型的解耦建模和耦合建模机制。针对精馏系统中工质模型预测方法以及混合规则众多、混合物种类繁多的问题,提出了精馏系统结构层次递进的建模方法,建立了完整的精馏工质模型框架,将工质模型分为三个层次:基础层、方法层、实例层,实现了相平衡预测方法跟混合物组分信息、混合规则的分离,可使各层模型得到最大化的重用,非常便于新模型的引入。对精馏系统做了详细的系统分解及论述,建立了精馏系统设备模型并进行了验证工作。
     针对偏微分方程描述的热流体系统,基于线上算法,研究了偏微分方程系统至微分代数方程组的转换方法,详细探究了转换过程中的几个关键问题:一维空间求解域的离散、离散节点一、二阶导数差分表达、边界条件的处理,实现了由偏微分方程描述和微分代数方程描述的热流体系统的统一建模,以便利用Modelica进行模型描述和求解。并以人体传热模型为例,详细论述了人体的节段划分、传热一维表达和模型的构建过程,并将仿真结果与实验结果作比较分析。结果表明,该方法可有效建立分布参数热流体系统,具有较强的工程实用价值。
     本文研究的热流体系统建模方法和遵循该方法建立的模型库已在国家973计划、北京机械动力研究所等众多项目中得到应用。
Thermal-fluid systems are widely used in industrial production and daily life, andaffect human activities deeply. After the method of experience combining experiment,simulation becomes one of the important design means for thermal-fluid systems gradually.However, the current thermal-fluid system simulators have shortages as follows: model isdescribed as a black box which is not open to the end-user; model in different simulatorscould not be shared with each other; only supporting reuse of knowledge on the unitmodel level. There are also some general simulation platforms, like Matlab/Simulink,could be used to model and simulate the thermal-fluid system. In these tools, the model isusually expressed in procedural form. So the topology of the system gets lost and anyfuture extension and reuse of the model is tedious and error-prone. To solve the problemsmentioned above, the modeling strategy and framework construction of the model libraryare intensively studied based on the unified multi-domain modeling and simulationtechnology, around the following three key points: abstraction of thermal-fluid system,non-causal expression and reuse of model, in the themes of the basic thermal-fluid system,two-phase equilibrium system and one-dimensional distribution parameters thermal-fluidsystem. The main contribution includes the following.
     Firstly, with the unified multi-domain language Modelica as an example, theprinciple and technical characteristics of unified multi-domain modeling and simulationare analyzed. Combined with the characteristics of thermal-fluid system, systemdecomposition and level progressive construction of thermal-fluid system are exploredbased on the unified multi-domain technology. And then, the non-causal expression andreuse mechanism of thermal-fluid system model are researched. The decouplingmechanism between the device model and the media model is proposed. The aboveresearch provides the modeling method and principle for thermal-fluid system.
     Secondly, the method of basic thermal-fluid library is explored and the framework ofthe library is constructed. The library is divided into four levels: the connection level,basic physical level, unit abstraction level, and unit level. The abstraction process andimplement of model in each level is discussed. The library covers the basic unit ofthermal-fluid system, such as physical phenomena, the correct equation of heat transferand fluid flowing, pipe, pump, valve, heat exchanger and so. A vehicle engine cooling system is modeled and simulated to reveal the engineering value of the library.
     Thirdly, the modeling method of distillation system is studied. The decoupling andcoupling mechanism between the distillation system devices and the mixture media modelis presented. Structured level progressive modeling strategy is proposed in order to solvethat there are many phase equilibrium prediction methods, the mixture rules and kind ofmixture. The mixture media model has three levels: base level, method level and caselevel. The prediction methods, components' information of mixture and the mixing rulesare separated into the three different levels. A new media could be introduced by changingthe component information of mixture and mixing rules. The distillation system model isdecomposing and the unit models of distillation system are modeled. Based on the mediamodels and unit models, a model of air distillation column is constructed and simulated.The results agreed well with that simulated in Aspen Plus.
