用户名: 密码: 验证码:
悬臂抗滑桩土拱效应的静力及动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬臂桩作为一种常见的支护方式而被用于边坡,基坑等工程中,尽管悬臂桩的应用广泛,然而它的支护原理却研究相对缓慢,特别是基于桩后成拱的荷载传递原理以及拱在动力作用下的响应情况,目前所见文献不多。论文依托于重庆市百名工程技术高端人才计划项目“悬臂式抗滑桩三维土拱效应及其动力灾变研究”,通过对悬臂式抗滑桩桩后土体受水平推力形成水平拱以及桩间土体受沉降压缩形成竖直拱效应进行理论分析以及有限元动力模拟分析,并与室内静力试验和室外大型试验现象及监测数据进行对比,其主要工作及研究结论如下:
     1)将悬臂抗滑桩土拱效应分解为水平拱和竖直拱两种情况,水平拱是由于在水平面内的推力以及桩背面作为拱脚形成的,因此,主要存在于桩后土体中;竖直拱是由于竖直面内的重力以及桩侧面的摩擦阻力作为拱脚而形成的,因此,存在于两桩之间的土体,由于悬臂式抗滑桩主要承受水平推力,因此桩后土体形成的水平拱是悬臂桩土拱效应的主要拱形,而桩间土体在竖直平面内形成的竖直拱效应作用强度较弱。
     2)研究了桩后土体形成水平拱的极限荷载,在前人得出水平拱的合理拱轴线为抛物线的基础上,结合土体的强度准则,求解水平拱的极限荷载公式以及水平拱沿深度方向的空间变化规律,分析得出:水平拱拱高随土体内摩擦角的增大而增大,沿深度方向拱效应逐渐增强。通过有限元对不同工况的模拟,对水平拱随外荷载的迁移规律和桩后土体的挤密区域进行了研究,结果表明:随着外荷载的增加,水平拱向远离桩的方向迁移,土体的挤密厚度变化较小;考虑桩间设板的平面二维分析,工况分为:桩前设板和桩后设板,通过外荷载的变化研究可以得知:在加设挡板后桩后土体的极限荷载增加2.5倍左右,土体的应力分布也更加复杂。
     3)通过对桩间土的竖直拱力学模型研究,得出竖直拱的合理拱轴线为悬链线,结合土体应力状态随深度的变化特征以及普氏拱理论,求得竖直拱拱脚的埋深以及影响因素。通过有限元模拟中桩土接触面的应力变化,验证了竖直拱拱脚位置,通过外荷载不断增加的分析可知:在荷载增加到一定程度时,在沿桩长的方向会在不同埋深处形成多个竖直拱。
     4)在悬臂桩三维土拱效应的分析中,桩后土体为粉质粘土,桩宽为2m,桩间净距为2.5m,悬臂段长度为8m的模型下,桩后土体第一主应力成拱效应明显,沿深度方向拱效应先增加后减小,在桩后土体上部最大拱顶点距桩的距离为桩宽的3/4,桩间净距的3/5;在距地表埋深3m处第一主应力峰值消失,可见形成土拱的有效深度为3m左右,为悬臂段桩长的2/5。通过改变悬臂段的高度分析对桩后土拱效应的影响,在空间内土拱曲面位于抗滑桩悬臂段上部土体的位置,结合不同悬臂段高度的模型分析,对比拱顶随深度变化可知随着悬臂抗滑桩悬臂段高度的增加,土拱效应增强,影响区域增大。
     5)通过二维水平拱和竖直拱的动力分析研究,并与对应的静力下土拱效应进行对比分析,其结果表明:在动力作用下,水平拱存在与否与地震波的输入方向密切相关,当地震力沿垂直于桩正面作用时,土拱效应增强,当地震力沿垂直于桩侧面作用时,拱效应消失。
     6)通过建立悬臂桩支护边坡的三维模型,分析桩后土拱的空间效应,并与室内试验和室外大型原位试验进行对比验证,结果表明:桩间三维土拱效应沿桩长方向先增大后逐渐减小,从而导致桩间土体主要集中在上部发生垮塌;建立复杂的悬臂桩三维动力分析模型,根据建筑抗震设计规范,常遇地震时程分析对应的基本加速度值为0.2g,地震波选取EL-Centro波,工程所在地场地类型属Ⅱ类场地,抗震设防烈度为8度,工况分为:桩间不设板和桩后设板两种情况,分析悬臂式抗滑桩桩间滑体内拱效应在静力和动力作用下的土体的位移响应和应力响应,其分析结果表明:悬臂桩土拱效应在地震力作用下的消散或加强与地震波的输入方向相关,当地震力沿垂直于桩正面作用时,土拱效应增强,桩后土拱拱体挤密区的动力响应相对其它区而言,位移最小,应力最大,以及土拱的形成区域随着悬臂段高度的增加而增大的变化特征。
Cantilever pileis used in the slope and foundation pit engineering as a kind ofcommon supporting method, however,the research of supporting principle is relativelyslowdespite the wide application of cantilever pile, especially based on the load transferprinciple of the arch and arch in the dynamic response, few studies of this kind ofproblem. Thisresearch work is being supported by grants from the the hundreds ofengineering technique talents project "cantilever anti-slide pile of three-dimensional soilarching effect and the dynamic disaster", based on the cantilever pile and pile after archeffect between theoretical analysis and finite element simulation analysis, the mainwork and research conclusions are as follows:
     1) The cantilever anti-slide pile is decomposed into horizontal and vertical archarch two cases, horizontal arch is due to the thrust in the plane of the horizon and thearch foot is formed on the back of piles, it mainly exist in the soil of the back piles;Vertical arch is due to the vertical surface of gravity and friction resistance on thesurface as the arch foot, which formed in the soil between piles, because of thecantilever anti-slide pile is mainly horizontal thrust, so the horizontal arch in soil is themain arch, The vertical arch effect the earth pressure on baffle of the distributionbetween piles formed in the soil between piles in the vertical plane of the existence.
