用户名: 密码: 验证码:
中扬子区海相地层流体特征及其与油气保存关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对中扬子地区海相地层年代老、后期构造活动强、原生油气藏经历多次破坏改造,油气演化和富集规律复杂的特点,从基础工作入手,针对海相地层油气保存研究之重点和难点,开展了大量的文献调研和基础资料收集工作。以构造地质学、流体化学及流体封存箱等石油地质学理论为指导,以构造形成与演化为主线,分析构造演化过程中的流体化学-动力学响应特征,恢复与重现流体化学-动力学运移轨迹,建立了中扬子区海相地层现今流体封存箱系统油气保存有效性综合评价指标体系,分析流体封存箱演变史,明确流体封存箱油气成藏主控因素,预测出有利于油气保存的勘探区带。
     取得的主要认识及创新性成果如下:
     (1)中扬子区的构造演化具有多期性,构造变形具有多层性,先后经历了加里东整体沉降期、海西-印支大隆大坳期、早燕山强烈变形变位期、晚燕山-喜马拉雅伸展-拗陷期等四个阶段,早燕山期为中扬子区构造主要形成时期。
     (2)采用古水动力场恢复与流体动力学数值模拟技术,根据中扬子区域构造运动的多期性、沉积与剥蚀作用、水动力条件,把研究区不同海相储层地下径流演化过程划分为加里东期、海西-早印支期、晚印支-早燕山期、晚燕山-喜马拉雅期2-4个水文地质旋回,恢复和重建了海相储层的古水动力场。根据储层水动力场态势及地下水径流汇聚特点,提出了研究区有利于油气聚集的水动力学模式:低势圈闭型、低势半圈闭型、势梯度陡变型与台缘型和流势马鞍型等。通过储层流体势场剖析,揭示出研究区不同构造带水文地质条件的差异性和复杂性,以储层水汇流模型、径流继承性、埋藏封闭条件和水化学特征等作为评价因子,预测了中扬子区海相储层油气聚集有利区。
     (3)利用地下水地球化学因子转化分析技术,通过大量薄片之矿物成分与孔洞缝充填物的鉴定与统计,中扬子区海相地层识别出:大气淡水溶蚀、溶洞、溶缝、泥质充填去白云化及淡水白云石组合;黄铁矿、泥岩压释水及白云石溶蚀重结晶组合;构造破裂、石英沉淀、黄铁矿沉淀、异形白云石、有机溶蚀组合等,与之相对应的水化学环境分为:准同生期近地表蒸发超盐度水介质环境;浅埋藏低温咸水环境;深埋藏中-高温卤水环境等。在解剖储层水动力场和水化学特征的基础上,首次提出与建立了地层水化学成因演化序列和模式。
     (4)采用流体地球化学示踪技术,经流体碳、氧、锶同位素和包裹体的综合研究表明:湘鄂西大部分地区寒武系流体向下伏震旦系灯影组运移和向上覆奥陶系储层运移,由于所分析样品主要形成于石油热裂解后,说明下组合中分隔流体的封隔层已失效,湘鄂西区下组合及下伏震旦系已无形成大规模油气藏的可能。鄂西渝东区三叠系和二叠系中的流体主要来自于上二叠统,且受地表渗入水影响小,海相上组合中未见下伏早古生界流体加入,如果以古生界作为勘探目的层,下组合具有相对较好的保存条件。江汉平原区在早期流体充注时,流体来自于下伏寒武系,下伏古生界与上覆三叠系的流体相互连通,早期古生界的保存条件相对较差;晚期流体充注时,早古生代地层与中生代地层中的流体互不连通,即晚期保存条件相对较好。但流体包裹体拉曼分析表明,海相地层中可能缺少较大规模的油气充注。探讨了流体化学-动力学运移轨迹,分析了与流体运移轨迹具成生联系的油气保存体系的完整性与继承性。
     (5)依照有效烃灶对中扬子区海相地层流体封存箱进行统一划分,将中扬子区海相地层在纵向上划分为4个主要的流体封存箱单元,自下而上分别为Ⅰ-流体封存箱单元(∈1-Z)、Ⅱ-流体封存箱单元(O-∈2)、Ⅲ-流体封存箱单元(S)和Ⅳ-流体封存箱单元(T1-D)。
     (6)采用成藏动力学理论,探讨油气成藏主控因素。研究结果表明:保存条件是中扬子区海相油气成藏的关键因素,而构造隆升剥蚀、断裂活动、流体保存的继承性是影响油气保存的三大要素。综合考虑了地层出露情况,特别是侏罗系覆盖程度;后期构造作用强度及断裂的封堵性;水文地质条件与流体化学-动力学行为特征;流体封存箱的现今压力与古压演化;古流体来源、古流体跨层运移层位与运移规模、古流体的封存性好坏及流体保存条件演变等诸因素及其成因联系,建立了中扬子区海相地层现今流体封存箱系统油气保存有效性综合评价指标体系。
     (7)按照已建立的中扬子区海相地层现今流体封存箱系统油气保存有效性综合评价指标体系为标准,结合流体封存箱油气成藏主控因素分析,在流体封存箱单元内对中扬子区海相地层油气有利勘探区带进行预测。其中江汉平原区1个区块为II-封存箱单元油气有利勘探区带;江汉平原区2个区带和鄂西渝东区2个区带为III-封存箱单元油气有利勘探区带;鄂西渝东区3个区块为IV-封存箱单元油气有利勘探区带。湘鄂西区无勘探有利区带。
In this paper, the features of marine strata in the middle Yangtze region are that the strata is old, the post-tectonic activity was strong, a number of original reservoir damaged reconstruction happen, the evolution and enrichment of oil and gas is complex. To these features, it starts from the basic work for oil and gas preservation’s research focus and difficult in marine strata, and carry out a large number of literature investigation