     Finally, based on the methods of line, the method transformed the thermal-fluidsystem described by partial differential equation to differential algebraic equations isresearched. The following three key issues are discussed: discreting of one-dimensionalspace solving domain, differential expression of first and second derivative on the nodeand boundary conditions. The unified modeling of thermal-fluid systems described bypartial differential equation and differential algebraic equations is achieved. With the heattransfer model of the human body as an example, body segment dividing, modeldescribing and implement of the model are discussed in detail. The simulation results areagreed well with the experimental results. It is indicated that the transforming method iseffective for modeling the one-dimensional distribution parameters thermal-fluid system.
引文
[1]刘振东.专业热流体系统仿真平台Flowmaster. CAD/CAM与制造业信息化,2011,11:22-27.
    [2]丁建完.陈述式仿真模型相容性分析与约简方法研究:[博士学位论文].武汉:华中科技大学,2006.
    [3]周凡利.工程系统多领域统一模型编译映射与仿真求解研究:[博士学位论文].武汉:华中科技大学,2011.
    [4] Baligh El Hefni, Daniel Bouskela. Modelling of a water/stream cycle of the combinedcycle power plant―Rio Bravo2‖with Modelica. In: Proceedings of the5thInternational Modelica Conference, Vienna, Austria,2006:11-16.
    [5] Modelica Association., Modelica-A Unified Object Oriented Language for PhysicalSystems Modeling: Language Specification, Version3.2.http://www.Modelica.org/documents.
    [6] Tiller M.. Introduction to Physical Modeling with Modelica. Massachhusetts USA:Kluwer Adademic Publishers,2001.
    [7] Flowmaster Ltd. Flowmaster2中文技术手册,2006.
    [8]左承基,王斌,傅秋阳,等.配气系统参数对压缩空气发动机性能的影响.机械工程学报,2008,44(4):211-216.
    [9]冯震宙,高行山,刘永寿,等.某型飞机燃油系统数值建模方法与仿真分析.飞机设计,2007,27(5):65-71.
    [10]周建强,赖喜德,唐立新,等.基于Flowmaster2的水轮发电机组动态仿真建模方法.中国农村水利水电,2008,2:102-104.
    [11]付永领. AMESIM系统建模和仿真——从入门到精通.北京:北京航空航天大学出版社.2006.
    [12]孙牧桥,苏三买,成剑,等.空气涡轮起动机调压装置AMESim建模与仿真.航空动力学报,2012,27(2):450-456.
    [13]韩孟虎,曹克强,胡良谋,等.基于AMESim的柱塞泵热力学模型及仿真.机床与液压,2012,40(1):136-138.
    [14]仲韵,顾宁,梁乐华,等.基于AMESim的发动机冷却系统的仿真分析.交通节能与环保,2008,1:33-37.
    [15]Fortum, VTT. Apros Documentation,2000.
    [16]晏涛.基于Apros的600MW汽轮机组仿真.东南大学硕士论文,2004:5-15.
    [17]于翔.300MW直流锅炉管内工质动态特性的建模与仿真研究.东南大学硕士论文,2006.
    [18]张治山,杨超龙. Aspen Plus在化工中的应用.广东化工,2012,39(3):77-78.
    [19]马琳瑛,赵亮,李泽秋,等.基于Aspen Plus的蒸汽透平网络模拟和优化.计算机与应用化学,2012,29(1):100-104.
    [20]胡永锁. Aspen软件在换热网络能量分析中的应用.石油化工设备,2010,39(2):77-80.
    [21]熊杰,赵海波,郑楚光.深冷空分系统的过程模拟、优化及火用分析.低温工程,2011,3:39-43.
    [22]温正,任毅如. FLUENT流体计算应用教程.北京:清华大学出版社,2009.
    [23]Ansys Ltd. ANSYS CFX Tutorials. Release11.0.2006.
    [24]王伟,张良,王仁人.基于STAR-CD的内燃机空滤器内颗粒轨迹研究.山东轻工业学院学报,2010,24(2):29-32.
    [25]Mentor Graphics发布无缝集成的同步CFD仿真工具FloEFD.电子工艺技术,2012,33(2): A15.
    [26]中仿科技公司. SINDA/FLUINT——航空航天工业中的热流分析标准.航空制造技术,2008,14:94-95.
