用户名: 密码: 验证码:
有源滤波器控制策略及特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着电力电子技术的飞速发展,工作在非线性条件下的各种功率器件得到广泛应用。由于电力电子装置的非线性和多样性特点,大量的谐波和无功电流注入电力系统,造成系统效率变低,功率因数变差,并对其它设备和装置产生扰动,严重威胁电网的电能质量和用户设备的安全运行。有源电力滤波器能够能对谐波、无功和负荷不对称等进行动态补偿,且其补偿特性不受电网阻抗的影响,可以避免无源滤波器可能引起的寄生振荡等问题。研究有源滤波控制策略和特性,对有源滤波在现实中的应用具有十分重要的意义。
     本文首先了介绍有源电力滤波器的基本概念。有源电力滤波器是一种用于动态抑制谐波和无功补偿的新型电力电子装置,它能对频率和大小都变化的谐波以及变化的无功进行补偿。本文接着阐述了谐波产生的原因及危害并说明了发展有源电力滤波器的必要性。非线性电力电子装置在节约能源、提高生产效率和人们生活质量等方面起着重要作用,然而由于电力电子装置的非线性和多样性特点,大量的谐波和无功电流注入电网,造成系统效率变低,功率因数变差,并对其它设备和装置产生扰动,严重威胁电网的电能质量和用户设备的安全运行。
     本文对有源电力滤波器基本原理、基本结构以及有源电力滤波器的分类都做了详细的介绍。有源电力滤波器系统由两大部分组成,即指令电流运算电路和补偿电流发生电路。其中,指令电流运算电路的核心是检测出补偿对象电流中的谐波和无功等电流分量,因此有时也称之为谐波和无功电流检测电路。补偿电流发生电路的作用是根据指令电流运算电路得出的补偿电流的指令信号,产生实际的补偿电流。
     有源滤波器控制的第一个环节是补偿指令的获取,这一环节将直接影响到有源滤波器的性能,因为如果不能准确地得到指令信号,电流的控制将无从谈起。本文对现阶段有源滤波器各种检测方法进行了综合讨论分析,并对常见的一些检测方法建立了采样和检测的模型,重点对瞬时无功理论的谐波检测方法和自适应谐波检测方法在MATLAB环境下进行仿真分析。在理论上证实了这几种谐波检测方法的可行性及其工作特性。
     有源电力滤波器工作性能取决于主电路构成及其控制系统,当滤波器主电路确定后,控制方法成为决定其输出性能和效率的关键。本文对有源电力滤波器控制策略及特性进行了深入研究。综合讨论分析现阶段有源电力滤波器控制策略,分析了各种控制策略的特性及优缺点,并对常见的SPWM型并联型滤波器、滞环并联型滤波器以及UPQC控制模型进行仿真分析,阐述了新型控制策略的发展。
     本文还对有源电力滤波器并联接入方式进行了深入的分析,根据分析的结果进行建立数学模型,进行数学模型的稳定性分析。
In recent years, along with the rapid development of power electronics technology, variable nonlinear devices have obtained wide applications. Because of the nonlinear electronic devices characteristics and diversity, a lot of harmonic and reactive currents are injected into the power system, which cause low system efficiency and bad power factor and disturbance other devices and applications. As a result, power quality and safe operation of utility equipment have been suffered serious threaten. Active Power Filter (APF) can compensate harmonics reactive power and asymmetry load dynamically, and its' compensation is not influenced by power system impedance. The parasitic oscillation question that may be caused by passive filters can also be avoided. Research and development of control strategies and character of APF is very important to the applications in reality.
    Firstly, the basic concepts of APF are introduced in this paper. APF is a new power electronic device that can carry out dynamic compensation of harmonics and reactive power. It can compensate the harmonics that both frequency and amplitude are all variable. It can also compensate the time variable reactive power. Secondly, the cause and production of hannonic and the necessity of APF are described in this paper. Nonlinear power electronic devices play an important role in energy conservation, in productivity enhancement, and in people's life quality, however, a lot of harmonic and reactive currents injected into the power grid, which cause low system efficiency and bad power factor, and other equipment and devices result in disturbances, due to the nonlinear and diversity of power electronic devices. As a result, power quality and safe operation of utility equipment have been suffered serious threaten.
    This paper detailed describes the basic principle, basic structure and classify of APF. APF system consists of two major components, namely, command current calculating circuit and compensation current producing circuit. The core of command current calculating circuit is to detect the compensating object, such as harmonic and reactive current components, which is also known as harmonic and reactive current
    detection circuit. The function of current compensation circuit is to produce the real compensating currants according to command currents.