and basic data collection. Regard the petroleum geology theory as guidelines, for example, structural geology, fluid chemistry and fluid compartment etc. , taking structure formation and evolution as the main line, analyze the fluid chemistry - the characteristics of dynamic response in the process of tectonic evolution, restore and reproduce the fluid chemistry - kinetics migration trajectory, construct the marine strata in the middle Yangtze region’s current index system of oil and gas fluid compartment to preserve the effectiveness of comprehensive evaluation, analyze the evolution of fluid compartment, definite the main controlling factors of oil and gas preservation system, and forecast the favorable exploration region. The main outcomes and innovation are as follows:
     (1)In the middle Yangtze region, the tectonic evolution is multi-phase, structure deformation is multi-storey. and it has gone through four phases, such as Caledonian, Hercynian - Tai Au Dalong Indosinian period, as early as a strong deformation of the Yanshan period shift, night Yanshanian - Himalayan extension , early Yanshanian is the main forming period of middle Yangtze region.
     (2)By using ancient water dynamic field recovery and fluid dynamics simulation technology, according to the multi-phase of tectonic movement in the Yangtze region, the role of deposition and erosion, hydrodynamic conditions, dividing different marine reservoir’s underground runoff evolution of the study area into Caledonian period, Hercynian - Indosinian early, late Indo-Chinese - as early as Yanshanian late Yanshanian - Himalayan hydrogeological cycles 2-4, the rehabilitation and reconstruction of the ancient marine reservoir hydrodynamic field. Dynamic field in accordance with reservoir water and groundwater runoff trend convergence characteristics of the study area is conducive to accumulation of oil-gas-water hydrodynamic model: low-power trap-type, low-power semi-trap type, variant steep potential gradient and the platform margin and saddle-shaped, such as streaming potential. Potential field through the fluid analysis of the study area reveals a different structure with different hydrogeological conditions and the complexity of the convergence model to reservoir water, runoff succession, burying the closure conditions and chemical characteristics of water as a rating factor, forecast Yangtze marine areas of favorable reservoir of natural gas gathering section.