    [27]XFlow产品介绍. http://www.mscsoftware.com/Products/CAE-Tools/XFlow.aspx
    [28]殷煜皓. AP1000先进核电厂大破口RELAP5建模及特性分析:[硕士学位论文].上海:上海交通大学,2012.
    [29]石来华.基于GT-POWER的车用汽油机动力性能优化:[硕士学位论文].湖南:湖南大学,2009.
    [30]贝塔朗菲著.林康义,魏宏森译.一般系统论,北京:清华大学出版社,1987.
    [31]Henrik Nilsson, John Peterson, and Paul Hudak. Functional hybrid modeling. InProceedings of PADL’03:5th International Workshop on Practical Aspects ofDeclarative Languages, volume2562of Lecture Notes in Computer Science, NewOrleans, Lousiana, USA: Springer-Verlag,2003:376-390.
    [32] str m Karl, Elmqvist Hilding, Mattsson Sven. Evolution of Continuous-TimeModeling and Simulation. In: Proceedings of12th European SimulationMulticonference1998. San Diego: SCS,1998.9-18.
    [33]Shah Sunil C., Floyd Michel A., Lehman Larry L.. MATRIXx: Control design andmodel building CAE capability. In: Jamshidi, Herget. Computer-Aided ControlSystems Engineering. Amsterdam, Netherland: Elsevier Science Publishers B.V.,1985.181–207.
    [34]Grace Andrew C.W.. SIMULAB, an integrated environment for simulation andcontrol. In: Proceedings of the American Control Conference. Green Valley, AZ,United States: American Automatic Control Council,1991.1015-1020.
    [35]Paynter H. M.. Analysis and Design of Engineering Systems. Cambridge: MIP Press,1961.
    [36]Karnopp D. C., Rosenberg R. C.. Analysis and simulation of multiport systems—thebond graph approach to physical system dynamics. Cambridge, MA, US: MIT Press,1968.
    [37]Sass L., Mcphee J., Schmitke C. et al.. A Comparison of Different Methods forModelling Electromechanical Multibody Systems. Multibody System Dynamics,12(3),2004:209-250.
    [38]Orbak A.Y., Turkay O.S., Eskinat E.. Model reduction in the physical domain. In:Proceedings of the Institution of Mechanical Engineers, Part I (Journal of Systemsand Control Engineering). UK: Mech. Eng. Publications for IMechE,217(I6),2003:481-496.
    [39]Granda J.J.. Computer aided modeling of multiport elements and large bond graphmodels with CAMP-G. In: Proceedings of1997International Conference on BondGraph Modeling and Simulation. San Deigo, CA, USA: SCS,1997.339-344.
    [40]Broenink J.F.. Modelling, simulation and analysis with20-Sim. Journal A,1997,38(3):22-25.
    [41]Breunese A.P.J., Broenink J.F.. Modeling mechatronic systems using the SIDOPS+language. In: Proceedings of1997International Conference on Bond Graph Modelingand Simulation. San Deigo, CA, USA: SCS,1997.301-306.
    [42]Trent H. M.. Isomorphisms between Oriented Linear Graphs and Lumped PhysicalSystems. The Journal of the Acoustical Society of America,27,1955:500-527.
    [43]Branin F. H.. The Algebraic-Topological Basis for Network Analogies and the VectorCalculus. Syzposium on Generalized Networks. New York:1966,453-491.
    [44]Sinha R., Liang V.C., Paredis C.J.J. et al. Modeling and Simulation Methods forDesign of Engineering Systems. Journal of Computing and Information Science inEngineering,1,2001:84-91.
    [45]Strauss J. C.. The SCi continuous system simulation language (CSSL). Simulation,1967,9:281–303.
    [46]Mitchell E.E.L., Gauthier J.S.. Advanced Continuous Simulation Language (ACSL).Simulation,1976,26(3):72–78.
    [47]Gauthier J.S.. The Advanced Continuous Simulation Language (ACSL). In:Proceedings of the1988Conferences: Tools for the Simulationist and SimulationSoftware. San Diego: SCS,1988.125-128.
