用户名: 密码: 验证码:
新型样品前处理方法在食品分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品中有机物的分析测定是食品分析的一个重要分支。由于食品种类多,基质复杂,有必要采用适当的样品前处理方法对其进行净化、分离和富集。样品前处理的目的在于降低样品基质干扰、增大萃取效率、提高灵敏度。传统的样品前处理方法包括索氏提取,液-液萃取等,这些萃取方法操作都比较繁琐费时,并且在萃取过程中需要使用大量的有机溶剂,对环境造成一定的污染。为了克服这些缺点,近年来发展了许多新型的样品前处理方法,主要包括固相萃取、固相微萃取、聚合物整体柱微萃取等。其中,固相萃取由于具备操作简便、省时、高效、有机试剂消耗少等优点而被广泛应用于食品分析中。固相微萃取是基于固相萃取技术发展起来的一种样品前处理技术,因其具有萃取速度快、效率高、溶剂使用量少、易于实现自动化等优点而备受关注。对固相萃取而言,吸附剂的制备是影响萃取效率的主要因素;而对于固相微萃取,新型涂层材料的选择是萃取成功与否的关键。基于此,本文建立了一系列关于固相萃取和固相微萃取的新型分析方法,用于食品中有机物含量的检测。具体的工作内容如下:
     1.镧掺杂二氧化钛/沸石吸附剂微柱在线预富集-分光光度法测定蛋清、蜂蜜及红酒中溶菌酶的含量。本文以La3+-TiO2/沸石吸附剂微柱为萃取装置,建立了溶菌酶的紫外可见分光光度法检测体系。在最佳实验条件下,该方法的检出限为0.079mg L1,日内、日间精密度分别为2.1%和2.8%。将该方法应用于检测溶菌酶的含量,得到的加标回收率均高于90%。实验结果表明,该方法具有快速、简单、灵敏等优点,适合于蛋清、蜂蜜及红酒中溶菌酶含量的测定。
     2. Fe3O4@TiO2/氧化石墨烯磁性微球的制备及其用于磁性固相萃取的吸附剂,将其与微流控芯片联用,用来检测牛奶和奶粉中雌激素的含量。本文合成了一种新型的磁性吸附剂,Fe3O4@TiO2/氧化石墨烯(Fe3O4@TiO2/GO)复合物。将其载入微流控芯片的流路中,与高效液相色谱联用,考察了该磁性材料对牛奶和奶粉中雌酮(E1)、雌二醇(E2)、雌三醇(E3)的吸附性能。实验优化了样品体积、样品流速、样品pH值和解析液流速等条件。该方法对三种雌激素的检出限为4.37.5ng mL1,加标回收率在70.6%94.5%范围内,日内、日间精密度分别小于2.5%和3.2%。本实验建立了奶制品中雌激素含量的快速检测方法。
     3.柱芳烃功能化的磁性Fe3O4杂化材料(Fe3O4/CP[5]A)的合成,并将其用作磁性固相萃取的吸附剂,用于分离富集红酒和饮料中的7种农药(甲霜灵、烯酰吗啉、醚菌酯、氟硅唑、嘧菌环胺、嘧霉胺、氟菌唑)含量的检测。由于吸附剂所含柱芳烃的柱状及大环结构,使得Fe3O4/CP[5]A材料对目标分析物具有较强的吸附能力。实验对合成的Fe3O4/CP[5]A材料进行了一系列的表征,包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、热重(TGA)和磁强度分析(VSM),结果表明,柱芳烃(CP[5]A)成功的包覆在Fe3O4的表面。本文中详细考察并优化了吸附剂用量、萃取时间、洗脱剂的选择、离子强度及溶液pH值对实验结果的影响。在最优化的条件下,该方法对所选7种农药的检出限范围为5.011.3ng mL1,日内、日间精密度分别低于7.2%和8.0%。该方法对于红酒和饮料中农药残留的检测,加标回收率为70.6106.8%。
     4.离子液体-杯芳烃固相微萃取涂层的制备及其用来检测蔬菜水果中的三嗪类除草剂。本方法采用溶胶-凝胶法合成了一种新型的离子液体-杯芳烃固相微萃取纤维涂层,并与气相色谱-氢火焰离子化检测器(GC-FID)联用,用来富集并检测蔬菜水果中的三嗪类除草剂的含量。本方法对四种三嗪类除草剂(莠去津、西玛津、莠灭净、氰草津)的检出限分别为3.3、4.4、8.8和13.0μg kg1,日内、日间精密度分别小于7.2%和9.9%,加标回收率为71.596.9%,结果令人满意。
Nowadays, the determination of organic components in food samples has beenthe focus on the food analysis. These components are commonly at very lowconcentration with complex matrices. Therefore, in order to improve the selectivityand sensitivity, an appropriate pretreatment method is required before the analysis oforganic components in food samples. Sample pretreatment technology has attractedconsiderable attention in analytical chemistry, especially in the analysis of traceanalytes in real samples. It has been widely applied in the areas of foodstuff, medicine,biochemistry and environment, etc. Generally, in order to achieve a sensitivedetermination of the analytes, a sample preparation step is often needed to separateand enrich the target analytes before instrumental analysis. Traditionalpreconcentration menthods such as liquid-liquid extraction (LLE) and soxhletextraction are often tedious, time-consuming, and require large amounts of organicsolvents those are potentially toxic. In order to overcome these disadvantages,extensive efforts have been made to the development of some novel samplepretreatment techniques which can save time, labor, and solvent consumption. Inrecent years, various new preconcentration methods such as solid-phase extraction(SPE), solid-phase microextraction (MSPE), and polymer monolith microextraction(PMME) are commonly used techniques for the preconcentration of the compoundsfrom various samples. The important research focus on sample preconcentration is thedevelopment of new extraction materials. The aim of the present paper is to designand synthesize new extraction materials for the determination of organic compoundsin food samples. The following four sections are included.