     (3) By using groundwater geochemical factor transformation analysis technique, observing a large number of thin section and identification and statistics the mineral composition and pore filling material, the marine strata in the Yangtze region identified: atmospheric corrosion of fresh water, cave, dissolved joints, muddy and filled to Baiyun combination of fresh dolomite; pyrite, shale discharged ballast water and dolomite recrystallization solution portfolio; tectonic rupture, quartz precipitation, precipitation of pyrite, dolomite shaped, organic composition, such as corrosion. Corresponding to the chemical environment of the water are: quasi-phase with the near-surface evaporation of ultra-salinity aqueous environment; shallow water buried in low-temperature environment; buried deep in - high-temperature brine environment. Reservoir in the anatomy of the hydrodynamic characteristics of field and water chemistry on the basis of the first with the establishment of the causes of the formation water chemistry and mode of sequence evolution.
     (4) By using fluid geochemical tracer technique, through the comprehensive study about the fluid of carbon, oxygen and strontium isotopes indicate that: the West in most areas of Hunan, Hubei, Cambrian V fluid downward migration Sinian Dengying Formation and upward review of Ordovician reservoir migration, mainly as a result of the analysis of samples formed in the pyrolysis oil, the description under the portfolio of letters separated by insulating fluid is invalidated, under the combination of Western Hunan, Hubei, and the underlying Sinian formation of large-scale oil and gas reservoirs is no longer possible . Western Hubei-Eastern Chongqing Triassic and Permian fluid in the main from the Upper Permian, and the infiltration of surface water by the impact of small, marine portfolio not on the underlying Paleozoic fluid as early as by adding, if the ancient Health sector as exploration for the purpose of layer, under the portfolio has a relatively good preservation conditions. Jianghan Plain area in the early filling fluid, the fluid from the underlying Cambrian, Paleozoic underlying and overlying Triassic connected fluid, early Paleozoic relatively poor preservation conditions; advanced fluid-filled when, as early as the Paleozoic and Mesozoic strata of the fluid are not connected, that is relatively good preservation conditions late. However, Raman analysis of fluid inclusions indicate that the lack of marine strata may be large-scale oil and gas filling. Of fluid chemistry - Kinetics of migration trajectory, analysis of fluid behavior and the trajectory associated with oil and gas into Health System preservation of the integrity and inheritance.
     (5) According to effective hydrocarbon kitchen, the fluid compartment in middle Yangtze region on marine strata is divided into four major units in vertically: bottom-up, respectivelyⅠ-fluid compartment unit (∈1-Z),Ⅱ- fluid compartment unit (O-∈2),Ⅲ- fluid compartment unit (S) andⅣ- fluid compartment unit (T1-D).
     (6) Through accumulation dynamic theory to explore the main controlling factors of accumulation. The results show that: to preserve the condition that in the Yangtze area marine hydrocarbon accumulation a key factor, and the tectonic uplift erosion, faulting, fluid to preserve the impact of the succession is the preservation of the three elements of oil and gas. Considering the exposed strata, in particular the extent of the Jurassic cover; late tectonism and fracture strength of the closure; hydro-geological conditions and fluid chemistry - the characteristics of dynamic behavior; fluid compartment of the present pressure and pressure evolution of the ancient ; palaeo-fluid source, cross-layer of palaeo-fluid migration and transport layer the size of the archive of paleo-fluid and fluid quality of the evolution of storage conditions and the causes of various factors such as contact was established in present-day marine strata in the Yangtze area fluid compartment the effectiveness of oil and gas preservation system comprehensive evaluation index system.
     (7) Regarding the having been established preservation oil and gas preservation efficiency comprehensive evaluation index system of currency fluid compartment system in middle Yangtze marine strata region as standard, combination of fluid compartment controlling factors of oil and gas reservoir analysis, forecast the favorable exploration region in fluid compartment unit. Of which: Jianghan Plain area for a block of unit II-compartment favorable oil and gas exploration zone; Jianghan plain area of zone 2 and Western Hubei-Eastern Chongqing zone 2 for III-compartment unit favorable oil and gas exploration zone; Western Hubei-Eastern Chongqing three blocks for the IV-compartment unit favorable oil and gas exploration zone. Western Hunan, Hubei, no favorable area for exploration.
引文
[1]陈安定,黄金明,杨芝文,地层水资料在油气保存条件评价中的应用-以江苏下扬子区海相中、古生界研究为例[J].南方油气,2003,16(2):1-7.