    [48]Elmqvist H.. A Structured Model Language for Large Continuous Systems:[PhDthesis]. Sweden: Lund Institute of Technology,1978.
    [49]Piela P.C., Epperly T.G., Westerberg K.M.. ASCEND: An object-oriented computerenvironment for modeling and analysis: the modeling language. Computers andChemical Engineering,1991,15(1):53–72.
    [50]Mattsson S.E., Andersson M., str m K.J.. Object-oriented modelling and simulation.In: Linkens. CAD for Control Systems, chapter2. New York: Marcel Dekker Inc.,1993.31–69.
    [51]Barton P.I., Pantelides C.C.. Modeling of Combined Discrete/Continuous Processes.AIChE Journal,1994,40(6):966-979.
    [52]Kloas M., Friesen V., Simons M.. Smile-a simulation environment for energysystems. In: Sydow. Proceedings of the5th International IMACS Symposium onSystems Analysis and Simulation (SAS’95), Systems Analysis Modelling Simulation,18-19. Switzerland: Gordon and Breach Publishers,1995.503-506.
    [53]Fritzson P., Viklund L., Herber O.J. et al. High-level mathematical modeling andprogramming. IEEE Software,1995,12(4):77-87.
    [54]Sahlin P., Bring A., Sowell E. F.. The Neutral Model Format for building simulation,Version3.02. Technical Report. Department of Building Sciences, the Royal Instituteof Technology. Stockholm, Sweden:1996.
    [55]Jeandel A., Boudaud F., Ravier P. et al.. U.L.M: Un Langage de Modélisation, amodelling language. In: Proceedings of the CESA’96IMACS Multiconference.Lille, France: IMACS,1996.
    [56]Breunese A.P.J., Broenink J.F.. Modeling mechatronic systems using the SIDOPS+language. In: Proceedings of1997International Conference on Bond Graph Modelingand Simulation. San Deigo, CA, USA: SCS,1997.301-306.
    [57]Elmqvist H. Modelica–A unified object-oriented language for physical systemsmodeling. Simulation Practice and Theory,5(6),1997:32~33.
    [58]Elmqvist H, Mattsson SE, Otter M. Modelica–An international effort to design anobject-oriented modeling language. In: Proceedings of the1998Summer ComputerSimulation Conference. Reno: The Society for Computer Simulation International,1998:1~7.
    [59]Mattsson SE, Elmqvist H, Otter M. Physical system modeling with Modelica. ControlEngineering Practice,6(4),1998:501~510.
    [60]Deuring Andreas, Gerl Johannes, Wilhelm Harald. Multi-Domain Vehicle DynamicsSimulation in Dymola. In: Proceedings of the8th International Modelica Conference.Link ping, Sweden: Link ping University Electronic Press,2011.13-17.
    [61][Andreasson Johan. The Vehicle Dynamics Library: New Concepts and New Fields ofApplication. In: Proceedings of the8th International Modelica Conference. Link ping,Sweden: Link ping University Electronic Press,2011.414-420.
    [62]Looye G.. The New DLR Flight Dynamics Library. In: Proceedings of the6thInternational Modelica Conference. Bielefeld, Germany: The Modelica Association,2008.193-202.
    [63]Verzichelli G.. Development of an Aircraft and Landing Gears Model with SteeringSystem in Modelica-Dymola. In: Proceedings of the6th International ModelicaConference. Bielefeld, Germany: The Modelica Association,2008.181-191.
    [64]Gall Leo, Link Kilian, Steuer Haiko. Modeling of Gas-Particle-Flow and HeatRadiation in Steam Power Plants. In: Proceedings of the8th International ModelicaConference. Link ping, Sweden: Link ping University Electronic Press,2011.610-615.
    [65]Bader A., Bauersfeld S., Brunhuber C.. Modelling of a Chemical Reactor forSimulation of a Methanisation Plant. In: Proceedings of the8th InternationalModelica Conference. Link ping, Sweden: Link ping University Electronic Press,2011.572-578.
    [66]El Hefni Baligh, Bouskela Daniel, Lebreton Grégory. Dynamic modelling of acombined cycle power plant with ThermoSysPro. In: Proceedings of the8thInternational Modelica Conference. Link ping, Sweden: Link ping UniversityElectronic Press,2011.365-375.
