用户名: 密码: 验证码:
激光拼焊板制车门成形和刚度的数值仿真与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源问题的日益严峻,车身的轻量化显得尤为重要,但车身轻量化的同时还要满足刚度、安全性和NVH等性能要求,因此车身轻量化技术需要形成一套完整有效的分析方法,该项技术是现代车身设计的一个热点问题。基于现代工艺的激光拼焊板被广泛应用于车身零部件的生产中,可以有效减轻车身的重量,但激光拼焊板的整体成形性能与普通的单材质钢板有所不同,并且对整个部件的刚度也会产生影响,需要对其进行全面的性能分析。本文结合吉林大学“985工程”汽车工程科技创新平台—车身子平台“车身轻量化与先进制造技术”(2005-2010)和国家自然科学基金“基于铝合金冲压和冷模具淬火成型工艺的车身结构轻量化设计和有限元分析”(51075178),应用金属塑性流动理论和金属大变形弹塑性有限元方法,对激光拼焊板制车门的成形过程进行数值仿真,并对仿真结果进行成形性分析,全面考察了影响车门成形性能的因素。将采用生产中实际的工艺参数得到的仿真结果与实际冲压出的零件进行了对比,验证了数值仿真的有效性,并进一步对工艺参数进行优化,得到了更理想的仿真结果,为实际生产提供更合理的建议。例如,应用分块台阶式压边圈,分析变化的压边力对成形性能的影响,并确定了合适的变压边力,改善整个零件的成形性能。对采用激光拼焊板的车门进行模态和刚度数值分析与试验验证,研究结果表明,采用激光拼焊板后,车门部件在减轻重量的同时,模态和刚度满足车门的设计要求。基于数值仿真技术所形成的激光拼焊板制车门性能分析方法,能够简化产品的设计开发过程,缩短模具和新产品的开发周期,该方法还可以用于其它类似产品的开发过程。本文的主要研究内容有以下几个方面:
     1、对车门采用的激光拼焊板的冲压成形性能进行了试验研究。通过单向拉伸试验得到所用镀锌拼焊板的力学性能参数;对两侧母材和焊缝处进行杯突试验,得到薄厚两侧母材和焊缝处的基本成形性能。杯突试验的结果表明,当最大拉应力与焊缝方向垂直时,破裂出现在薄板处,为仿真中建立焊缝处的模型提供了试验基础。对焊缝处进行金相试验和硬度试验,从微观的角度分析了焊缝处的成形性能。
     2、对车门内板进行了冲压成形数值仿真和试验验证。板料成形是一个几何、材料和边界接触条件等典型的非线性过程。针对板料的成形特点,在仿真中应用各向异性屈服准则,选择BT壳单元对板料进行数值仿真,应用的数值仿真方法为计算选择动力显式算法和接触选择罚函数法。
     一般板材焊缝处的数值分析采用刚性连接的建模方式,这种方式的缺点是在计算的过程中不能选择网格自动加密算法,而为了仿真结果的细致性,坯料的网格要划分得很小,对于大型的汽车车身覆盖件,采用这样的网格划分方法会导致仿真计算的效率极低甚至无法完成计算。对激光拼焊板的杯突试验结果进行初步分析可知,如果焊缝的焊接质量合格,焊缝在冲压的过程中一般不会出现破裂现象。数值仿真应用在零件的设计阶段,更关心的是零件的整体成形性,因此在本文中提出一种新的焊缝处理方式:简化的共节点的处理方式,即焊缝处的两侧材料采用共节点。共节点的方法,在冲压成形仿真中可以采用网格自动加密算法,初始的坯料网格不需要划分得很细小提高了仿真的计算效率和稳定性。
     用板料成形CAE软件对采用激光拼焊板的车门内板进行冲压成形的数值仿真,和冲压出的零件对比,验证了仿真模型的有效性和仿真结果的可靠性,同时验证了对焊缝处采用简化的共节点模型的正确性,计算精度满足工程技术要求。通过对拉深筋、摩擦状态等工艺参数进行优化分析,能够进一步改善零件成形的缺陷,预示了板料成形过程中内部的应力应变分布、板料的厚度变化和厚度减薄率等情况,这样能够在模具设计之前对零件的成形性能有一个较全面的了解和掌握,在提高零件成形性能的同时节省生产成本。
     3、基于台阶式压边圈和变压边力技术进行车门内板成形数值仿真。首先从理论上分析了采用分块压边圈减少薄侧起皱的原因,由板料成形的数值分析结果的应力分析可以知道,板料在变形的过程中是受到复杂的应力状态,受到拉应力、压应力和剪应力,因此,得出板料边缘部分起皱是几种应力状态下起皱方式的复合。采用台阶压边圈,使其受到较均匀的面外压应力,有效的改善板料在板平面内的应力状态,薄板侧板料在成形时的起皱现象可以得到明显改善。
     其次应用前述建立的有限元模型,改变工艺结构,用分块的台阶式压边圈在厚薄两侧板料采用不同的恒定压边力,设计了多种方案,进行仿真分析并对计算结果进行对比,结果表明采用分块的台阶压边圈并在厚板和薄板两侧采用不同的恒定压边力,能够改善激光拼焊板零件成形过程中薄侧起皱的现象。因此,对厚度差别较大的激光拼焊板零件,建议生产中采用台阶式压边圈。
     最后利用分块的台阶式压边圈结构,两侧不同的恒定压边力变为变压边力的形式,进行仿真计算,结果表明采用变压边力的的形式能够进一步改善零件的成形性。
     4、对采用激光拼焊板的车门部件进行了模态和刚度的数值仿真与试验研究。首先建立车门部件有限元模型。车门部件各零件组合在一起的方式有激光焊、点焊、包边、螺栓连接等多种方式,研究和分析了车门各零件的连接方式,系统的建立了各种连接方式的有限元模型,研究认为,焊缝处采用简化的共节点方式、焊点采用CWELD焊点模型、包边以及铰链和车门内板的连接都采用Rigid element焊点模型。
     其次对车门部件进行了数值模态仿真和试验研究,结果表明,采用激光拼焊板后车门重量减轻,整体模态满足要求,同时也验证了本文所建有限元模型的正确性。
     最后对车门部件进行了垂直刚度、车门窗框横向刚度和车门自重下垂刚度的数值计算和试验研究,结果表明,车门的刚度满足设计要求。为新车型零部件的并行设计提供了示范。
     本文的CAE计算方法可以应用于新车型的设计中,可以改变传统设计方法需要多次试模修模的过程,为复杂结构件的设计提供了依据。并且在产品的设计阶段,能够对采用新工艺后车身部件的模态和刚度性能进行有效的CAE分析。采用本文的有限元模型建立方式,可以为其它的新产品的开发提供借鉴,实现车身的轻量化并促进相关技术的积累,为我国汽车的自主研发知识产权建立基础。