     2) Research on the horizontal arch in the soil between piles. on the level of the archis reasonable for the parabolic arch axis and on the basis of combining the strengthcriterion of soil, the ultimate load ofthe horizontal archand the change of arch rise alongthe depth of pile is solved, the result of analysis as folllow: the arch rise isincreasedwiththe increase of internal friction Angle of soil, the arch effect increased along the depthdirection.Through the finite element simulation of different working conditions, themigration regularity of horizontal arch with the external load and the pile of soilcompaction area, the results show that with the increase of the loading, the horizontalarch to move away from the direction of the pile, soil compaction thickness changessmaller; Consideration of plate of a two-dimensional analysis between the pile andworking condition can be divided into: after pile set before the board and board, throughstudying the change of outside load that: after adding baffle the ultimate load of pile soilincreased by2.5times, soil stress distribution is more complex.
     3) Through the mechanical model of vertical soil arch between piles, it is concluded that the reasonable arch axis vertical arch for catenary, combined with thefeature of soil mass stress state change with depth, and platts arch theory, calculated thevertical arch arch feet buried depth and influencing factors. Through the finite elementsimulation of the stress variation in the pile soil contact surface, verify the vertical archarch foot position, through the analysis of external load increasing known: when theload increases to a certain extent, along the direction of pile length will be formed in thedifferent buried deep in the multiple vertical arch.
     4) In the analysis of the cantilever pile three-dimensional soil arching effect, thepile for the silty clay soil, pile for2m wide, clear distance between piles is2.5m, thecantilever length of8m, under the model of pile soil after the first principal stressarching effect significantly, along the depth direction of the arch effect increases afterthe first decreases, and the upper soil pile after the biggest vaults point distance frompile to pile wide3/4,3/5of the clear distance between pile; From the surface of theburied depth of3m in the first principal stress peak disappear, visible form the effectivedepth of the soil arch is about3m, the2/5cantilever pile length. By changing the heightof the cantilever section analysis of pile been arch effect, the influence of soil archingwithin the space curved surface soil piles cantilever section is located in the upperposition, combined with different cantilever section height of model analysis,comparison vault with depth change with the increase of cantilever anti-slide pilecantilever section height, enhance the soil arch effect, influence area increased.
     5) Considering the finite element dynamic analysis on the computer and timerequirements for two-dimensional horizontal and vertical arch arch of the research ofdynamic analysis, and compared with the corresponding arch effect analysis onstaticstate, the results show that under the effect of power, the horizontal arch exists or not isclosely related to the seismic wave input direction, when the earthquake force along theapproximation is perpendicular to the axis of the arch effect, horizontal arch area stressvalue increases, the soil arch effect, when the earthquake force along the approximateparallel role in arch axis, horizontal arch effect; The vertical arch under earthquakeforce to enhance performance.