    [2]付孝悦,王津义,张汉荣,南方海相天然气保存机理及保存条件初探[J].海相油气地质,2002,7(2):44-47.
    [3]张萌,黄思静,张王月,锶同位素地层学在海相地层定年中的潜在价值[J].成都理工大学学报(自然科学版) ,2003,30(3):242-248.
    [4]王红,秦成明,王丽英,四川盆地下二叠统、上三叠统水动力场与天然气保存[J].石油勘探与开发,1997,24(5):29-32.
    [5]何生,唐仲华,陶一川,松南十屋断陷低压系统的油气水文地质特征[J].地球科学-中国地质大学学报,1995,20(1):79-84.
    [6]付孝悦,肖朝晖,陈光俊,等,晚印支期以来中国南方大陆的构造演化与油气分布[J].海相油气地质,2002,7(3):37-43.
    [7]陈世苹,白永飞,韩兴国,稳定性碳同位素技术在生态学研究中的应用[J].植物生态学报,2002,26(5):549-560.
    [8]陈安定,杨芝文,黄金明,等.扬子区中、古生界油气保存条件评价指标体系的讨论[J].南方油气,2002,17(4):10-13.
    [9](美)蒂尔波克,(美)比斯克编著,蔡希源,焦方正,戴少武,等译.实用构造法地下地质制图(第二版)[M].北京:中国石化出版社,2008.
    [10]陈洪德,庞林,倪新锋等.中上扬子地区海相油气勘探前景[J].石油实验地质,2007,29(1):13-18.
    [11]刘春平,王拥军,林娟华,等.江汉盆地印支-喜马拉雅期构造演化与海相地层油气成藏模式及勘探方向[J].中国石油勘探,2006,11(2):24-29.
    [12]刘新民,郭战峰,付宜兴.中扬子区东南缘下组合天然气勘探潜力分析[J].华南地质与矿产,2007,1:59-64.
    [13]范小林,潘文蕾,刘光祥.扬子地区中新生代盆地成盆深部过程及对古生代盆地叠加效果浅析[J].海相油气地质,2005,10(4):13-21.
    [14]郭彤楼,李国雄,曾庆立.江汉盆地当阳复向斜当深3井热史恢复及其油气勘探意义[J].地质科学,2005,40(4):570-578.
    [15]郭战峰,杨振武,刘新民,等.江汉平原古生界构造结构特征及油气勘探方向[J].海相油气地质,2006,11(2):9-16.
    [16]李昌鸿,刘新民,付宜兴,等.江汉平原区中、古生界构造特征及演化[J].地质科技情报,2008,27(2):34-38.
    [17]梁慧社,张建珍,夏义平.平衡剖面技术及其在油气勘探中的应用[M].北京:地质出版社,2002.
    [18]粱兴,叶舟,吴少华,等.赋予含油气系统内涵的南方海相含油气保存单元及其类型[J],海相油气地质,2003,8(3):81-88.
    [19]卢庆治,马永生,郭彤楼,等.鄂西-渝东地区热史恢复及烃源岩成烃史[J].地质科学,2007,42(1):189-198.
    [20]马力,陈焕疆,甘克文,等.中国南方大地构造和海相油气地质[M].北京:地质出版社,2004.
    [21]王韶华,宋明雁,李国雄,等.江汉盆地南部二叠系烃源岩热演化特征[J].油气地质与采收率,2002,9(3):31-33.
    [22]肖开华,陈红,沃玉进,等.江汉平原区构造演化对中、古生界油气系统的影响[J].石油与天然气地质,2005,26(5):688-693.
    [23]刘方槐等.油气田水文地质学原理[M].石油工业出版社,1991.
    [24]真炳钦次著,陈荷立等译.压实与流体运移[M].石油工业出版社,1982.
    [25]周兴熙.封存箱辨义及主要类型[J].石油实验地质,2006,28(5):424-429
    [26] L.H.卡普钦科.油气聚集理论的水文地质基础[M].石油工业出版社,1991.
    [27] B.A.克罗托娃.形成油田的水文地质因素[M].中国工业出版社,1966.