    The first control work of APF is the obtainment of compensation command. This part will have a direct impact on the performance of the APF, because if we can not accurately obtain command signal, the current control will be fruitless. This paper has discussed variable detection methods and constructed testing and sample model, and focus on instantaneous reactive harmonic detection method and the theory of adaptive harmonic detection method in MATLAB simulation environment. This confirmed the feasibility and characteristics of this several harmonic detection work in theory.
    The performance of APF depends on main circuit and its control system. When the main circuit is determined, control methods will become the key to the performance and efficiency of their performance. In this paper, the characteristic of APF control strategy is deeply study. Comprehensive analysis of APF control strategy is discussed, and their advantages and disadvantages of various control strategies is also been analyzed. Common SPWM parallel-type APF, hysteresis parallel-type APF and control model of UPQC are also analyzed in this paper. Lastly, this paper prospects the development of new control strategies.
    This paper also has an in-depth analysis of APF parallel connection. The mathematical model is established according to the results of simulation and the stability of the mathematic model is analyzed in this paper.
引文
[1] 王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版,1998:12-47.
    [2] 肖湘宁.电能质量分析与控制[M].北京:中国电力出版社,2004:44-53.
    [3] Gilker, C.Flinn, D.G. A Measurement Technique for Power System Harmonics[J]. IEEE computer Applications in power,1990,3(4): 17-20.
    [4] 周方圆,唐朝晖.有源电力滤波器的研究现状与发展[J].电测与仪表,2005,42(8),1-4.
    [5] Donghua Chen, Shaojun Xie. Review of the control strategies applied to active power filters[J], the 2004 IEEE International Conference, 2004,2(5): 666-670
    [6] 罗德凌,唐朝晖,周方圆.有源电力滤波器研究现状及其发展动向[J].国外电子测量技术,2006,25(2):1-5.
    [7] 陈旭武,胡学芝.有源电力滤波器及其新进展[J].自动化与仪器仪表,2005,(5):5-7.
    [8] 周方圆,唐朝晖.有源电力滤波器的研究现状与发展动向[J].电气时代,2006,5(5):122-124.
    [9] 姜艳姝,陈希有,徐殿国.PWM逆变器输出有源滤波技术及其发展[J].电气传动,2002,5(2):3-7.
    [10] WeiMinWu, LiQing Tonga, MingYue Lip, Z.M.Qian, ZhengYu Lug, EZ. Peng, A New Control Strategy for Series Type Active Power Filter[J]. 2004 35th Annual IEEE Power Electronics Specialists Conference,2004,4(4):3054-3059.
    [11] Vasco soares, Pedro Verdelho. An instantaneous active and reactive current component method for active filters[J]. IEEE Transactions on power Electronics,2000,15(4):660-669
    [12] 唐蕾,陈维荣.有源电力滤波器三种电流检测方法的深入探讨及仿真[J].继电器,2006,34(5):43-47.
    [13] H-L.Jou. Performance comparison of the three-phase active-poorer-filter algorithms[J]. IEE Proc.-Gener. Transm. Distrib,1995,42(6):646-651.
    [14] Fang-Zhuo, Jun-Yang, Junfei-Hu, Zhao'an-Wang. Study on Active Power Filter Used in Three-phase Four-wire System[J]. Power Electronics and Motion Control Conference, 2000,3(15), 1037-1040.
    [15] 朱东柏,刘骥,崔勇,顾正纲.电力有源滤波及无功补偿技术[J].哈尔滨理工大学学报,2002,7(2):1-4.
    [16] 孙朋敬,郝瑞祥,游小杰,郑琼林.有源电力滤波器的预测电流控制方法研究[J].自动化技术与应用,2006,25(2):27-29.
    [17] 吴言风,吴正国,李华.基于自适应逆控制的并联型有源电力滤波器的仿真研究[J].电气传动,2005,35(8):32-35.
    [18] 楼珍丽,李淳,张仲超.有源电力滤波器的新型拓扑结构和控制策略[J].高电压技术,2005,31(2):21-23.
    [19] Luls A. Moran, Member, Juan W. Dixon, Member, and Rogel R. Wallace. A Three-Phase Active Power Filter Operating with Fixed Switching Frequency for Reactive Power and Current Harmonic Compensation[J], IEEE transactions on industrial electronics. 1995,42(4):402-408.
    [20] 黄俊,王兆安.电力电子变流技术[M].北京:机械工业出版社,2000.
    [21] 刘红萍,张代润.有源电力滤波器的正弦滞环控制法研究[J].四川联合大学学报,1999,3(4):103-110.