     6) Through the establishment of three-dimensional model of cantilever pile andslope, the analysis of pile been the space effect of arch, and compared with indoor testand outdoor large-scale in-situ test verification, the results show that thethree-dimensional soil arch effect between pile along the direction of the pile lengthdecreases after first increases, resulting in soil between piles are mainly concentrated in the upper collapsed; Complex three dimensional cantilever pile dynamic analysis modelis set up, according to the building seismic design code, often encounter earthquakeacceleration time history analysis of the corresponding basic value of0.2g, EL Centrowave, seismic wave selected engineering location site type genus Ⅱ class site, seismicfortification intensity of8degrees, operating mode can be divided into: do not set platebetween pile and pile board two kinds of circumstances, after analysis of cantileversliding body arch effect between anti-slide piles under static and dynamic displacementresponse and stress response of the soil mass, the analytical results show that: the soilarch effect of cantilever piles under earthquake force to dissipate or strengthen related toseismic wave input direction, when the earthquake force along the perpendicular to thepile when the positive role, the soil arch effect enhancement, dynamic response beenarch in the donor compacting pile relative to other areas, minimum displacement, stress,and the formation of the soil arch area as the change of cantilever section increases withincreasing of the height characteristics.
引文
[1]贾海莉,王成华,李江洪.基于土拱效应的抗滑桩与护壁桩的桩间距分析[J].工程地质学报,2004,12(1):98-103.
    [2]李忠诚,杨敏.被动桩计算模式及考虑土拱效应的计算方法[J].同济大学学报:自然科学版,2007,35(7):893-898.
    [3]王桂林,樊友全,张永兴,等.抗滑桩土拱效应的时效性试验分析[J].土木建筑与环境工程,2011,33(2):28-31.
    [4]张永兴,陈林.考虑土拱效应挡土墙绕墙底转动的主动土压力[J].土木建筑与环境工程,2010,32(3):46-52.
    [5]吕庆,孙红月,尚岳全.抗滑桩桩后土拱效应的作用机理及发育规律[J].水利学报,2010,41(4):471-475.
    [6]周健,亓宾,曾庆有.被动桩土拱效应与影响因素细观研究[J].建筑结构,2009(9):100-103.
    [7]年廷凯.桩-土-边坡相互作用数值分析及阻滑桩简化设计方法研究[D].大连:大连理工大学博士学位论文,2005.
    [8]蒋波,应宏伟,谢康和等.平动模式下挡土墙非极限状态主动土压力计算[J].中国公路学报,2005,18(2):24-27.
    [9]李邵军,陈静,练操.边坡桩-土相互作用的土拱力学模型与桩间距问题[J].岩土力学,2010,31(5):1352-1358.
    [10]张建华,谢强,张照秀.抗滑桩结构的土拱效应及其数值模拟[J].岩石力学与工程学报,2004,23(4):699-703.
    [11]刘钦,李地元,刘志祥等.水平推力作用下抗滑桩间土拱效应影响因素的数值分析[J].中南大学学报:自然科学版,2011,42(7):2071-2077.
    [12]刘春茂,董捷,边成鑫.悬臂式抗滑桩设计参数对其工作性能的影响分析[J].重庆建筑大学学报,2008(2):1061-1069.
    [13]卢坤林,杨扬,朱大勇等.考虑土拱效应的挡土墙地震土压力及其分布[J].水电能源科学,2010(005):106-112.
    [14]马少俊,胡安峰,王奎华.地震作用下挡土墙的滑动稳定性分析[J].工程力学,2012,29(7):209-213.
    [15]夏唐代,孔祥冰,王志凯,等.挡土墙后黏性土的地震主动土压力分析[J].岩石力学与工程学报,2012,31(A01):3188-3195.
    [16]侯键,夏唐代,陈炜昀,等.考虑土拱效应的挡土墙地震主动土压力静力研究[J].岩石力学与工程学报,2012,31(S2):4233-4240.
    [17]孔德森.桩—土相互作用计算模型及其在桩基结构抗震分析中的应用[D].大连:大连理工大学博士学位论文,2004.
    [18]卢华喜,尚守平,余俊.桩土动力分析中二维接触模型的研究[J].工程力学,2007,24(9):129-134.
    [19]王满生,周锡元,胡聿贤.桩土动力分析中接触模型的研究[J].岩土工程学报,2005,27(6):616-620.
    [20]王满生.考虑土-结构相互作用体系的参数识别和地震反应分析[D].中国地震局地球物理研究所,2005.