The energy shortage had become more and more severe, it is essential to reduce the weight of the auto body to save the energy.And at the same time the light weight of auto body will influence the stiffness, safety and NVH performances. So it is necessary to form a completely and effectively analysis methods on auto lightweight technology, and it has become a hot topic in the design of modern auto body. Tailor welded blanks (TWBs) which based on modern technology is applied in the production of auto body components, it can reduce the weight of auto body effectively, but the overall formability of the TWBs is different from single blank, moreover it also influences the overall stiffness of the entire component, so it is necessary to analyse the complete performance of TWBs. The research content of this paper is integrated with the subproject that is "Lightweight of Auto Body and Advanced Manufacturing Technology" (2005—2010) which belongs to the big project automotive technology innovation platform that is Jilin University "985 project", and the project "Aluminum Stamping and Cold-die Quenching Forming in Lightweight Design and Finite Element Analysis of Auto Body Structure"(51075178) which belongs to the National Natural Science Fund. Applying metal plastic flowing theory and large deformation of metal plastic FE method, numerical simulation is carried out for auto door made of tailor welded blanks, based on the calculation results the formability is analyzed, and the influence factors for formability is analysed. Numerical simulation results which adopting actual parameters is comparing with the components produced, validity of the numerical simulation is verified, then perfect simulation result is found by optimizing technical parameters, and this can make reasonable suggestions for production.For example, adopting partition stepped blank holder, through analyzing the influence of varied blank holder force on the formability, appropriate variable blank holder force was determined, thus improved the formability of the entire component. Numerical analysis and test research on modal and stiffness are carried out for auto door made of TWBs, the result demonstrated that the weight was reduced, and meanwhile the modal and stiffness are meeted the design requirements. The analysis methods for auto door made of TWBs has been developed based on numerical simulation technology,the method can simplify the design and development process and shorten the cycle of mold and product development as well. The method can apply to the similar production. The research contents of this paper are as follows:
     1. The formability of TWBs which are used in auto door has been studied by the tests. Mechanical performance parameters of galvanized TWBs are gotten by tensile test; the basic formability is gotten by Erichsen test for base metal and weld-line. The Erichsen test result shows:the fracture is appeared at thin blank when the direction of maximum tension stress is perpendicular to the weld-line. It provides the experimental foundation for building weldline model in the simulation. The formability of weld-line is analyzed from microscopic view by microscopic tructure and microhardness test for weld-line.
     2. The numerical simulation and test research on forming for auto door inner side panel was studied.Sheet metal forming is a typical nonlinear process of geometry, material and boundary contact condition etc. In accordance with metal sheet forming characteristics, Hill48 yield rule and BT shell element is used to simulate metal sheet in the numerical simulation. Numerical simulation method is that dynamic explicit algorithm and penalty function method were chosen for calculation and contact simulation, respectively.