    [28] E.C.戴尔勃格.石油勘探实用水动力学[M]石油工业出版社,1992.
    [29]宋焕荣,黄尚瑜.高陡构造带油气形成的水动力模式[J].环境地质工程论文集[D],1996.
    [30] B.N.久宁.深部地下径流研究方法[M].地质出版社,1990.
    [31]黄尚瑜,宋焕荣.川东石炭系岩溶形成演化环境[J].成都理工大学学报,1997,24(增刊):128-135.
    [32] A.G.柯林斯,林文庄等译.油田水地球化学[M].石油工业出版社,1984.
    [33]黄尚瑜,宋焕荣.碳酸盐岩的溶蚀与环境温度[J].中国岩溶,1987,6(4):287-296.
    [34]覃建雄.江汉盆地海相地层油气勘探前景的包裹体证据[J].地球学报,1999,20(1):55-62.
    [35]胡进武,王增根,周炼,等.岩溶水锶元素水文地球化学特征[J].中国岩溶,2004,(1):37-42.
    [36]黄思静,刘树根,李国蓉,等.奥陶系海相碳酸盐锶同位素组成及受成岩流体影响[J].成都理工大学学报,2004,31(1):1-7.
    [37]卢焕章,李秉伦,等.包裹体地球化学[M].地质出版社,1990.
    [38]石和,黄思静,沈立成,等.川黔上古生界锶同位素演化曲线的地层学意义[J].地层学杂志,2002,26(2):108-110.
    [39]石和,黄思静,沈立成,等.重庆秀山寒武纪海相碳酸盐的锶同位素组成及其地层学意义[J].地层学杂志,2003,27(1):71-76.
    [40]黄思静,张萌,孙治雷,等.川东L2井三叠系飞仙关组碳酸盐样品的锶同位素年龄标定[J].成都理工大学学报(自然科学版),2006,33(2):111-116.
    [41]黄思静,石和,张萌,等.龙门山泥盆纪锶同位素演化曲线的全球对比及海相地层的定年.自然科学通报,2002,12(9):945-951.
    [42]黄思静,孙治雷,吴素娟,等.三叠纪全球海水的锶同位素组成及主要控制因素[J].矿物岩石,2006,26(1):43-48.
    [43]张水昌,Moldowan J M,Maowen Li.分子化石在前寒纪地层中的异常分布及其生物学意义[J].中国科学(D辑),2001,31(4):34-37.
    [44]李明诚.地壳中的热液流体活动与油气运移[J].地学前缘,1995,2(3-4):155-162.
    [45]李明诚.石油与天然气运移[M].2004,北京:石油工业出版社.
    [46]李晓清,汪泽成,张兴为等.四川盆地古隆起特征及对天然气的控制作用[J].石油与天然气地质,2001,22(4):347-351.
    [47]李一平.四川盆地已知大中型气田成藏条件研究[J].天然气工业,1996(增刊):1-12
    [48]梁狄刚,陈建平.中国南方高过成熟区海相油源对比问题[J].石油勘探与开发,2005, 32(2):8-14.
    [49]刘顺,罗志立,熊荣国,等.从实验岩石变形过程探讨四川盆地加里东古隆起的形成机制[J].成都理工学院学报,2000,27 (4):343-347.
    [50]朱炎铭,秦勇,范炳恒,等.黄骅坳陷歧古1井古生界烃源岩的二次生烃演化[J].2001,地质学报,75(3):426-431.
    [51]刘宝泉,贾蓉芬.中上元古界生油岩中正异构烷烃热演化的特征及热模拟实验[J].地球化学,1990,3:242-248.
    [52]刘成林,李景明,蒋裕强,朱玉新.川东小河坝砂岩天然气成藏地球化学研究[J].西南石油学院学报,2002,24(1):46-49.
    [53]刘德汉,肖贤明,熊永强,等.四川东部飞仙关组鲕滩气藏储层自然硫混溶包裹体及硫化氢成因研究[J].中国科学D辑(地球科学) 2006,520-532.