    [21]侯键.基于土拱效应的挡土墙土压力理论研究[D].浙江大学,2012.
    [22]杨明.桩土相互作用机理及抗滑加固技术[D].成都:西南交通大学,2008.
    [23]董捷.嵌岩抗滑桩的受力分析及其在滑坡治理中的应用[D].贵州大学,2006.
    [24]董捷.悬臂桩三维土拱效应及嵌固段地基反力研究[D].重庆:重庆大学,2009.
    [25]张永兴,董捷,黄治云.合理间距条件悬臂式抗滑桩三维土操效应试验研究[J].岩土工程学报,2009,31(12):654-660.
    [26]路德春,曹胜涛,杜修力等.平面应变条件下的土拱效应[J].岩土工程学报,2011,33(Suppl1):454-458.
    [27] Low B K,Tang S K,Choa V. Arching in piled embankments[J].Journal of GeotechnicalEngineering,1994,120(11):1917-1937.
    [28] Handy R L. The Arch in Soil Arching[J].Journal of Geotechnical Engineering,ASCE,1985,3(3):302-318.
    [29]蒋良潍,黄润秋,蒋忠信.黏性土桩间土拱效应计算与桩间距分析[J].岩土力学,2006,27(3):445-450.
    [30]李成芳,叶晓明,李有文.考虑土拱效应预应力锚拉桩土压力研究[J].岩土力学,2011,32(6):1683-1689.
    [31]赵明华,廖彬彬,刘思思.基于拱效应的边坡抗滑桩桩间距计算[J].岩土力学,2010,31(4):1212-1216.
    [32]李俊飞.双排埋入式抗滑桩工作机理分析与研究[D].重庆:重庆大学,2009.
    [33]陈林.不同变位模式下挡土墙主动土压力计算方法研究[D].重庆大学,2010.
    [34]李忠诚,洪昌地.侧移土体被动桩成拱效应分析[J].岩土力学,2008,29(6):1711-1715.
    [35]吴明,彭建兵,徐平等.考虑土拱效应的挡墙后土压力研究[J].工程力学,2011,28(11):89-96.
    [36]彭述权,周健,樊玲等.考虑土拱效应刚性挡墙土压力研究[J].岩土力学,2008,29(10):2701-2707.
    [37]应宏伟,蒋波,谢康和.考虑土拱效应的挡土墙主动土压力分布[J].岩土工程学报,2007,29(5):717-722.
    [38]蒋波.挡土结构土拱效应及土压力理论研究[J].浙江大学学报,2005.
    [39]卢坤林,杨扬,朱大勇等.考虑土拱效应的挡土墙地震土压力及其分布[J].水电能源科学,2010(005):60-67.
    [40]刘俊飞,赵国堂,马建林.考虑土拱效应的高速铁路路堤基底压力的简化算法[J].铁道标准设计,2011(8):4-8.
    [41]杨明辉,汪罗成,赵明华.考虑土拱效应的双排抗滑桩桩侧土压力计算[J].公路交通科技,2011,28(10):12-17.
    [42]段立平,李海深.考虑土拱效应的土钉墙内部竖向平均应力分析[J].路基工程,2011(001):111-113.
    [43]孙飞达,刘增荣,陈小三.考虑土拱效应抗滑桩桩间挡土板土压力计算[J].西部探矿工程,2012,23(12):40-42.
    [44]王乾坤.抗滑桩的桩间土拱和临界间距的探讨[J].武汉理工大学学报,2005,27(8):64-67.
    [45]章瑞文,徐日庆.土拱效应原理求解挡土墙土压力方法的改进[J].岩土力学,2008,29(4):1057-1060.
    [46]董捷,张永兴,文海家等.悬臂式抗滑桩三维土拱效应研究[J].工程勘察,2009,37(3):5-10.
    [47]谷云峰. SMP强度准则在岩土工程计算中的应用[D].合肥工业大学,2004.
    [48]黄治云,张永兴,董捷.桩板墙土拱效应及土压力传递特性试验研究[J].岩土力学,2013,34(7):115-120.
    [49]魏作安,周永昆,万玲等.抗滑桩与滑体之间土拱效应的理论分析[J].2010.34(7):165-170.
    [50]胡焕,刘静,吴海涛等.抗滑桩桩后土拱效应特征的三维数值研究[J].工业建筑,2010(3):88-93.