     Generally weld modeling use rigid way in weld-line, because of the adoption of which the grid can not automatically choose the encryption algorithm in process of calculating, however for the purpose of the detailed simulation of the blank grid the griddling of the stock must be partitioned very small, thus for large component such as automobile panel, this method calculation method make lower efficiency and even cann't finish the calculation. Results from the analysis of Erichsen test for TWBs shows that, the fracture will not appeared on the weld-line in forming process generally as long as the weld is qualified.And, in the phase of the component design, what we are concerning more about is the overall formability of the component, therefore a new simulation method for weld-line is bringed out:simplified handling of the common node, which is a total of weld material at both sides of the node. Using this calculation method, grid can be encrypted automatically in simulation, so that the initial blank does not need to partitioned very small, the calculation efficiency and stability are improved in simulation.
     Numerical simulation on forming for automo door inner side panel made of TWBs was studied by metal sheet forming CAE software. Comparing with the components produced, validity of the simulation model and reliability of the simulation result are verified, and,and also the accuracy of simple model that shares common nodes at weld-line is accepted, the calculation precision can meet the requirement of engineering technology. The optimization of draw-bead and friction parameters can eliminate defects in formability. The CAE analysis of the forming can indicate internal stress-strain distribution, thickness variation and thickness reduction rate in the forming process, it provids a comprehensive analysis of formability for component before the design of die, the formability of component is improved, and meanwhile the cost of production is reduced.
     3. Adopting partition stepped blank holder and varied blank holder force, numerical simulation on forming for auto door inner side panel was conducted. Firstly, theoretically analyzed the reason of why adopting partition stepped blank holder can reduce the wrinkles of forming. According to the stress analysis of numerical simulation on forming, the blanks suffered complicate stress state when transforming, it suffers drawing stress, press stress and shearing stress. Therefore, it came to the conclusion that the wrinkle of sheet metal edges is the composite of several wrinkling means. Adopting stepped blank holder and make it pressed by uniform press stress from outside. Improve the stress state of the sheets in the plane, therefore, the wrinkles in the forming of thin side material are very significantly improved.