     1. A spectrophotometric method for the detection of lysozyme has beendeveloped based on the on-line preconcentration by a La3+-TiO2-zeolite microcolumn. The obtained method has been used for the determination of lysozyme in egg white,honey, and wine samples. The intraday and interday relative standard deviations(RSDs) have been determined as2.1%and2.8%, respectively. The limit of detection(LOD) for lysozyme is0.079mg L1and the recoveries are higher than90%. Themethod combining UV detection with on-line preconcentration usingLa3+-TiO2-zeolite as the adsorbent is simple, rapid, sensitive, and can be applied to thedetermination of lysozyme in egg white, honey, and wine samples.
     2. Preparation of Fe3O4@TiO2/graphene oxide (Fe3O4@TiO2/GO) magneticmicrospheres for microchip-based pretreatment of estrogens in milk and milk powdersamples. In the current work, we have reported new magnetic microspheres as theadsorbent of estrogens. They have been prepared by coating Fe3O4particles with acomposite made from TiO2and GO. The beads have been loaded into a microfluidicchip and used to adsorb estrone (E1), estradiol (E2), and estriol (E3). The estrogenshave been then eluted from the beads with methanol and submitted to highperformance liquid chromatography (HPLC) determination. The LODs for estrogensare in the range of4.37.5ng mL1, and recoveries range from70.6%to94.5%.Intra-day and inter-day RSDs are less than2.5%and3.2%, respectively. The resultsindicate that the method has been successfully applied to the determination ofestrogens in milk and milk powder samples.
     3. Pillararene modified Fe3O4nanoparticles as magnetic solid-phase extraction(MSPE) adsorbent for pesticide residue analysis in beverage samples. Hybridmaterials based on magnetic Fe3O4and synthetic macrocyclic receptor,carboxylatopillar[5]arene (CP[5]A), have been successfully prepared as an MSPEadsorbent for the determination of trace pesticides in beverage samples coupled withHPLC. The obtained Fe3O4/CP[5]A adsorbents have been characterized via SEM,TEM, TGA, XRD, FT-IR and VSM. Effects of the amount of adsorbents, extractionand desorption times, desorption solvent, ionic strength, and sample pH have beenoptimized. Under the optimum conditions, the LODs for seven pesticides are in therange of5.011.3ng mL1. Intra-day and inter-day RSDs are less than7.2%and8.0%,and recoveries range from70.6%to106.8%. The newly obtained MSPE-HPLC method has been successfully employed to determine pesticide residues in beveragesamples.
     4. Preparation and evaluation of ionic liquid-calixarene solid-phasemicroextraction (SPME) fibres for the detection of triazines in fruit and vegetablesamples. A new ionic liquid (IL)-calixarene coated SPME fibre has been prepared onthe surface of quartz fibre by the sol-gel method. The coated fibre has been coupledwith gas chromatography (GC) for the determination of triazines in fruit andvegetable samples. Under the optimum conditions, the LODs of atrazine, simazine,ametryn, and cyanazine based on three times of standard deviations of blank by sevenreplications are3.3,4.4,8.8, and13.0μg kg1, respectively. The intra-day andinter-day RSDs are less than7.2%and9.9%. The proposed method has beensuccessfully applied to the determination of the four triazines in fruit and vegetablesamples and the accuracy is assessed through recovery experiments.
引文
[1] BAK S A, HANSEN M, KROGH K A, et al. Development and validation of anSPE methodology combined with LC-MS/MS for the determination of fourionophores in aqueous environmental matrices [J]. International Journal ofEnvironmental Analytical Chemistry.2013,93(14):1500-1512.
    [2] CAO X J, CHEN J Y, YE X M, et al. Ultrasound-assisted magnetic SPE basedon Fe3O4-grafted graphene for the determination of polychlorinated biphenylsin water samples [J]. Journal of Separation Science.2013,36(21-22):3579-3585.
    [3] LI J, ZHANG X B, LIU Y X, et al. Preparation of a hollow porous molecularlyimprinted polymer using tetrabromobisphenol A as a dummy template and itsapplication as SPE sorbent for determination of bisphenol A in tap water [J].Talanta.2013,117:281-287.
    [4] NAKOV N, MLADENOVSKA K, LABACEVSKI N, et al. Development andvalidation of automated SPE-LC-MS/MS method for determination ofindapamide in human whole blood and its application to real study samples [J].Biomedical Chromatography.2013,27(11):1540-1546.
    [5] NEBOT C, REGAL P, MANUEL MIRANDA J, et al. Rapid method forquantification of nine sulfonamides in bovine milk using HPLC/MS/MS andwithout using SPE [J]. Food Chemistry.2013,141(3):2294-2299.