    [51]叶代成.抗滑桩桩间土拱效应及合理桩间距的研究[J].土工基础,2008,22(4):75-79.
    [52]姚元锋,赵晓彦.抗滑桩桩间土拱效应试验方法的研究[J].路基工程,2010(2):86-88.
    [53]杨明,姚令侃,王广军.抗滑桩宽度与桩间距对桩间土拱效应的影响研究[J].岩土工程学报,2007,29(10):1477-1482.
    [54]董捷,张永兴,文海家等.悬臂式抗滑桩三维土拱效应研究[J].工程勘察,2009,37(3):5-10.
    [55]张永兴,董捷,文海家等.考虑自重应力的悬臂式抗滑桩三维土拱效应及合理间距研究[J].中国公路学报,2009,22(2).
    [56]胡敏云,夏永承,高渠清.无锚撑桩排式支护护壁桩侧土压力计算方法[J].岩石力学与工程学报,2000,19(4):517-521.
    [57]胡敏云.深基坑护壁桩间距确定方法探讨[J].中国公路学报,2001,14(2):27-29.
    [58]余闯,刘松玉,杜广印.桩承式路堤土拱效应的改进Terzaghi方法[J].水文地质工程地质,2010,37(4):74-76.
    [59]曹卫平,陈云敏,陈仁朋.考虑路堤填筑过程与地基土固结相耦合的桩承式路堤土拱效应分析[J].岩石力学与工程学报,2008,27(8):1610-1617.
    [60]费康,王军军,陈毅.桩承式路堤土拱效应的试验和数值研究[J].岩土力学,2011,32(7):1975-1983.
    [61]杨明.桩土相互作用机理及抗滑加固技术[D].成都:西南交通大学,2008.
    [62]蔡德钩,闫宏业,叶阳升等.桩网支承路基结构中土拱效应及网垫受力的模型试验研究[J].铁道学报,2011,33(11):85-92.
    [63]李长冬,唐辉明,胡新丽等.基于土拱效应的改进抗滑桩最大桩间距计算模型[J].地质科技情报,2010,29(5):121-124.
    [64]张卫兵,唐莲.基于土拱效应的高填方涵洞EPS减荷技术研究[J].中外公路,2010,30(3):46-49.
    [65]张主华,陈秋南,王建东等.基于土拱效应的支护桩间距确定方法[J].湖南科技大学学报(自然科学版),2010.
    [66]陈福全,侯永峰,刘毓氚.考虑桩土侧移的被动桩中土拱效应数值分析[J].岩土力学,2007,28(7):1333-1337.
    [67]熊良宵,李天斌.土拱效应在抗滑桩工程中的应用[J].防灾减灾工程学报,2005,25(3):275-277.
    [68]郭院成,郭呈祥,叶永峰.基于水平土拱效应的排桩支护结构合理桩间距的研究[J].四川建筑科学研究,2008,34(4):136-139.
    [69]钟小春.基坑支护桩间土体拱效应理论及有限元分析[J].岩土工程学报,2006,1.
    [70]陈秋南,周亚军,马晓朋等.基于双剪强度理论土拱效应的基坑支护桩间距分析[J].水文地质工程地质,2012,4:011.
    [71]李波,黄茂松,叶观宝.加筋桩承式路堤的三维土拱效应分析与试验验证[J].中国公路学报,2012,25(001):13-20.
    [72]陈福全,李阿池,吕艳平.桩承式路堤中土拱效应的改进Hewlett算法[J].岩石力学与工程学报,2007,26(6):1278-1283.
    [73]费康,王军军,陈毅.桩承式路堤土拱效应的试验和数值研究[J].岩土力学,2011,32(7):1975-1983.
    [74]周伟明.抗滑桩结构的土拱效应分析[J].城市勘测,2010(4):166-168.
    [75]周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨[J].岩土工程学报,2004,26(1):132-135.
    [76]杨明,姚令侃,王广军.桩间土拱效应离心模型试验及数值模拟研究[J].岩土力学,2008,29(3):817-822.
    [77]刘小丽.新型桩锚结构设计计算理论研究[J].博士学位论文,2003.
    [78]刘金龙,王吉利,袁凡凡.不同布置方式对双排抗滑桩土拱效应的影响[J].中国科学院研究生院学报,2010,27(003):364-369.
    [79]梁音,李守德.平行抗滑墙间土拱效应机理研究[J].公路工程,2013,38(4):145-150.