     Secondly, applying the finite element model established before, changing the technologic structure, adopting partition stepped blank holder and the different isoline blank holder force on thick and thin blanks in the numerical simulation. The numerical simulation results are analyzed for several projects, the results showed that adopting partition stepped blank holder and different blank holder force could improve wrinkling phenomenon for TWBs at its thin side in the forming process. As a result, it was recommended that adopting stepped blank holder for the TWBs, for which there was a large difference in thickness on both sides.
     At last, adopting partition stepped blank holder and varied blank holder force, numerical simulation on forming was conducted.The simulation shows that adopting varied blank holder force could improve the formability more for component.
     4. The numerical simulation and test research on modal and stiffness for auto door components was studied. Firstly, the finite element model for auto door components is established.The connection modes of auto door components consist of tailor welded, spot welding, tipping, and bolts and so on. The connection modes are analysed, and the finite element model of each connection mode is established systematically. Studies suggest that simple model that shares common nodes were used in weld-line, CWELD model in spot welding, rigid element model in tipping and bolts.
     Secondly, the numerical simulation and test research on modal for auto door components was studied. The result showed that the modal are meeted the design requirements, and meanwhile the weight of auto door is reduced after adopting TWBs. Validity of the finite element model are verified.
     At last, the numerical simulation and test research on stiffness for auto door components was studied. The result showed that the stiffness are meeted the design requirements. And the analysis methods provide demonstration for side-by-side design for new product.
     The CAE analysis method in this paper can be used for the design of new auto product, it changes the procedure of testing and fixing die in traditional design, and the analysis methods provide demonstration for complicated component of auto body which adopting new technics. It can indicate the modal and stiffness of the components availably. And meanwhile, the method can provide demonstration for new product. The method can accelerate the accumulate for technology of the light weight of auto body, and improve the independent design and research level of auto.
引文
[1]谭善锟,张亚峰,柴震等.高强度冷轧钢板在奇瑞轿车上的应用研究[J].汽车工艺与材料,2003,(6):10-14.
    [2]陈立周.机械优化设计方法[M].北京:冶金工业出版社,2005.
    [3]李淑慧,林忠钦,倪军等.拼焊板在车身覆盖件冲压成形中的研究进展[J].机械工程学报,2002,(2):1-7.
    [4]施欲亮.基于耐撞性仿真的轿车车身零件拼焊板设计方法研究[D].上海:上海交通大学,2008.
    [5]王春燕.激光拼焊板制轿车整体侧围内板成形的关键技术研究[D].长春:吉林大学,2008.
    [6]黄金陵.汽车车身设计[M].北京:机械工业出版社,2008.
    [7]高荣新,王柏龄,韦安杰.汽车轻量化的现状及展望(续2)[J].汽车工程师,2010,3:20-23.
    [8]姜银方等.拼焊板冲压成形研究的现状和发展趋势[J].汽车工程,2003,25(4):410-414.
    [9]T. Bagsarian, The growth in tailor-welded blanks and hydroformed parts, Automotive steel, May 2000:22-28.
    [10]D. Anand, D. L. Chen, S. D. Bhole, P. Andreychun, G. Boudreau, Fatigue behavior of tailor (laser)- Welded blanks for automotive applications, Materials science and engineering A 2006,420:199-207.
    [11]兰凤崇,王玉超,陈吉清.汽车覆盖件冲压成形仿真研究进展[J].计算机集成制造系统,2007,(8):1586-1596.
    [12]林忠钦.车身覆盖件冲压成形仿真[M].北京:机械工业出版社,2005.
    [13]K. M. Zhao, B. K. Chun, J. K. Lee. Numerical modeling technique for tailor- welded blanks[J]. SAE 2000 World Congress,2000-01-0410:1-8.