    [6] SU R Y, LIU Q W, FAN S J, et al. Application of polymer monolithmicroextraction to the determination of triazines in cereal samples combinedwith high-performance liquid chromatography [J]. Food Analytical Methods.2011,5(5):1040-1046.
    [7] LI W J, ZHOU X, TONG S S, et al. Poly(N-isopropylacrylamide-co-N,N'-methylene bisacrylamide) monolithic column embedded with gamma-aluminananoparticles microextraction coupled with high-performance liquidchromatography for the determination of synthetic food dyes in soft drinksamples [J]. Talanta.2013,105:386-392.
    [8] TIAN M M, FENG W, YE J J, et al. Preparation of Fe3O4@TiO2/grapheneoxide magnetic microspheres for microchip-based preconcentration of estrogensin milk and milk powder samples [J]. Analytical Methods.2013,5(16):3984-3991.
    [9] MA H H, MU F T, FAN S J, et al. Development of a cloud point extractionmethod for the determination of phenolic compounds in environmental watersamples coupled with high-performance liquid chromatography [J]. Journal ofSeparation Science.2012,35(18):2484-2490.
    [10] TONG S S, ZHOU X, ZHOU C H, et al. A strategy to decorate porous polymermonoliths with graphene oxide and graphene nanosheets [J]. Analyst.2013,138(5):1549-1557.
    [11] LI W J, ZHOU X, YE J J, et al. Development of agamma-alumina-nanoparticle-functionalized porous polymer monolith for theenrichment of sudan dyes in red wine samples [J]. Journal of SeparationScience.2013,36(20):3330-3337.
    [12] AL-GHOBASHY M A, WILLIAMS M A K, LAIBLE G, et al. Coupled solidphase extraction and microparticle-based stability and purity-indicatingimmunosensor for the determination of recombinant human myelin basicprotein in transgenic milk [J]. Talanta.2013,109:7-12.
    [13] BLESA J, SILVA L J G, LINO C M, et al. Comparison of three solid-phaseextraction processes in quantification of ciprofloxacin and enrofloxacin in porkmeat [J]. Journal of Separation Science.2012,35(7):832-838.
    [14] BRERETON K R, GREEN D B. Isolation of saccharides in dairy and soyproducts by solid-phase extraction coupled with analysis by ligand-exchangechromatography [J]. Talanta.2012,100:384-390.
    [15] CSIKTUSN DI KISS G A, FORG CS E, CSERH TI T, et al. Solid-phaseextraction and high-performance liquid chromatographic separation of pigmentsof red wines [J]. Journal of Chromatography A.2000,889(1–2):51-57.
    [16] HERN NDEZ-MESA M, GARC A-CAMPA A A M, CRUCES-BLANCO C.Novel solid phase extraction method for the analysis of5-nitroimidazoles andmetabolites in milk samples by capillary electrophoresis [J]. Food Chemistry.2014,145:161-167.
    [17] KHAYOON W S, SAAD B, SALLEH B, et al. Micro-solid phase extractionwith liquid chromatography-tandem mass spectrometry for the determination ofaflatoxins in coffee and malt beverage [J]. Food Chemistry.2014,147:287-294.
    [18] SALINAS-VARGAS M E, CANIZARES-MACIAS M P. On-line solid-phaseextraction using a C18minicolumn coupled to a flow injection system fordetermination of caffeine in green and roasted coffee beans [J]. Food Chemistry.2014,147:182-188.
    [19] SHI Z H, TANG M J, ZHANG X Y, et al. Determination of gossypol in poultryegg and feed by automated solid-phase extraction and high-performance liquidchromatography [J]. Asian Journal of Chemistry.2013,25(8):4547-4550.
    [20] SONG W T, ZHANG Y Q, LI G J, et al. A fast, simple and green method forthe extraction of carbamate pesticides from rice by microwave assisted steamextraction coupled with solid phase extraction [J]. Food Chemistry.2014,143:192-198.
    [21] WU M, HU J Y. Residue analysis of albendazole in watermelon and soil bysolid phase extraction and HPLC [J]. Analytical Letters.2014,47(2):356-366.
    [22] YANG W H, WANG J H, LI X L, et al. A new method research fordetermination of natural pigment crocin yellow in foods by solid-phaseextraction ultrahigh pressure liquid chromatography [J]. Journal ofChromatography A.2011,1218(11):1423-1428.
    [23] SUN J, SU Y J, RAO S Q, et al. Separation of lysozyme usingsuperparamagnetic carboxymethyl chitosan nanoparticles [J]. Journal ofChromatography B-Analytical Technologies in the Biomedical and LifeSciences.2011,879(23):2194-2200.
    [24] CUI Y J, LI Y F, YANG Y, et al. Facile synthesis of amino-silane modifiedsuperparamagnetic Fe3O4nanoparticles and application for lipaseimmobilization [J]. Journal of Biotechnology.2010,150(1):171-174.
    [25] OKAMOTO Y, KITAGAWA F, OTSUKA K. Online concentration andaffinity separation of biomolecules using multifunctional particles in capillaryelectrophoresis under magnetic field [J]. Analytical Chemistry.2007,79(8):3041-3047.
    [26] YUAN H, YAN F, MA L, et al. Carboxyl-functionalized superparamagneticFe3O4/poly(St-co-MPS)/SiO2composite particles for rapid and sensitiveimmunoassay [J]. Journal of Nanoscience and Nanotechnology.2011,11(3):2232-2236.