    [80]郑明新,孔祥营,刘伟宏.新型抗滑结构围桩-土的耦合效应分析[J].岩土力学,2013,34(6):742-750.
    [81]李君,陈仁朋,孔令刚.干砂地层中盾构开挖面失稳模式及土拱效应试验研究[J].土木工程学报,2011,44(7):142-148.
    [82]李成芳,熊启东,孔凡林.锚拉桩三维土拱效应数值分析与试验研究[J].建筑结构,2011,41(10):97-101.
    [83]彭述权,李夕兵,樊玲.刚性挡墙主动破坏墙后土拱效应细观研究[J].中南大学学报(自然科学版),2011,42(4):1100-1107.
    [84]黄治云,张永兴,董捷.桩板墙土拱效应及土压力传递特性试验研究[J].岩土力学,2013,34(7):267-273.
    [85]杨锡武,张永兴.山区公路高填方涵洞加筋桥减载方法及其设计理论研究[J].岩石力学与工程学报,2005,24(9):1561-1571.
    [86] Terzaghi K. Stress distribution in dry and in saturated sand above a yielding trap-door[C].Proceedings of1st Conference of Soil Mechanics and Foundation Engineering, Boston,1936,1:307-316.
    [87] Terzaghi K. Theoretical soil mechanics[M]. New York:John Wiley&Son,1943.
    [88]杨明,姚令侃,王广军.桩间土拱效应离心模型试验及数值模拟研究[J].岩土力学,2008,29(3):817-822.
    [89]耿建勋,耿永常,张克绪.水平土拱效应在护壁桩设计中的应用[J].地下空间与工程学报,2009,5(4):792-797.
    [90]杨雪强,何世秀,庄心善.土木工程中的成拱效应[J].湖北工学院学报,1994,9(1):1-7.
    [91]吴子树,张利民,胡定.土拱的形成机理及存在条件的探讨[J].成都科技大学学报,1995,(2):15-19.
    [92]加瑞,朱伟,钟小春.砂土拱效应的室内模型试验研究[C].第二届全国岩土与工程学术大会论文集(下),北京:科学出版社,2006.
    [93] Rchard L H. The arch in soil arching[J]. Journal of Geotechnical Engineering,1985,111(3):302-318.
    [94]蒋波,应宏伟,谢康和.基于土拱效应的粮仓土压力研究[J].科技通报,2005,21(5):624-627.
    [95]钟小春.基坑支护桩间土体拱效应理论及有限元分析[J].岩土工程学报,2006,28(Supp.):1501-1504.
    [96]贾海莉,王成华,李江洪.关于土拱效应的几个问题[J].西南交通大学学报,2003,38(4):398–402.
    [97] Bosscher J,Gray H. Soil arching in sandy slopes[J].Journal of Geotechnical Engineering,1986,112(6):626-645.
    [98] Lawrence. The mechanism of load transfer in granular materials utilizing tactile pressuresensor[D]. University of Massachusetts Lowell,2002.
    [99]吴汉辉.埋入式抗滑桩模型试验及其工作机理研究[D].重庆大学硕士学位论文,2004:15–75.
    [100]杨明,姚令侃,王广军.抗滑桩宽度与桩间距对桩间土拱效应的影响研究[J].岩土工程学报,2007,29(10):1477–1482.
    [101]朱碧堂,刘一亮.基坑开挖和支护中的土拱效应[J].岩土工程师,2001,13(1):1-4.
    [102]胡敏云.深基坑护壁桩桩间距确定方法探讨[J].中国公路学报,2000,14(2):27-29.
    [103]叶晓明.柱板结构挡土墙板上的土压力计算方法[J].地下空间,1999,19(2):142-146.
    [104]叶晓明,孟凡涛,许年春.土层水平卸荷拱的形成条件[J].岩石力学与工程学报,2002,21(5):745-748.
    [105]沈珠江.桩的抗滑阻力和抗滑桩的极限设计[J].岩土工程学报,1992,14(1):51-56.
    [106]常保平.抗滑桩的桩间土拱和临界间距问题探讨[A].见:滑坡文集(第十三集)[C].北京:中国铁道出版社,1998.73-78.
    [107]王成华,陈永波,林立相.抗滑桩间土拱力学特性与最大间距分析[J].山地学报,2001,19(6):556-559.
    [108]周应华,周德培,冯君.推力桩桩间土拱几何力学特性及桩间距的确定[J].岩土力学,2006,27(3):455–457.