    [67]Chilard Olivier, Tavella Jean-Philippe, Devaux Olivier. Use of Modelica language tomodel an MV compensated electrical network and its protection equipment:comparison with EMTP. In: Proceedings of the8th International Modelica Conference.Link ping, Sweden: Link ping University Electronic Press,2011.406-413.
    [68]Kral Christian, Haumer Anton. The New Fundamental Wave Library for ModelingRotating Electrical Three Phase Machines. In: Proceedings of the8th InternationalModelica Conference. Link ping, Sweden: Link ping University Electronic Press,2011.170-179.
    [69]Einhorn M., Conte F. V., Kral, C.. A Modelica Library for Simulation of ElectricEnergy Storages. In: Proceedings of the8th International Modelica Conference.Link ping, Sweden: Link ping University Electronic Press,2011.436-445.
    [70]Dressler Isolde, Schiffer Johannes, Robertsson Anders. Modeling and Control of aParallel Robot Using Modelica. In: Proceedings of the7th International ModelicaConference. Link ping, Sweden: Link ping University Electronic Press,2009.261-269.
    [71]van der Linden F.L.J., Vazques de Souza Silva P.H.. Modelling and Simulating theEfficiency and Elasticity of Gearboxes. In: Proceedings of the7th InternationalModelica Conference. Link ping, Sweden: Link ping University Electronic Press,2009.270-277.
    [72]Cellier Fran ois E., Greifeneder Jürgen. Modeling Chemical Reactions in ModelicaBy Use of Chemo-bonds. In: Proceedings of the7th International ModelicaConference. Link ping, Sweden: Link ping University Electronic Press,2009.142-150.
    [73]Andersson Daniel, berg Erik, Eborn Jonas. Dynamic modeling of a solid oxide fuelcell system in Modelica. In: Proceedings of the8th International Modelica Conference.Link ping, Sweden: Link ping University Electronic Press,2011.593-602.
    [74]Baur Marcus, Otter Martin, Thiele Bernhard. Modelica Libraries for Linear ControlSystems. In: Proceedings of the7th International Modelica Conference. Link ping,Sweden: Link ping University Electronic Press,2009.593-602.
    [75]Poland Jan, Isaksson Alf J.. Building and Solving Nonlinear Optimal Control andEstimation Problems. In: Proceedings of the7th International Modelica Conference.Link ping, Sweden: Link ping University Electronic Press,2009.39-46.
    [76]Viel Antoine. Strong Coupling of Modelica System-Level Models with Detailed CFDModels for Transient Simulation of Hydraulic Components in their SurroundingEnvironment. In: Proceedings of the8th International Modelica Conference.Link ping, Sweden: Link ping University Electronic Press,2011.256-265.
    [77]Casella Francesco, Sielemanny Michael, Savoldelli Luca. Steady-state initialization ofobject-oriented thermo-fluid models by homotopy methods. In: Proceedings of the8thInternational Modelica Conference. Link ping, Sweden: Link ping UniversityElectronic Press,2011.86-96.
    [78]Sun Ying, Chen Wei, Zhang Yunqing et al.. Modeling and Simulation of Heavy Truckwith MWorks. In: Proceedings of the8th International Modelica Conference.Link ping, Sweden: Link ping University Electronic Press,2011.725-729.
    [79]任志彬,孟光,王廷兴等.基于Modelica和Dymola的航空发动机燃气发生器的建模与性能仿真.航空发动机,2006,32(4):36-39.
    [80]郭甲生,秦朝葵, Gerhard Schmitz.基于Modelica的生物质燃气内燃机性能模拟研究.工程设计学报,2011,18(1):28-33.
    [81]陈琼忠,孟光,莫雨峰等.开关磁阻电机的非线性解析模型及其在航空系统仿真中的应用.上海交通大学学报,2008,42(12):2041-2046.
    [82]何义,姚锡凡.基于Modelica/Dymola的二相混合式步进电动机建模与仿真.机械设计与制造,2010,6:74-76.