    [54]刘树根,罗志立,庞家黎,等.四川龙门山地区的峨眉地裂运动[J].四川地质学报,1991,11(3):174-180.
    [55]罗啸泉,郭东晓,蓝江华.威远气田震旦系灯影组古岩溶与成藏探讨[J].沉积与特提斯地质,2001,21(4):54-60.
    [56]罗志立,刘顺,徐世琦.四川盆地震旦系含气层中有利勘探区块的选择[J].石油学报,1998,19(4):1-7.
    [57]彭晓蕾,高玉巧,刘立.含油气盆地中热流体活动的流体包裹体依据[J].世界地质,2005,24(4):350-356.
    [58]邱楠生.中国地区沉积盆地热演化和成烃史分析[J].石油勘探与开发,2002,29(1):6-9.
    [59]冉隆辉,谢姚祥,王兰生.从四川盆地解读中国南方海相碳酸盐岩油气勘探[J].石油与天然气地质,2006,27(3):289-294.
    [60]汤良杰,吕修祥,金之钓.中国海相碳酸盐岩层系油气地质特点、战略选区思考及需要解决的主要地质问题[J].地质通报,2006,25(9):1032-1035.
    [61]王兴志,穆曙光,方少仙,等.四川盆地西南部震旦系白云岩成岩过程中的孔隙演化[J].沉积学报,2000,18(4):549-554.
    [62]王一刚,陈盛吉,徐世琦.四川盆地古生界-上元古界天然气成藏条件及勘探技术[M].北京:石油工业出版社,2001.
    [63]李伟,赵克斌,刘崇禧著.含油气盆地水文地质研究[M].北京:地质出版社,2008
    [64]徐世琦,洪海涛,李翔.四川盆地震旦系油气成藏特征与规律[J].天然气勘探与开发,2002,25(4):1-5.
    [65]徐世琦,洪海涛,师晓蓉.乐山-龙女寺古隆起与下古生界含油气性的关系探讨[J].天然气勘探与开发,2002,25(3):10-15.
    [66]徐世琦,李天生.四川盆地加里东古隆起震旦系古岩溶型储层的分布特征[J].天然气勘探与开发,1999,22(1):14-18.
    [67]杨家静.四川盆地乐山-龙女寺古隆起震旦系油气藏形成演化研究.西南石油学院博士论文[D],2002.
    [68]陈红汉,李纯泉,张希明,等.运用流体包裹体确定塔河油田油气成藏期次及主成藏期[J].地学前缘,2003,10(1):190.
    [79]王捷,关德范等.油气生成运移聚集模型研究[M].北京:石油工业出版社,1999.
    [70]李德生.迈向新世纪的中国石油地质学[J].石油学报,2000.21(2):1-8.
    [71]胡朝元等.成油系统概念在中国的提出及应用[J].石油学报,1996.17(1):1-10.
    [72]李贤庆、胡继平、许院宏.含油气系统基本理论与实践[J].《断块油气田》,2000,7(1):11-22.
    [73]郭旭升,梅廉夫,汤济广等.扬子地块中,新生代构造演化对海相油气成藏的制约[J].石油与天然气地质,2006,27(1):295-304.
    [74]成艳,陆正元,赵子路等,四川盆地西南边缘地区天然气保存条件研究[J].石油实验地质,2005,27(3):218-221.
    [75]戴鸿鸣,王顺玉,王海清等.四川盆地寒武系-震旦系含气系统成藏特征及有利勘探区块[J].石油勘探与开发,1999,26(5):16-20.
    [76]邓涛.四川盆地加里东古隆起的构造机制和成藏模式[J] .石油实验地质,1996,18 (4):356-360.
    [77]郭正吾,邓康龄.四川盆地形成与演化[M].北京:地质出版社,1994.
    [78]洪海涛,包强,张光荣.对四川盆地天然气资源的潜在接替层系-震旦、寒武系有利目标区块的评价[J].成都理工学院学报,2000,27(增刊):143-146.
    [79]侯方浩,方少仙,王兴志,等.四川盆地灯影组天然气藏储渗体再认识[J].石油学报,1999,20(6):16-21.