    [109] Tomio Ito.Tamossu M. Methods to estimate lateral force acting on stabilizing piles[J].Soilsand Foundation,1975,15(4):43-59.
    [110] Tomio Ito.Extended design method for multi-row stabilizing piles against landslide[J].Soilsand Foundation,1982,22(1):1-13.
    [111]李仁平,陈仁朋,陈云敏.阻滑桩加固土坡的极限设计方法[J].浙江大学学报(工学版),2001,35(6):618-622.
    [112]邹广电,陈永平.抗滑桩的极限阻力及其整体设计[J].水利学报,2003,(6):22-29.
    [113] C.-Y. Chen, G.R. Martin. Soil–structure interaction for landslide stabilizing piles.Computers and Geotechnics,2002,29(3):363-386.
    [114]张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析[J].岩土力学,2004,25(2):174–178.
    [115]]韩爱民,肖军华,梅国雄.被动桩中土拱效应特征与影响参数研究[J].工程地质学报,2006,14(1):111-116.
    [116]琚晓冬,冯文娟,朱金明.桩后土拱作用范围研究[J].三峡大学学报,2006,28(3):197-200.
    [117]郑学鑫.抗滑桩桩间土拱效应及其有限元模拟研究[D].河海大学硕士学位论文,2007.
    [118]吕涛,齐美苗,彭良泉.抗滑桩的土拱效应及数值模拟[J].人民长江,2007,38(1):42-45.
    [119]陈福全,侯永峰,刘毓氚.考虑桩土侧移的被动桩中土拱效应数值分析[J].岩土力学,2007,28(7):1333–1337.
    [120]董捷.嵌岩抗滑桩的受力分析及其在滑坡治理中的应用[D].贵州大学硕士学位论文,2006.
    [121]李海光等.新型支挡结构设计与工程实例[M].北京:人民交通出版社,2004.
    [122]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [123]吴世明等.土动力学[M].北京:中国建筑工业出版社,2001.
    [124]郑颖人,沈珠江,龚晓南.广义塑性力学-岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [125]孔亮,王燕昌,郑颖人.土体动本构模型研究评述[J].宁夏大学学报(自然科学版),2002,22(1):17-22.
    [126]李亮,赵成刚.饱和土体动力本构模型研究进展[J].世界地震工程,2004,20(1):138-148.
    [127] Boulanger R W,Curras C J,Kutter B L,et al. Seismic soil-pile-structure interactionexperiments and analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(9):750-759.
    [128] Abdoun T,Dobry R,O’Rourke T D,et al.Pile response to lateral spreads:centrifugemodeling[J].Journal of Geotechnical and Geoenvironmental Engineering,2003,129(10):869-878.
    [129] Brandenberg S J,Boulanger R W,Kutter B L,et al.Behavior of pile foundations in laterallyspreading ground during centrifuge tests[J].Journal of Geotechnical and GeoenvironmentalEngineering,2005,131(11):1378-1391.
    [130]于玉贞,邓丽军.抗滑桩加固边坡地震响应离心模型试验[J].岩土工程学报,2007,29(9):1320-1323.
    [131]刘春茂,董捷,边成鑫.悬臂式抗滑桩设计参数对其工作性能的影响分析《.重庆建筑大学学报》,2008,30(2):66-70
    [132]董捷,张永兴,吴曙光,陈云.切方边坡悬臂桩桩间土稳定性研究.《岩土力学》,2009,30(12):3881-3888.
    [133]韩春秀,董羽蕙. ANSYS对岩土材料进行三维模拟的技巧探讨[J].岩土工程界,2006,9(9):40-43.
    [134]王先军,陈明祥,常晓林等. Drucker-Prager系列屈服准则在稳定分析中的应用研究[J].岩土力学,2009,30(12):3733-3736.
    [135]王先军,周文宇,蒋鑫. ANSYS在模拟桩土接触中的应用[J].森林工程,2006,22(3):49-51.
    [136] Terzaghi K. Theoretical soil mechanics[J].1943.
    [137] Handy R L. The arch in soil arching[J]. Journal of Geotechnical Engineering,1985,111(3):302-318.
    [138] Bosscher P J, Gray D H. Soil arching in sandy slopes[J]. Journal of geotechnical engineering,1986,112(6):626-645.
    [139] Chen B, Zheng J, Han J. Experimental study and numerical simulation on concrete boxculverts in trenches[J]. Journal of Performance of Constructed Facilities,2009,24(3):223-234.