    [83]张洪昌,陈立平,张云清.基于Modelica的ABS电磁阀多领域建模仿真分析.系统仿真学报,2009,21(23):7629-7633.
    [84]Jiang Ming, Zhou Jiangang, Chen Wei. Modeling and Simulation of AMT withMWorks. In: Proceedings of the8th International Modelica Conference. Link ping,Sweden: Link ping University Electronic Press,2011.829-836.
    [85]Modelica Tools. Available at: https://www.modelica.org/tools.2011.
    [86]Christen E., Bakalar K.. VHDL-AMS-A hardware description language for analogand mixed-signal applications. IEEE Transactions on Circuits and Systems II: Analogand Digital Signal Processing,46(10),1999:1263–1272.
    [87]Frey P., Nellayappan K., Shanmugasundaram V.. SEAMS: simulation environment forVHDL-AMS. In: Proceedings of the1998Winter Simulation Conference. Piscataway,NJ, USA: IEEE,1998.539-546.
    [88]MathWorks. Simscape User's Guide. Available at: http://www.mathworks.com/help/pdf_doc/physmod/simscape/simscape_ug.pdf.2011.
    [89]Francesco Casella, Martin Otter, Katrin Proelss, etc. The Modelica Fluid and Medialibrary for modeling of incompressible and compressible thermo-fluid pipe networks.In: Proceedings of the5th International Modelica Conference, Vienna, Austria,2006:631-640.
    [90]Rüdiger Frank, Francesco Casella, Michael Sielemann, etc. Standardization ofThermo-Fluid Modeling in Modelica.Fluid. In: Proceedings of the7th InternationalModelica Conference, Como, Italy,2009:122-131.
    [91]Hubertus Tummecheit, Jonas Eborn and Falko Jens Wagner. Development of aModelica Base Library for Modeling of Thermo-Hydraulic Systems. ModelicaWorkshop2000Proceeding:41-51.
    [92]Christoph Richter, Christian Tischendorf, Ricardo Fiorenzano, etc. Using Modelica asa Design Tool for an Ejector Test Bench. In: Proceedings of the5th InternationalModelica Conference, Vienna, Austria,2006:501-508.
    [93]W. D. Steinmann, S. Zunft. TechThermo–A Library for Modelica Applications inTechnical ThermoDynamics. In: Proceedings of the2nd International ModelicaConference, Oberpfaffenhofen, Germany,2002:217-224.
    [94]C. Kral, A. Haumer and M. Plainer. Simulation of a thermal model of a surface cooledsquirrel cage induction machine by means of the SimpleFlow-Library. In: Proceedingsof the4th International Modelica Conference, Hamburg-Harburg, Germany,2005:213-218.
    [95]Thorben Vahlenkamp, Stefan Wishhusen. FluidDissipation–A Centralised Library forModeling of Heat Transfer and Pressure Loss. In: Proceedings of the6th InternationalModelica Conference, Bielefeld, Germany,2008:173-178.
    [96]Tobias. Hirsch, Markus Eck and Wolf-Dieter Steinmann. Simulation of transienttwo-phase flow in parabolic through collectors using Modelica. In: Proceedings of the4th International Modelica Conference, Hamburg-Harburg, Germany,2005:403-412.
    [97]Marcos Bockholt, Wilhelm Tegethoff, Nicholas Lemke etc. Transient Modeling of aContrllable Low Pressure Accumulator in CO2Refrigeration Cycles. In: Proceedingsof the6th International Modelica Conference, Bielefeld, Germany,2008:429-435.
    [98]Carsten Heinrich, Kai Berthold. A Modelica Library for Simulation of HouseholdRefrigeration Appliances Features and Experiences. In: Proceedings of the5thInternational Modelica Conference, Vienna, Austria,2006:677-684.
    [99]Torge Pfafferott, Gerhard Schmitz. Implementation of a Modelica Library forSimulation of Refrigeration Systems. In: Proceedings of the3rd InternationalModelica Conference, Link ping, Sweden,2003:197-206.
    [100] Helmut Kühnelt, Thomas B uml and Anton Haumer. SoundDuctFlow: A ModelicaLibrary for Modeling Acoustics and Flow in Duct Networks. In: Proceedings of the7th International Modelica Conference, Como, Italy,2009:519-525.