    [80]胡守志,王廷栋,付晓文,等.四川盆地中部震旦系天然气勘探前景研究[J].石油实验地质,2005,27(3):222-225.
    [81]刘小玲,曾庆立,王韶华,等,当阳复向斜上组合生烃潜力及其含油气系统[J].海相油气地质,1997,2(3):45-51.
    [82]胡书毅,马玉新,田海芹.扬子地区寒武系油气藏地质条件[J].石油大学学报(自然科学版),1999,23(4):20-25.
    [83]雷怀彦,朱莲芳.四川盆地震旦系白云岩成因研究[J].沉积学报,1992,10(2):69-78.
    [84]徐国盛,刘树根.四川盆地天然气成藏动力学[M].地质出版社,2005.
    [85]徐国盛,刘树根.川西上三叠统高压封存箱与天然气成藏关系研究[J].成都理工学院学报,1999,26(4):411-417.
    [86]罗啸泉.四川盆地西部流体封存箱与天然气成藏的关系[J].特种油气藏, 2005,12(6):18-22.
    [87]盛贤才,王韶华.鄂西渝东地区石柱古隆起构造沉积演化[J].海相油气地质,2004,9(1-2):43-52.
    [88]应维华.保存条件对湘鄂西地区天然气藏形成的作用[J].天然气工业,1958,5(1):27-34.
    [89]胡晓凤.湘鄂西地区油气藏类型及勘探方向[J].石油与天然气地质,2002,23(3):300-306.
    [90]戴少武.湘鄂西下古生界油气成藏组合及可能模式探讨[J].江汉石油科技,2000,10(2):1-6.
    [91]郭战峰,陈红,等.江汉平原构造演化与中、古生界成藏模式探讨[J].资源环境与工程,2005,19(4):265-272.
    [92] Allegre C.J.,Gaillardet J.,Meynadier L. .The evolution of sea water strontium isotope in the last hundred million years: reinterpretation and consequence for erosion and climate models[J]. Eos,Transactions,American Geophysical Union,1996,77(46):325
    [93] Azmy K.,Veizer J.,Wenzel B. et al.. Silurian strontium isotope stratigraphy[J].GSA Bull, 1999,111(4):475-483
    [94] Bailey T. R.,Rosenthal Y.,McArthur J. M. et al.,Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth Planet. Sci. Lett.,2003,212:307-320
    [95] Bailey T.R., McArthur J.M.,Prince H. et al., Dissolution methods for strontium isotope stratigraphy: whole rock analysis. Chem. Geol.,2000,167:313-319
    [96] Bertram C.I.,Elderfield H.,Aldridge R.J. et al.,87Sr/86Sr,143Nd/144Nd and REEs inSilurian phosphatic fossils,Earth Planet. Sci. Lett.,1992,113:239-249
    [97] Bralower T.J.,Fullagar P. D.,Paull C. K. et al.,Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. GSA Bull.,1997,109:1421-1442
    [98] Burke W.H.,Denison R.E.,Hetherington E.A. et al.,Variation of 87Sr/86Sr throughout Phanerozoic time.Geology,1982,10:516-519
    [99] Barker C E and Elders W A. Vitrinite reflectance geothermometry and apprant heating duration in the Cerro Prieto geothermal field. Geothermics,1981,10:207-223
    [100] Bredehoeft J D,J.B.Wesley,T.D.Fouch.Simulations of the Origin of Fluid Pressure, Fracture Generation,and the Movement of Fluids in the Uinta Basin,Utah.AAPG Bulletin,1994,78(11):1729-1747.
    [101] Christoph K.,Kozur H.W.,Bruckschen P. et al.,Strontium isotope evolution of Late Permian and Triassic seawater. Geochimical et Cosmochimica Acta,2003,67 (1) :47~62
    [102] Demaison G.,The generative basin concept,in Demaison G.,and Murris R.J.,eds., Petroleum geochemistry and basin evaluation: AAPG Memoir 35,1984,1-14.
    [103] Ferket H,F Roure, R Swennena, SOrtuňo. Fluid migration placed into the deformation history of fold-and-thrustbelts an example from the Veracruz basin (Mexico). Journal of Geochemical Exploration,2000,(69):275-279.