    [22] Luis Moran, Pedro Werlinger, Juan Dixon, Rogel Wallace. A series active power filter which compensates current harmonics and voltage unbalance simultaneously[J], Power Electronics Specialists Conference, 1995,1(16):18-22.
    [23] 李建林,张仲超.几种适合于有源电力滤波器的控制策略的对比分析[J].机车电传动,2003,4(4):1-4.
    [24] Moran, L.A. Fernandez, L. Dixon, J.W. Wallace, R. A simple and low-cost control strategy for active power filters connected in cascade[J]. Industrial Electronics, 1997,44(5):621-629
    [25] Y.S. Kim, J.S. Kim and S.H. Ko. Three-phase three-wire series active power filter, which compensates for harmonics and reactive power[J], IEE Proc.-Electr Power Appl, 2004,151(3):276-282.
    [26] V. B. Bhavaraju and Prasad N. Enjeti, Member, IEEE. Analysis and Design of an Active Power Filter for Balancing Unbalanced Loads[J]. Power Electronics, IEEE Transactions 1993,8(4):640-647.
    [27] 陈海荣,徐政.采用空间矢量检测谐波电流的有源电力滤波器仿真研究[J].电网技术,2005,29(11):60-64.
    [28] 余凤兵,梁冠安,钟龙翔.新型单周控制三相四线制有源电力滤波器[J].电气应用,2006,25(1):90-93.
    [29] 余凤兵,梁冠安.单周控制并联型有源电力滤波器的仿真研究[J].船电技术,2006,(1):12-15.
    [30] 彭晓涛,程时杰,宁联辉,罗成,孙海顺.差拍控制在有源电力滤波器中的应用[J].继电器,2004,32(8):40-44.
    [31] 徐立娟,杨利军.Delta逆变技术及其在交流电源方面的应用[J].电气时代,2004,4(6):124-126.
    [32] 张晓宇,苏宏业.滑模变结构控制理论进展综述[J].化工自动化及仪表,2006,3(2):1-8.
    [33] 张建文,许志军,郑瑞.滑模变结构在有源电力滤波器的控制中的应用[J].仪器仪表用户,2006,13(1):117-118.
    [34] Jou, H.-L. Performance comparison of the three-phase active-power-filter algorithms[J].Generation, Transmission and Distribution, 1995,142(6):646-652
    [35] Dixon, L.W.; Garcia C., J.; Luis Moran, T. A control system for a three phase active power filter which simultaneously compensates power factor and unbalanced loads[J].Industrial Electronics, Control, and Instrumentation, 1993.2(3):1083-1087.
    [36] Shin-Kuan Chen; Chang, G. W. A new instantaneous power theory-based three-phase active power filter[J]. Power Engineering Society Winter Meeting, 2000,4(4):2687-2692.
    [37] Li Cheng; Zou Yun-ping. One-cycle control active power filter for three-phase four-wire systems[J]. Power Electronics Systems and Applications, 2004,9(11):61-65.
    [38] 郭茂峰,王广柱.一种基于新型控制策略的统一电能质量控制器[J].电力自 动化设备,2005,25(7):44-47.
    [39] 朱鹏程,李勋,康勇,陈勇.统一电能质量控制器控制策略研究[J].中国电机工程学报,2004,24(8):67-73.
    [40] 赵卫东,李含善,任永峰,丁海波.统一电能质量控制器的研究[J].电力科学与工程,2006,4(2):17-20.
    [41] 彭方正 房绪鹏 高奇 顾斌 钱照明.一种新型的UPFC拓扑[J].电力系统及其自动化学报,2004,16(1):56-61.
    [42] 陈宇,王碧芳,刘会金.基于模糊控制的有源电力滤波器控制方法[J].继电器,2005,33(16):40-45.
    [43] 孙增圻,智能控制理论与技术[M].北京:清华大学出版社,1997:129-136.
    [44] 粟时平,周赛,刘桂英,基于人工神经网络的有源电力滤波器控制方法的研究[J].电气开关,2001,4(5):1-7.
    [45] 廖明,吴宁,苏向丰,基于神经网络的有源电力滤波器预测控制方法[J].重庆大学学报,1999,22(5):65-71.
    [46] 刘建宝,陈伟,赵录怀,有源电力滤波器新型神经网络控制方法[J].现代电子技术,2004,4(3):6-9.
    [47] 颜晓庆,杨君,王兆安,并联型电力有源滤波器的数学模型和稳定性分析[J].电工技术学报,1998,13(1):41-45.
    [48] Destobbeleer, E. Protin, L. On the detection of load active currents for active filter control. Power Electronics[J]. IEEE Transactions 1996,11(6):768-775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700