    [101] Karin Dietl, Kilian Link and Gerhard Schmitz. Thermal Separation Library:Examples of Use. In: Proceedings of the8th International Modelica Conference,Dresden, Germany,2011:28-38.
    [102] Lutz Morawietz, Solvio Risse, Thomas Christ. Modeling an automotive power trainand electrical power supply for HiL application using Modelica. In: Proceedings ofthe4th International Modelica Conference, Hamburg-Harburg, Germany,2005:301-307.
    [103] Juan I. Videla, Bernt Lie. A New Energy Building Simulation Library. In:Proceedings of the5th International Modelica Conference, Vienna, Austria,2006:685-693.
    [104] Stefan Wischhusen, Gerhard Schmitz. Numerical Simulation of Complex Coolingand Heating Systems. In: Proceedings of the2nd International Modelica Conference,Oberpfaffenhofen, Germany,2002:183-191.
    [105] F. Felgner, S. Agustina, R. Cladera Bohigas, etc. Simulation of Thermal BuildingBehaviour in Modelica. In: Proceedings of the2nd International ModelicaConference, Oberpfaffenhofen, Germany,2002:147-154.
    [106] Michael Wetter. Modelica Library for Building Heating, Ventilaiton andAir-Conditioning Systems. In: Proceedings of the7th International ModelicaConference, Como, Italy,2009:393-402.
    [107] Hubertus Tummescheit, Jonas Eborn, Katrin Pr lβ. AirConditioning–a ModelicaLibrary for Dynamic Simulation of AC Systems. In: Proceedings of the4thInternational Modelica Conference, Hamburg-Harburg, Germany,2005:185-192.
    [108] Boris Michaelsen, Joerg Eiden. HumanComfort Modelica-Library Thermal Comfortin Buildings and Mobile Applications. In: Proceedings of the7th InternationalModelica Conference, Como, Italy,2009:403-412.
    [109] Christian Hoffmann, Jens Kahler. Object-Oriented simulation of energy supplysystems on the basis of renewable energy. In: Proceedings of the3rd InternationalModelica Conference, Link ping, Sweden,2003:189-196.
    [110] Andreas Idebrant, Lennart N s. Gas Turine Applications using ThermoFluid. In:Proceedings of the3rd International Modelica Conference, Link ping, Sweden,2003:359-366.
    [111] Francesco Casella, Alberto Leva. Modelica open library for power plant simulation:design and experimental validation. In: Proceedings of the3rd InternationalModelica Conference, Link ping, Sweden,2003:41-50.
    [112] Baligh EL HEFNI, Beno t BRIDE, Bruno PECHINE. Two Steady State CHPModels with Modelica: Mirafiori overall Model and Multi-configuration BiomassModel. In: Proceedings of the6th International Modelica Conference, Bielefeld,Germany,2008:585-592.
    [113] J. Buschle, W. D. Steinmann, R. Tamme. Analsis of steam storage systems usingModelica. In: Proceedings of the5th International Modelica Conference, Vienna,Austria,2006:235-242.
    [114] Mannuel Ljubijankic, Christoph Nytsch-Geusen, Steffen Unger. Modeling ofcomplex thermal energy supply systems based on the Modelica-Library FluidFlow.In: Proceedings of the7th International Modelica Conference, Como, Italy,2009:335-340.
    [115] Kristian Tuszynski, Jan Tuszyński, Karl Sl ttorp. HydroPlant–a Modelica Libraryfor Dynamic Simulation of Hydro Power Plants. In: Proceedings of the5thInternational Modelica Conference, Vienna, Austria,2006:251-257.
    [116] Antonio Cammi, Francesco Casella, Marco E. Ricotti, etc. Object-OrientedModeling, Simulation and Control of the IRIS Nuclear Power Plant with Modelica.In: Proceedings of the4th International Modelica Conference, Hamburg-Harburg,Germany,2005:423-432.
    [117] Leo Gall, Kilian Link, Haiko Steuer. Modeling of Gas-Particle-Flow and HeatRadiation in Steam Power Plants. In: Proceedings of the8th International ModelicaConference, Dresden, Germany,2011:610-615.