    [140] Costa Y D, Zornberg J G, Bueno B S, et al. Failure mechanisms in sand over a deep activetrapdoor[J]. Journal of geotechnical and geoenvironmental engineering,2009,135(11):1741-1753.
    [141][140]McCullough N J, Dickenson S E. The behavior of piles in sloping rock fill at marginalwharves[J]. Journal of Geotechnical and Geoenvironmental engineering,2004,16(1):1-10.
    [142] Georgiadis K, Georgiadis M. Undrained lateral pile response in sloping ground[J]. Journalof geotechnical and geoenvironmental engineering,2010,136(11):1489-1500.
    [143] Vardoulakis I, Graf B, Gudehus G. Trap‐door problem with dry sand: A statical approachbased upon model test kinematics[J]. International Journal for Numerical and AnalyticalMethods in Geomechanics,1981,5(1):57-78.
    [144] Yang Z, Yu C, Pan L. Ground Improvement Using Piled Embankments and Its DesignMethods[C]//International Conference on Transportation Engineering2009. ASCE,2009:1613-1618.
    [145] Meguid M A, Mattar J. Investigation of tunnel-soil-pile interaction in cohesive soils[J].Journal of geotechnical and geoenvironmental engineering,2009,135(7):973-979.
    [146] Griggs Jr F E. Nineteenth-Century Metal Arch Bridges[J]. Practice Periodical on StructuralDesign and Construction,2011,16(4):151-169.
    [147] Bhandari A, Han J, Wang F. Micromechanical analysis of soil arching ingeosynthetic-reinforced pile-supported embankments[C]//Proc., GeoHunan Int. Conf. onChallenges and Recent Advances in Pavement Technologies and Transportation Geotechnics.2009:47-52.
    [148] Jiang J, Qi B, Zhou J, et al. Model test and PFC2D numerical analysis on soil arching effectssurrounding passive laterally loaded piles[C]//Proceedings of GeoShanghai2010International Conference.[S. l.]:[sn].2010:240-246.
    [149] Wong H L. Dynamic soil-structure interaction[J].1975.
    [150] Ng C W W, Zhang L M. Three-dimensional analysis of performance of laterally loadedsleeved piles in sloping ground[J]. Journal of geotechnical and geoenvironmentalengineering,2001,127(6):499-509.
    [151] Low B K, Tang S K, Choa V. Arching in piled embankments[J]. Journal of GeotechnicalEngineering,1994,120(11):1917-1938.
    [152] Yun-Min C, Wei-Ping C, Ren-Peng C. An experimental investigation of soil arching withinbasal reinforced and unreinforced piled embankments[J]. Geotextiles and Geomembranes,2008,26(2):164-174.
    [153] Ellis E, Aslam R. Arching in piled embankments: comparison of centrifuge tests andpredictive methods-part1of2[J]. Ground Engineering,2009,42(6).
    [154] CHEN Y, Jia N, Chen R. Soil arch analysis of pile-supported embankments [J][J]. ChinaJournal of Highway and Transport,2004,4:001.
    [155] Cao W P, Chen R, Chen Y. Experimental investigation on soil arching in piled reinforcedembankments[J]. Yantu Gongcheng Xuebao(Chinese Journal of Geotechnical Engineering),2007,29(3):436-441.
    [156] Chen C Y, Martin G R. Soil–structure interaction for landslide stabilizing piles[J].Computers and Geotechnics,2002,29(5):363-386.
    [157] Yu C, Pan L, Qian B, et al. The Behavior of Piled Embankments under Embankment Loadsand Traffic Loads[C]//International Conference on Transportation Engineering2009. ASCE,2009:1566-1571.
    [158] Singh S, Sivakugan N, Shukla S K. Can soil arching be insensitive to?[J]. InternationalJournal of Geomechanics,2009,10(3):124-128.
    [159] Yu C, Liu S, Pan L, et al. The Characteristic of Vertical Stress in the Fill of PiledEmbankments[C]//Recent Advancement in Soil Behavior, in Situ Test Methods, PileFoundations, and Tunneling@sSelected Papers from the2009GeoHunan InternationalConference. ASCE,2009:133-138.
    [160] VanBuskirk C D, Neden R J. Development of a Reinforced Soil Arch, How to Put the Dirt toWork[J]. Proceedings of Geo-Denver,2007.
    [161] Lee C J, Ng C W W. Development of downdrag on piles and pile groups in consolidating
    soil[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(9):905-914.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700