    [14]K. M. Zhao, B. K. Chun, J. K. Lee.Finite element analysis of tailor-welded blanks[J]. Finite Elements in Analysis and Design,2001,37(2):117-130.
    [15]Scott D.Raymond, Peter M.Wild, Christopher J.Bay ley. On modeling of the weld line in finite element analyses of Tailor-welded blank forming operations [J].Journal of Materials Processing Technology,2004,147(1):28-37.
    [16]A. Buste, et al. Prediction of strain distribution in aluminum tailor welded blanks[C]. Numisheet'99, Besancon, France,1999.
    [17]R. Padmanabhan, A. J. Baptista, etc. Effect of anisotropy on the deep-drawing of mild steel and dual-phase steel tailor-welded blanks[J]. Journal of Materials Processing Technology.2007,184:288-293.
    [18]姜银方,杨继昌.铝拼焊板在车身覆盖件冲压成形中的应用研究[J].江苏大学学报:自然科学版,2003,124(2):28-32.
    [19]Y. Choi, Y. Heo, etc. Investigations of weld-line movements for the deep drawing process of tailor welded blanks[J]. Journal of Materials Processing Technology,2000, 108(1):1-7.
    [20]H. Kim, Y. Heo, etc. Forming and drawing characteristics of tailor welded sheets in a circular drawbead [J]. Journal of Material Processing Technology,2000,105(3), 294-301.
    [21]H. M. Jiang, S. H. Li, etc. Numerical simulation and experimental verification in the use of tailor-welded blanks in the multi-stage stamping process [J]. Journal of Materials Processing Technology,2004,151(1-3):316-320.
    [22]Y. M. Heo, S. H. Wang, H. Y. Kim, etc. The effect of the drawbead dimensions on the weld-line movements in the deep drawing of tailor-welded blanks [J]. Journal of Material Processing Technology,2001,113(1-3),686-691.
    [23]王武荣.基于自适应模拟的变压边力优化技术研究[D].上海:上海交通大学,2007.
    [24]Hardt,D.,Fenn,R.Real-Time control of sheet stability during Forming [J].Journal of Engineering Indurstry,1993,Vol(115):299-308.
    [25]Havanek J.,Wrinkling limit of tapered pressing[C].Aust.Inst Met.1975,20(2):114-119.
    [26]Yagami Tetsuya,Manabe Ken-ichi,Yang Ming,Hiroshi Koyama,Intelligent sheet stamping process using segment blankholder modules [J]. Journal of Material Processing Technology,2004, vol(155-156):2099-2105.
    [27]Lo Sy-wei,Yang Tsu-Chang,Closed-loop control of blank holding force in sheet metal forming with a new embedded-type displacement sensor [J].Int Manu Technol,2004,vol(24):553-559.
    [28]He Sijun, Wu Xin, Hu S.Jack, Formability Enhancement for Tailor-welded Blanks Using Force Control[J].Journal of Material Processing technology,2003,vol(125):461-467.
    [29]朱伟,董湘怀,张质良等.圆筒件拉深成形临界防皱变压边力加载曲线研究[J].河南科技大学学报,2006,27(1):27-34.
    [30]张旭东.矩形件拉深成形变压边力数值模拟及试验研究[D].西安:西北工业大学,2006.
    [31]李盾,陈炜,张家骅等.变压边力对拼焊板焊缝移动和成形性能的影响[J].农业机械学报,2007,(5):157~160.
    [32]鄂大辛.成形工艺与模具设计[M].北京:北京理工大学出版社,2007.
    [33]GB/T 228-2002,金属材料室温拉伸试验方法,2002.
    [34]ASTM Standard E 8-04, Standard Test Methods for Tension Testing of Metallic Materials,2001.
    [35]姚远,魏伟,史宏志等.车身钢板激光双光束焊接技术研究[C].2010中国汽车工程学会年会论文集,2010(下册VolumeⅡ):899-905.