    [27] HEIDARI H, RAZMI H. Multi-response optimization of magnetic solid phaseextraction based on carbon coated Fe3O4nanoparticles using desirabilityfunction approach for the determination of the organophosphorus pesticides inaquatic samples by HPLC–UV [J]. Talanta.2012,99:13-21.
    [28] ZHAO G Y, SONG S J, WANG C, et al. Determination of triazine herbicides inenvironmental water samples by high-performance liquid chromatographyusing graphene-coated magnetic nanoparticles as adsorbent [J]. AnalyticaChimica Acta.2011,708(1–2):155-159.
    [29] BAI L, MEI B, GUO Q Z, et al. Magnetic solid-phase extraction ofhydrophobic analytes in environmental samples by a surface hydrophiliccarbon-ferromagnetic nanocomposite [J]. Journal of Chromatography A.2010,1217(47):7331-7336.
    [30] CHEN B, WANG S, ZHANG Q, et al. Highly stable magnetic multiwalledcarbon nanotube composites for solid-phase extraction of linear alkylbenzenesulfonates in environmental water samples prior to high-performance liquidchromatography analysis [J]. Analyst.2012,137(5):1232-1240.
    [31] CHENG Q, QU F, LI N B, et al. Mixed hemimicelles solid-phase extraction ofchlorophenols in environmental water samples with1-hexadecyl-3-methylimidazolium bromide-coated Fe3O4magneticnanoparticles with high-performance liquid chromatographic analysis [J].Analytica Chimica Acta.2012,715:113-119.
    [32] YE L, WANG Q, XU J P, et al. Restricted-access nanoparticles for magneticsolid-phase extraction of steroid hormones from environmental and biologicalsamples [J]. Journal of Chromatography A.2012,1244:46-54.
    [33] TAHMASEBI E, YAMINI Y. Facile synthesis of new nano sorbent formagnetic solid-phase extraction by self assembling of bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid on Fe3O4@Ag core@shell nanoparticles:Characterization and application [J]. Analytica Chimica Acta.2012,756:13-22.
    [34] YU X, SUN Y, JIANG C Z, et al. Magnetic solid-phase extraction of fivepyrethroids from environmental water samples followed by ultrafast liquidchromatography analysis [J]. Talanta.2012,98:257-264.
    [35] CHEN X W, MAO Q X, LIU J W, et al. Isolation/separation of plasmid DNAusing hemoglobin modified magnetic nanocomposites as solid-phase adsorbent[J]. Talanta.2012,100:107-112.
    [36] DENG X J, CHEN X P, LIN K, et al. Rapid and selective determination of tracebenzimidazole fungicides in fruit juices by magnetic solid-phase extractioncoupled with high-performance liquid chromatography-fluorescence detection[J]. Food Analytical Methods.2013,6(6):1576-1582.
    [37] JIANG C Z, SUN Y, YU X, et al. Liquid-solid extraction coupled withmagnetic solid-phase extraction for determination of pyrethroid residues invegetable samples by ultra fast liquid chromatography [J]. Talanta.2013,114:167-175.
    [38] LIU X D, YU Y J, ZHAO M Y, et al. Solid phase extraction using magneticcore mesoporous shell microspheres with C18-modified interior pore-walls forresidue analysis of cephalosporins in milk by LC-MS/MS [J]. Food Chemistry.2014,150:206-212.
    [39] MASHHADIZADEH M H, AMOLI-DIVA M, POURGHAZI K. Magneticnanoparticles solid phase extraction for determination of ochratoxin A incereals using high-performance liquid chromatography with fluorescencedetection [J]. Journal of Chromatography A.2013,1320:17-26.
    [40] MOAZZEN M, AHMADKHANIHA R, GORJI M E, et al. Magneticsolid-phase extraction based on magnetic multi-walled carbon nanotubes for thedetermination of polycyclic aromatic hydrocarbons in grilled meat samples [J].Talanta.2013,115:957-965.
    [41] WANG L, ZANG X H, CHANG Q Y, et al. Determination of triazolefungicides in vegetable samples by magnetic solid-phase extraction withgraphene-coated magnetic nanocomposite as adsorbent followed by gaschromatography-mass spectrometry detection [J]. Food Analytical Methods.2014,7(2):318-325.
    [42] ZHENG H B, MO J Z, ZHANG Y, et al. Facile synthesis of magneticmolecularly imprinted polymers and its application in magnetic solid phaseextraction for fluoroquinolones in milk samples [J]. Journal of ChromatographyA.2014,1329:17-23.
    [43] ARTHUR C L, WLISZYN J P. Solid phase microextraction with thermaldesorption using fused silica optical fibers [J]. Analytical Chemistry.1990,62(19):2145-2148.
    [44] HU Y X, YANG X M, WANG C, et al. A sensitive determination method forcarbendazim and thiabendazole in apples by solid-phase microextraction-highperformance liquid chromatography with fluorescence detection [J]. FoodAdditives and Contaminants.2008,25(3):314-319.
    [45] HUANG S D, HUANG H I, SUNG Y H. Analysis of triazine in water samplesby solid-phase microextraction coupled with high-performance liquidchromatography [J]. Talanta.2004,64(4):887-893.