    [118] Fran ois E. Cellier, Jürgen Greifeneder. ThermoBondLib–A New Modelica Libraryfor Modeling Convective Flows. In: Proceedings of the6th International ModelicaConference, Bielefeld, Germany,2008:163-272.
    [119] Modelon AB.http://www.modelon.com/products/modelica-libraries/hydro-power-library/.
    [120] Modelon AB.http://www.modelon.com/products/modelica-libraries/liquid-cooling-library/.
    [121] Modelon AB.http://www.modelon.com/products/modelica-libraries/thermal-power-library/.
    [122] Rüdiger Franke, Francesco Casella, Martin Otter, etc. Stream Connectors–AnExtension of Modelica for Device-Oriented Modeling of Convective TransportPhenomena. In: Proceedings of the7th International Modelica Conference, Como,Italy,2009:108-121.
    [123] Jürgen Dersch, Andreas Mathijssen, Martin Roeb, etc. Modeling of a Solar ThermalReactor for Hydrogen Generation. In: Proceedings of the5th International ModelicaConference, Vienna, Austria,2006:441-448.
    [124] Julia Fahlke, Stephan Püschel, Frank Hannemann, etc. Modeling of the GasificationIsland with Modelica. In: Proceedings of the6th International Modelica Conference,Bielefeld, Germany,2008:421-427.
    [125] Christian Fleβner, Stefen Petersen, Felix Ziegler. Simulation of an absorption chillerbased on a physical model. In: Proceedings of the7th International ModelicaConference, Como, Italy,2009:312-317.
    [126] Hubertus Tummescheit, Jonas Eborn. Chemical Reaction Modeling withThermoFluid/MF and MultiFlash. In: Proceedings of the2nd International ModelicaConference, Oberpfaffenhofen, Germany,2002:31-39.
    [127] Torge Pfafferott, Gerhard Schmitz. Modeling and Simulation of RefrigerationSystems with the Natual Refrigerant CO2. In: Proceedings of the2nd InternationalModelica Conference, Oberpfaffenhofen, Germany,2002:145-1-145-9.
    [128] J rg Ungethüm. Fuel Cell System Modeling for Real-time Simulation. In:Proceedings of the4th International Modelica Conference, Hamburg-Harburg,Germany,2005:67-74.
    [129] L. J. Yebra, M. Berenguel, S. Dormido, etc. Modeling and Simulation of CentralReceiver Solar Thermal Power Plants. In: Proceedings of the4th InternationalModelica Conference, Hamburg-Harburg, Germany,2005:413-421.
    [130] Hubertus Tummescheit. Design and Implemention of Object-Oriented ModelLibraries using Modelica:[PHD Thesis]. Lund, Holland: Lund Institute ofTechnology,2002.
    [131]12150L编写组.12150L柴油机[M].北京:国防工业出版社,1974.
    [132]刘毅,周大森,张红光.车用内燃机冷却系统动态传热模型.内燃机工程,2007,28(3):49-51.
    [133]于海洋.发动机冷却系统匹配设计及动态特性仿真:[硕士论文].镇江:江苏大学,2007.
    [134]宋海华.精馏模拟.天津:天津大学出版社,2005.
    [135] Reid, R.C., Prausnitz, J.M., Poling, B.E., The properties of gases and liquids (4thedition). New York: McGraw-Hill,1987.
    [136]刑翼腾. IGCC电站空分系统的研究与建模:[硕士论文].北京:清华大学,2003.
    [137] A. P. Gagge, J. A. J. Stolwijk, Y. Nishi. An effective temperature scale based on asimple model of human physiological regulatory response. ASHRAE Transactions,1971,70:247-262.
    [138] D. Fiala, K. J. Lomas, M. Stohrer. A computer model of human therm oregulationfor a wide range of environmental conditions: the passive system. Journal of AppliedPhysiology,1999,87(5):1957-1972.
    [139] M. Salloum, N. Ghaddar. A new transient bioheat model of the human body and itsintegration to clothing models. International Journal of Thermal Sciences,2007,46(4):371-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700