    [104] Garven G.. A hydrogeologic model for the formation of the giant oil sands deposits,of the western Canada sedimentary basin: American Journal of Science,1989,289: 105-166.
    [105] Hubbert,M. K. entrapment of petroleum under hydrodynamic conditions,AAPG bulletin,1953,37:1954-2026.
    [106] Hunt J M. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG. 1990,74(1):1-12.
    [107] Karweil,J. Die Metamorphose der Kohlen vom Standpunkt der physikalischen Chemie. Z.Deutsch. Geol.Ges.,1955,107:132-139
    [108] Lerche I,Yarzab R F,Kendall. Determination of paleoheat flux from vitrinite reflectance data. American Association of Petroleum Geologists Bulletin,1984,68(11):1704-1717.
    [109] Losh S,L Walter,P Meulbroek,et al.Reservoir fluids and their migration into the South Eugene Island Block 330 reservoirs,offshore Louisiana.AAPG Bulletin,2002,86(8):1463-1488.
    [110] Lee M K,and C.M.Bethke,Groundwater flow,late cementation,and petroleum accumulation in the Permian Lyons Sandstone,Denver basin: AAPG bulletin,1994,78: 217-237.
    [111] Ma,Y. S.,X. S. Guo,T. L. Guo,The Puguang gas field??New giant discovery in the mature Sichuan basin,SW China: AAPG Bulletin,2007,v.91,p. 627-643.
    [112] Magoon L.B.,The petroleum system-a classification scheme for research,resource assessment,and exploration (abs)[J].AAPG Bulletin,1987,71(5):587.
    [113] Magoon L.B.,and Dow W.G.,The petroleum system: from source rock to trap[A].AAPG Memoir 60,1994.
    [114] Munn,M. J.,Studies in the application of the anticlinal theory of oil and gas accumulation: Economic Geology,1909,4:141-157.
    [115] Macgregor D S.Factors controlling the destruction or preservation of giant light oilfield.Petroleum Geoscience,1996,2:197-217.
    [116] Osborne M J and Swarbrick R E. Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG,1997,81:1023-1041.
    [117] Perrodon A.,and Masse P.,Subsidence,sedimentation and petroleum systems[J].Journal of Petroleum Geology,1984,7(1):5-26.
    [118] Cander H. Interplay of water-rock interaction efficiency,unconformities,and fluid flow in a carbonate aquifer:Floridan aquifer system. In : Budd D Saller A and Harris P (Ed),Unconformities and porosity in carbonate strata. 1995,103-124
    [119] Hill C A.H2S-related porosity and sulfuric acid oil-field karst. In : Budd D Saller A and Harris P (Ed),Unconformities and porosity in carbonate strata. 1995,301-306
    [120] Mylroie J.,Carew J. Kast development on Carbonate Islands. In : Budd D Saller A and Harris P (Ed),Unconformities and porosity in carbonate strata.1995,55-103
    [121] Wanger P D.,TaskerDR.,Wahlman G P.Reservoir degradation and compartmentalization below subaerial unconformities:limestone examples from West Texas,
    [122]Scholle,P. A.and kevin,S. L. . Fluid-inclusion studies of regionally extensive epigentic dolomite,Bonneterre dolomite(scamtbrian )[J].southeastern Missouri. Geological Sociely of American Bulletin,1992,104:675-683.
    [123]Christoph Korte,Heinz W. Kozur,and Jan Veizer delta 13C and delta18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature .Palaeogeography,Palaeoclimatology,Palaeoecology (October 2005),226(3-4):287-306.
    [124]Christoph Korte,Torsten Jasper,Heinz W. Kozur,and Jan Veizer delta 18O and delta 13C of Permian brachiopods; a record of seawater evolution and continental glaciation. Palaeogeography,Palaeoclimatology,Palaeoecology (August 2005),224(4):333-351.
    [125]Christoph Korte,Heinz W. Kozur,Strontium isotope evolution of Late Permian and Triassic seawater Geochimica et Cosmochimica Acta (January 2003),67(1):47-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700