    [46] NATANGELO M, TAVAZZI S, BENFENATI E. Evaluation of solid phasemicroextraction-gas chromatography in the analysis of some pesticides withdifferent mass spectrometric techniques: Application to environmental watersand food samples [J]. Analytical Letters.2002,35(2):327-338.
    [47] BIANCHIN J N, NARDINI G, MERIB J, et al. Screening of volatilecompounds in honey using a new sampling strategy combining multipleextraction temperatures in a single assay by HS-SPME-GC-MS [J]. FoodChemistry.2014,145:1061-1065.
    [48] STEINGASS C B, GRAUWET T, CARLE R. Influence of harvest maturity andfruit logistics on pineapple (Ananas comosus L. Merr.) volatiles assessed byheadspace solid phase microextraction and gas chromatography-massspectrometry (HS-SPME-GC/MS)[J]. Food Chemistry.2014,150:382-391.
    [49] THEODORIDIS G, KOSTER E H M, DE JONG G J. Solid-phasemicroextraction for the analysis of biological samples [J]. Journal ofChromatography B-Analytical Technologies in the Biomedical and LifeSciences.2000,745(1):49-82.
    [50] LAN H Z, GAN N, PAN D D, et al. An automated solid-phase microextractionmethod based on magnetic molecularly imprinted polymer as fiber coating fordetection of trace estrogens in milk powder [J]. Journal of Chromatography A.2014,1331:10-18.
    [51] BANITABA M H, DAVARANI S S H, MOVAHED S K. Comparison of direct,headspace and headspace cold fiber modes in solid phase microextraction ofpolycyclic aromatic hydrocarbons by a new coating based onpoly(3,4-ethylenedioxythiophene)/graphene oxide composite [J]. Journal ofChromatography A.2014,1325:23-30.
    [52] LI Q L, WANG X F, YUAN D X. Preparation of solid-phase microextractionfiber coated with single-walled carbon nanotubes by electrophoretic depositionand its application in extracting phenols from aqueous samples [J]. Journal ofChromatography A.2009,1216(9):1305-1311.
    [53] ZHANG H, LEE H K. Plunger-in-needle solid-phase microextraction withgraphene-based sol-gel coating as sorbent for determination of polybrominateddiphenyl ethers [J]. Journal of Chromatography A.2011,1218(28):4509-4516.
    [54] ZHANG S L, DU Z, LI G K. Layer-by-layer fabrication of chemical-bondedgraphene coating for solid-phase microextraction [J]. Analytical Chemistry.2011,83(19):7531-7541.
    [55] CUI X Y, GU Z Y, JIANG D Q, et al. In situ hydrothermal growth ofmetal-organic framework199films on stainless steel fibers for solid-phasemicroextraction of gaseous benzene homologues [J]. Analytical Chemistry.2009,81(23):9771-9777.
    [56] WANG X M, LIU J Y, LIU A F, et al. Preparation and evaluation ofmesoporous cellular foams coating of solid-phase microextraction fibers bydetermination of tetrabromobisphenol A, tetrabromobisphenol S and relatedcompounds [J]. Analytica Chimica Acta.2012,753:1-7.
    [57] OLSZOWY P, SZULTKA M, FUCHS P, et al. New coated SPME fibers forextraction and fast HPLC determination of selected drugs in human blood [J].Journal of Pharmaceutical and Biomedical Analysis.2010,53(4):1022-1027.
    [58] RIANAWATI E, BALASUBRAMANIAN R. Optimization and validation ofsolid phase microextraction (SPME) method for analysis of polycyclic aromatichydrocarbons in rainwater and stormwater [J]. Physics and Chemistry of theEarth.2009,34(13-16):857-865.
    [59] VUCKOVIC D, ZHANG X, CUDJOE E, et al. Solid-phase microextraction inbioanalysis: New devices and directions [J]. Journal of Chromatography A.2010,1217(25):4041-4060.
    [60] ABDULRA'UF L B, HAMMED W A, TAN G H. SPME fibers for the analysisof pesticide residues in fruits and vegetables: A Review [J]. Critical Reviews inAnalytical Chemistry.2012,42(2):152-161.
    [61] LIN J, DAI Y, GUO Y N, et al. Volatile profile analysis and quality predictionof Longjing tea (camellia sinensis) by HS-SPME/GC-MS [J]. Journal ofZhejiang University-Science B.2012,13(12):972-980.
    [62] LIU Y P, MIAO Z W, GUAN W, et al. Analysis of organic volatile flavorcompounds in fermented stinky tofu using SPME with different fiber coatings[J]. Molecules.2012,17(4):3708-3722.
    [63] MARIANI M B, GIANNETTI V, TESTANI E. HS-SPME/GC-MS method tocharacterise the flavour of Italian pasta: Potential application to assess thequality of the products [J]. Food Analytical Methods.2014,7(1):64-72.
    [64] MURAT C, GOURRAT K, JEROSCH H, et al. Analytical comparison andsensory representativity of SAFE, SPME, and purge and trap extracts of volatilecompounds from pea flour [J]. Food Chemistry.2012,135(3):913-920.
    [65] PETISCA C, PEREZ-PALACIOS T, PINHO O, et al. Optimization andapplication of a HS-SPME-GC-MS methodology for quantification of furaniccompounds in espresso coffee [J]. Food Analytical Methods.2014,7(1):81-88.