    [36]S. K. Panda, D. R. Kumar, etc. Characterization of tensile properties of tailor welded IF steel sheets and their formability in stretch forming[M]. Journal of Materials Processing Technology,2007,183(2-3):321-332.
    [37]GB4156-84金属杯突试验方法,1984.
    [38]李龙杲,王书恒,徐岩.技术板料成形有限元模拟基础—PAMSTAMP2G [M]北京:北京航空航天大学出版社,2008.
    [39]崔令江,肖湘蓉.拼焊板拉深方盒形件的焊缝移动研究[J].汽车技术,2000(2),29-30.
    [40]王强.汽车覆盖件冲压成形仿真研究[D].哈尔滨:哈尔滨工业大学,2006.
    [41]李卫国,陈炜.激光拼焊板成形过程数值模拟技术现状及趋势[J].设计与研究,2010,(10): 1-4.
    [42]朱茂桃,张永建,张黎黎.汽车发动机罩内板冲压成形仿真[J].农业机械学报,2008,39(6):189~192.
    [43]王孝培.冲压手册(第2版)[M].北京,机械工业出版社,2000.
    [44]胡玉梅,张键,邓兆祥等.板料成形仿真中冲模速度的确定方法[J].机械工程学报,2007,(12):88~92.
    [45]郭伟刚,陈炜等.差厚激光拼焊板盒形件的数值模拟研究[J].新技术新工艺,2006年第9期.
    [46]黄天泽,黄金陵.汽车车身结构与设计[M].北京,机械工业出版社,1989.
    [47]于多年.重型商用汽车驾驶室结构与焊点布局优化研究[M].长春:吉林大学,2009.
    [48]Lubkin James L,The Flexibility of Tubular Welded Joint in a Vehicle Frame [M].SAE Transactions 740340.1974:1518-1522.
    [49]Bassler Heidi I,et al.Weld bonding of Structural Adhesives for Body Stiffening [M].SAE. Transactions 922118.1992.
    [50]张羽翼,宋凯.基于HyperWorks8.0的家用轿车B连接点刚度分析.http://articles.e-works.net.cn/CAE/Article50233_2.htm.
    [51]陈鑫.轿车车身静态刚度分析及结构优化研究[D].长春:吉林大学.2001.
    [52]凯墨尔MM,沃尔夫JA.现代汽车结构分析[M].陈励志,译。北京:人民交通出版社,1987.
    [53]Christian Spencer, Katy Vartanian and Michael White,Light Truck Frame Joint Stiffness Study [J].SAE2003-01-0214.
    [54]刘林强,田福祥.覆盖件数值成形模拟的相关技术[J].汽车工艺与材料,2004-8,6-9.
    [55]张彦敏,张继宏,杨永顺等.拼焊板技术在汽车覆盖件中的应用[J].河南科技大学学报,2006,27(1):27-34.
    [56]宋晓琳.汽车车身制造工艺学[M].北京:北京理工大学出版社,2006.
    [57]万敏,李东升,乔立红等.板料成形计算机分析技术[M].北京:北京航空航天大学出版社,2008.
    [58]吴建军,周维贤.板料成形基本理论[M].西安:西北工业大学出版社,2010.
    [59]陈文亮.板料成形CAE分析教程[M].北京:机械工业出版社,2005.
    [60]王金轮,陈吉清、兰凤崇等.基于变压边力控制的高强度钢板车顶横梁成形及回弹分析[J].中国汽车工程学会年会,2010,(volume Ⅱ):1014-1017.
    [61]袁定国,王红伟.拼焊板方盒件冲压成形压边力数值模拟分析[J].塑性工程学报,2008,(1):41~45.
    [62]王秀凤,郎利辉,谷国超等.板料成形CAE设计及应用—基于DANAFORM[M].北京:北京航空航天大学出版社,2008.
    [63]张胜兰,郑冬黎,郝琪,李楚琳.基于HyperWorks的结构优化设计技术[M].北京:机械工业出版社2007.
    [64]于开平,周传月,谭惠丰等HyperMesh从入门到精通[M].北京:科学出版社,2005.
    [65]孙立君,黄敏飞,阮峰.汽车覆盖件冲压有限元分析方法及其软件的应用,2005(2):18~20.
    [66]陈靖心,蔡兰,陆国民.基于BP神经网络的车门钣金件冲压成形回弹预测[J].农业机械学报,2005,36(7):135~139.
    [67]Yu Tianming,Ma Wenxing,Wang Chunyan. Tensile testing on the mechanical properties of weld metal in dissimilar gage tailor-welded blanks[C].2009 IEEE 10th International Conference on Computer—Aided Indurstrial Design & Conceptual Design,741-745.
    [68]崔令江.汽车覆盖件冲压成形技术[M].北京:机械工业出版社,2003.
    [69]A Nonlinear Finite-element Approach for Kline-to-static Analysis of Multi-body systems [J]. Nonlinear Dynamics,1995,8:237-250.
    [70]童正国.拼焊板胀形不均匀性研究及数值仿真[D].上海:同济大学,2006.
    [71]Eeddell W.,Davics GM. Laster welded tailored blanks and automotive industry. Welding Metal Fabrication [J].1995,63(3):104-108.
    [72]刘鸿文,《材料力学》[M].北京:高等教育出版社.
    [73]杜平安.有限元网格划分的基本原则.《机械设计与制造》[J].2000.2.
    [74]Bonnecase D, Prevosto M. Application of A Multidimensional ARMA Model to Modal Analysis under Natural Excitation In:Society of Experimental Mechanics Proceedings of the 8th International Modal Analysis Conference, The 8th MAC[C], Orlando, Bethel,1990:382-388.
    [75]T. K. Ghassan, A. F. Peter, M. S. Andrew Formability of Aluminum tailor-welded blanks. SAE Technical Paper Series,2000-01-0772.
    [76]Q/BQB310,宝山钢铁股份有限公司企业标准,2003.
    [77]赵建才,朱训生,周持兴.CAE技术在轿车车门密封条结构优化中的应用[J].汽车技术,2004.
    [78]王明强,朱永梅,刘文欣.有限元网格划分方法应用研究[J].机械设计与制造,2004.
    [79]梁君,赵登峰.模态分析方法综述[J].现代制造工程,2006,(8):139~141.
    [80]张迎滨.轻型客车白车身有限元建模及动静态特性分析[D].南京:东南大学,2004.
    [81]马迅,赵幼平.轻型客车车身结构刚度与模态的有限元分析[J].机械科学与技术,2002,(1):86~88.
    [82]Bonnecase D, Prevosto M. Application of A Multidimensional ARMA Model to Modal Analysis under Natural Excitation In:Society of Experimental Mechanics Proceedings of the 8th International Modal Analysis Conference, The 8th MAC[C], Orlando, Bethel,1990:382-388.
    [83]Zhang PQ, Yang QJ, Li CQ. An Efficient Identification Method of Modal Parameters ARMAV Model Method In:Society of Experimental Mechanics Proceedings of the 8th International Modal Analysis Conference, The 8th MAC[C],Orlando, Bethel, 1990:819-826.
    [84]朱茂桃,何志刚,徐凌,等.车身模态分析与振型相关性研究[J].农业机械学报,2004,35(3):13~15,19.
    [85]郑朝云.点焊结构的标准式样和有限元分析[J].重庆交通大学学报,1994(3):103-110.
    [86]Lubkin James L,The Flexibility of Tubular Welded Joint in a Vehicle Frame [M].SAE Transactions 740340.1974:1518-1522.
    [87]Bassler Heidi I,et al.Weld bonding of Structural Adhesives for Body Stiffening [M].SAE. Transactions 922118.1992.