    [66] SUCHY P, BERRY J. Detection of total microcystin in fish tissues based onlemieux oxidation and recovery of2-methyl-3-methoxy-4-phenylbutanoic acid(MMPB) by solid-phase microextraction gas chromatography-massspectrometry (SPME-GC/MS)[J]. International Journal of EnvironmentalAnalytical Chemistry.2012,92(12):1443-1456.
    [67] HUANG J F, LIN B, YU Q W, et al. Determination of fluoroquinolones in eggsusing in-tube solid-phase microextraction coupled to high-performance liquidchromatography [J]. Analytical and Bioanalytical Chemistry.2006,384(5):1228-1235.
    [68] WEN Y, WANG Y, FENG Y Q. Extraction of clenbuterol from urine usinghydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithmicroextraction followed by high-performance liquid chromatographydetermination [J]. Journal of Separation Science.2007,30(17):2874-2880.
    [69] ZHANG H J, LI J S, WANG H, et al. Determination of aspartate and glutamatein rabbit retina using polymer monolith microextraction coupled tohigh-performance liquid chromatography with fluorescence detection [J].Analytical and Bioanalytical Chemistry.2006,386(7-8):2035-2042.
    [70] LIU Z, WEI F, FENG Y Q. Determination of cytokinins in plant samples bypolymer monolith microextraction coupled with hydrophilic interactionchromatography-tandem mass spectrometry [J]. Analytical Methods.2010,2(11):1676-1685.
    [71] PENG X T, SHI Z G, FENG Y Q. Rapid and high-throughput determination ofmelamine in milk products and eggs by full automatic on-line polymermonolith microextraction coupled to high-performance liquid chromatography[J]. Food Analytical Methods.2011,4(3):381-388.
    [72] TONG S S, LIU Q W, LI Y C, et al. Preparation of porous polymer monolithiccolumn incorporated with graphene nanosheets for solid phase microextractionand enrichment of glucocorticoids [J]. Journal of Chromatography A.2012,1253:22-31.
    [73] MA H H, FENG W, TIAN M M, et al. Determination of N-methylcarbamatepesticides in vegetables by poly(methacrylic acid-co-ethylene glycoldimethacrylate) monolith microextraction coupled with high performance liquidchromatography [J]. Journal of Chromatography B-Analytical Technologies inthe Biomedical and Life Sciences.2013,929:27-32.
    [74] LIU D, LV X J, ZHANG J L, et al. Polymer monolith microextraction coupledto microwave plasma torch-atomic emission spectrometry for the determinationof Nd, Eu and Yb in tea samples [J]. Analytical Methods.2012,4(9):2970-2976.
    [75]鲍实,余琼卫,柳文媛.聚合物整体柱固相微萃取-高效液相色谱法测定中成药和保健食品中枸橼酸西地那非[J].分析科学学报.2012,28(2):160-164.
    [76]文毅,汪颖,冯钰琦.聚合物整体柱微萃取-高效液相色谱法检测鸡蛋中的磺胺嘧啶和磺胺二甲嘧啶残留[J].色谱.2006,24(5):471-474.
    [77]马乔,胡西洲,黄晋萃,等.新型强阳离子交换聚合物整体柱的制备及其在奶制品中三聚氰胺测定中的应用[J].色谱.2009,27(5):731-736.
    [78] WATANABE H, TANAKA H. A non-ionic surfactant as a new solvent forliquid-liquid extraction of zinc(II) with1-(2-pyridylazo)-2-naphthol [J]. Talanta.1978,25(10):585-589.
    [79] STEGE P W, SOMBRA L L, MESSINA G A, et al. Environmental monitoringof phenolic pollutants in water by cloud point extraction prior to micellarelectrokinetic chromatography [J]. Analytical and Bioanalytical Chemistry.2009,394(2):567-573.
    [80] WANG C C, LUCONI M O, MASI A N, et al. Determination of terazosin bycloud point extraction-fluorimetric combined methodology [J]. Talanta.2007,72(5):1779-1785.
    [81] LIU T T, CAO P, GENG J P, et al. Determination of triazine herbicides in milkby cloud point extraction and high-performance liquid chromatography [J].Food Chemistry.2014,142:358-364.
    [82] KIATHEVEST K, GOTO M, SASAKI M, et al. Extraction and concentration ofanthraquinones from roots of morinda citrifolia by non-ionic surfactant solution[J]. Separation and Purification Technology.2009,66(1):111-115.
    [83] LIANG R, WANG Z L, XU J H, et al. Novel polyethylene glycol induced cloudpoint system for extraction and back-extraction of organic compounds [J].Separation and Purification Technology.2009,66(2):248-256.
    [84] ZHOU J H, CHEN J D, CHENG Y H, et al. Determination of prometryne inwater and soil by HPLC-UV using cloud-point extraction [J]. Talanta.2009,79(2):189-193.
    [85] SHOKROLLAHI A, SHAMSIPUR M, JALALI F, et al. Cloud pointextraction-preconcentration and flame atomic absorption spectrometricdetermination of low levels of zinc in water and blood serum samples [J].Central European Journal of Chemistry.2009,7(4):938-944.
    [86] DADFARNIA S, SHABANI A M H, KAMRANZADEH E. Selective cloudpoint extraction and preconcentration of trace amounts of cadmium prior toflame atomic absorption spectrometric determination [J]. Journal of theBrazilian Chemical Society.2010,21(12):2353-2358.