    [88]C. H. Cheng, L. C. Chan, C. L. Chow, Weldment properties evaluation and formability study of tailor-welded blanks of different thickness combinations and welding orientations. J Mater Science,2007, (42):5982-5990.
    [89]T. K. Ghassan, P. A. Friedman, etc. Formability of aluminum tailor-welded blanks. SAE Technical Paper Series,2000-01-0772.
    [90]K.W. Carison The role of heat input in deep penetration laser welding. Welding Journal, 1989,12(3):49-57.
    [91]H. E. Cline, T. R. Anthony, Heat treating and melting material with a scanning laser or electron beam.J. Appl. Phys,1977,48(9):3890-3904.
    [92]Saunders, Frederick. Irvin forming of tailor-welded blanks. The Ohio State University, Ph. D. Dissertation,1994.
    [93]M. F. Shi, et al. Formability. Issues in the Application of Tailor Welded Blank Sheets. SAE Paper,1993,930278:345-353.
    [94](日)汽车技术协会编,《汽车强度》[M].北京:机械工业出版社,1987.
    [95]胡礼木,崔令江.材料成形原理[M].北京:机械工业出版社,2005.
    [96]杜平安.有限元法—原理、建模及应用[M].北京:国防工业出版社,2006.
    [97]M. F. Shi, et al. Formability. Issues in the Application of Tailor Welded Blank Sheets. SAE Paper,1993,930278:345-353.
    [98]B.Y. Wang, et al. Structural performance of tailor welded sheet steels. Journal of Materials & Manufacturing,1995,(104):222-234.
    [99]B. Y. Wang, et al. Performance of Tailor Welded Sheet Steels. SAE Technical Paper Series,2001,950376:12-14.
    [100]ASTM Standard E 8-04, Standard Test Methods for Tension Testing of Metallic Materials,2001.
    [101]C. H. Cheng, L. C. Chan, C. L. Chow, Weldment properties evaluation and formability study of tailor-welded blanks of different thickness combinations and welding orientations. J Mater Science,2007, (42):5982-5990.
    [102]P.Madeleine. Dynamics Analysis of A System of Hinge-connected Flexible Bodies [J]. Celestial Mechanics and Dynamical Astronomy,1987,(41):253-274.
    [103]G.Fichera,M.Lacagnina. Modeling of Torsion Beam Rear Suspension by Using Multi-body Method [J]. Multi-body System Dynamics,2005,12(4):302-316.
    [104]Yu Ning,Yingchun Han,Chunyan Wang. Redesign of a Complicated Component of Auto Body Based on the Properties of TWBs [J].Advanced Materials Research,2010,(3):3151-3160.
    [105]B. L. Kinsey, J. Cao, An analytical model for tailor welded blank forming[J]. Journal of Manufacturing Science and Engineering,2003,(125):344-351.
    [106]王成.400MPa级超级钢激光焊接及其焊接性研究[D].北京:清华大学,2002.
    [107]J. H. Si, et al. Formability enhancement for tailor-welded blanks using blank holding force control[J]. Journal of Manufacturing Science and Engineering,2003,125: 461-467.
    [108]李新城,高豪荣,朱伟兴等.激光拼焊板组织定量分析及其力学性能预测[J].中国激光,2010,(12):3150-3154.
    [109]高欲,朱伟,董湘怀.变压边力对复杂零件成形性能的影响[J].塑性工程学报,2006(10):87-91.
    [110]穆林清,徐科峰,雷刚等.轿车白车身模态试验与有限元模态分析的对比[J].重庆工学院学报,2009(1):11-15.
    [111]沈浩,陈昌明,雷雨成.客车车身模态分析及评价[J].公路交通科技,2003(4):128-134.
    [112]刘广达,李云涛,张建.不等厚高强度激光拼焊板焊缝组织及胀形性能分析[J].焊接学报,2010(4):61-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700