    [87] EL-NAGGAR W S, LASHEEN T A, NOUH E-S A, et al. Cloud pointextraction and preconcentration of gold in geological matrices prior to flameatomic absorption determination [J]. Central European Journal of Chemistry.2010,8(1):34-40.
    [88] GAO Y, WU P, LI W, et al. Simultaneous and selective preconcentration oftrace Cu and Ag by one-step displacement cloud point extraction for FAASdetermination [J]. Talanta.2010,81(1-2):586-590.
    [89] LEMOS V A, DAVID G T. An on-line cloud point extraction system for flameatomic absorption spectrometric determination of trace manganese in foodsamples [J]. Microchemical Journal.2010,94(1):42-47.
    [90] DURUKAN I, SAHIN C A, SATIROGLU N, et al. Determination of iron andcopper in food samples by flow injection cloud point extraction flame atomicabsorption spectrometry [J]. Microchemical Journal.2011,99(1):159-163.
    [91] MOHAMMADI S Z, AFZALI D, POURTALEBI D. Flame atomic absorptionspectrometric determination of trace amounts of palladium, gold and nickelafter cloud point extraction [J]. Journal of Analytical Chemistry.2011,66(7):620-625.
    [92] CITAK D, TUZEN M. Cloud point extraction of copper, lead, cadmium, andiron using2,6-diamino-4-phenyl-1,3,5-triazine and nonionic surfactant, andtheir flame atomic absorption spectrometric determination in water and cannedfood samples [J]. Journal of Aoac International.2012,95(4):1170-1175.
    [93] MORTADA W I, HASSANIEN M M, EL-ASMY A A. Cloud point extractionfor the determination of trace amounts of Pt(IV) by graphite furnace atomicabsorption spectrometry [J]. Analytical Methods.2013,5(2):530-535.
    [94] NAEEMULLAH, KAZI T G, SHAH F, et al. Cloud point extraction and flameatomic absorption spectrometric determination of cadmium and nickel indrinking and wastewater samples [J]. Journal of Aoac International.2013,96(2):447-452.
    [95] OHASHI A, OGIWARA M, IKEDA R, et al. Cloud point extraction andpreconcentration for the gas chromatography of phenothiazine tranquilizers inspiked human serum [J]. Analytical Sciences.2004,20(9):1353-1357.
    [96] SHEN J C, SHAO X G. Determination of tobacco alkaloids by gaschromatography-mass spectrometry using cloud point extraction as apreconcentration step [J]. Analytica Chimica Acta.2006,561(1-2):83-87.
    [97] JIA G F, LV C G, ZHU W T, et al. Applicability of cloud point extractioncoupled with microwave-assisted back-extraction to the determination oforganophosphorous pesticides in human urine by gas chromatography withflame photometry detection [J]. Journal of Hazardous Materials.2008,159(2-3):300-305.
    [98] FONTANA A R, SILVA M F, MARTINEZ L D, et al. Determination ofpolybrominated diphenyl ethers in water and soil samples by cloud pointextraction-ultrasound-assisted back-extraction-gas chromatography-massspectrometry [J]. Journal of Chromatography A.2009,1216(20):4339-4346.
    [99] TAKAGAI Y, HINZE W L. Cloud point extraction with surfactantderivatization as an enrichment step prior to gas chromatographic or gaschromatography-mass spectrometric analysis [J]. Analytical Chemistry.2009,81(16):7113-7122.
    [100] ZHAO W J, SUN X K, DENG X N, et al. Cloud point extraction coupled withultrasonic-assisted back-extraction for the determination of organophosphoruspesticides in concentrated fruit juice by gas chromatography with flamephotometric detection [J]. Food Chemistry.2011,127(2):683-688.
    [101] CHEN M, LIU C, HU X J, et al. Ultrasound-assisted ionic-liquid cloud pointextraction coupled with HPLC-DAD for the determination of syntheticphenolic antioxidants in toning lotion [J]. Journal of the Chemical Society ofPakistan.2012,34(5):1140-1143.
    [102] MA H, MU F, FAN S, et al. Development of a cloud point extraction methodfor the determination of phenolic compounds in environmental water samplescoupled with high-performance liquid chromatography [J]. Journal ofSeparation Science.2012,35(18):2484-2490.
    [103] MADEJ K, PERSONA K. Drug screening in human plasma by cloud-pointextraction and HPLC [J]. Central European Journal of Chemistry.2013,11(1):94-100.
    [104] POURGHOBADI Z, HEYDARI R, POURGHOBADI R, et al. Determinationof gabapentin in human plasma using simultaneous cloud point extraction andprecolumn derivatization by HPLC [J]. Monatshefte Fur Chemie.2013,144(6):773-779.
    [105] WANG C, WANG L, ZHAO Q, et al. Cloud point extraction coupled withHPLC-DAD for the determination of genistein and daidzein in river water [J].Analytical Methods.2013,5(15):3688-3692.
    [106] ZHANG C, WU Y J, JIN S F, et al. Analysis of chlorpyrifos andchlorpyrifos-methyl residues in multi-environmental media by cloud-pointextraction and HPLC [J]. Analytical Methods.2013,5(12):3089-3095.
    [107] YIN X-B. Dual-cloud point extraction as a preconcentration and clean-uptechnique for capillary electrophoresis speciation analysis of mercury [J].Journal of Chromatography A.2007,1154(1-2):437-443.
    [108] WEI W, YIN X-B, HE X-W. pH-mediated dual-cloud point extraction as apreconcentration and clean-up technique for capillary electrophoresisdetermination of phenol and m-nitrophenol [J]. Journal of Chromatography A.2008,1202(2):212-215.
    [109] YIN X B, GUO J M, WEI W. Dual-cloud point extraction and tertiary aminelabeling for selective and sensitive capillaryelectrophoresis-electrochemiluminescent detection of auxins [J]. Journal ofChromatography A.2010,1217(8):1399-1406.
    [110] ZHONG S X, TAN S N, GE L Y, et al. Determination of bisphenol A andnaphthols in river water samples by capillary zone electrophoresis after cloudpoint extraction [J]. Talanta.2011,85(1):488-492.
    [111] REFFAS H, BENABDALLAH T, YOUCEF M H, et al. Removal of copper(II)from a concentrated sulphate medium by cloud point extraction using anN,N'-bis(salicylaldehyde)ethylenediimine di-schiff base chelating ligand [J].Journal of Surfactants and Detergents.2014,17(1):27-35.
    [112] SHOKROLLAHI A, AGHAEI R. Spectrophotometeric determination of traceamounts of Al3+ion in water samples after cloud point extraction usingquinizarin as a complexing agent [J]. Environmental Monitoring andAssessment.2014,186(2):1113-1121.
    [113] ARAIN S S, KAZI T G, ARAIN J B, et al. Preconcentration of toxic elementsin artificial saliva extract of different smokeless tobacco products by dual-cloudpoint extraction [J]. Microchemical Journal.2014,112:42-49.
    [114] ZAIN N N M, ABU BAKAR N K, MOHAMAD S, et al. Optimization of agreener method for removal phenol species by cloud point extraction andspectrophotometry [J]. Spectrochimica Acta Part a-Molecular and BiomolecularSpectroscopy.2014,118:1121-1128.
    [115] GURKAN R, YILMAZ O. Indirect quantification of trace levels cyanide inenvironmental waters through flame atomic absorption spectrometry coupledwith cloud point extraction [J]. Journal of the Iranian Chemical Society.2013,10(4):631-642.
    [116]马岳,阎哲,黄骏雄.浊点萃取在生物大分子分离及分析中的应用[J].化学进展.2001,13(1):25-32.
    [117] BORIDER T M. Phase separation of integral membrane proteins in TritonX-114solution [J]. Journal of Biological Chemistry.1981,256:1604-1607.
    [118]李海涛,于村,俞莎,等.浊点萃取-原子吸收法间接检测食品中维生素B12方法的研究[J].中国卫生检验杂志.2005,15(7):821-822.
    [119] SATO N, MORI M, ITABASHI H. Cloud point extraction of Cu(II) using amixture of Triton X-100and dithizone with a salting-out effect and itsapplication to visual determination [J]. Talanta.2013,117:376-381.
    [120]陈建波,刘伟,崔艳梅,等.浊点萃取-高效液相色谱法测定草莓汁中的多种农药残留[J].分析化学研究简报.2008,36(3):401-404.
    [121] GURKAN R, AKSOY U, ULUSOY H I, et al. Determination of low levels ofmolybdenum (VI) in food samples and beverages by cloud point extractioncoupled with flame atomic absorption spectrometry [J]. Journal of FoodComposition and Analysis.2013,32(1):74-82.
    [122] WANG P J, MENG D L, LIU C, et al. Determination of synthetic phenolicantioxidants in cake by HPLC/DAD after mixed micelle-mediated cloud pointextraction [J]. Journal of the Chemical Society of Pakistan.2013,35(5):1268-1274.
    [1]吴素萍.溶菌酶在食品工业中的应用[J].食品研究与开发.2005,26(5):190-192.
    [2]张新宝,陈红兵.溶菌酶的性质及其在食品防腐中的应用[J].江西食品工业.2008,4:42-45.
    [3]杜卓,张娜,王建华.多壁碳纳米管固相萃取-在线提取蛋清中的溶菌酶[J].高等学校化学学报.2008,29(5):902-905.
    [4]王庭欣,刘峥颢,夏立娅,等.紫外分光光度法测定蜂蜜中溶菌酶的含量[J].食品科技.2010,35(4):292-294.
    [5] ZHOU Q, DING Y, XIAO J. Sensitive determination of thiamethoxam,imidacloprid and acetamiprid in environmental water samples with solid-phaseextraction packed with multiwalled carbon nanotubes prior to high-performanceliquid chromatography [J]. Analytical and Bioanalytical Chemistry.2006,385(8):1520-1525.
    [6]李秀锦,仲峰.不同方法处理724树脂对蛋清溶菌酶吸附作用的影响[J].中国食品学报.2003,3(1):17-21.
    [7]冯长根,白林山,任启生.二甲胺修饰戊二醛交联壳聚糖树脂的制备及性能[J].离子交换与吸附.2003,19(3):262-268.
    [8]鲁玲玲,李乃瑄.血清白蛋白-脲醛树脂-二氧化锆固相萃取剂的制备及评价[J].天津理工大学学报.2007,23(6):81-84.
    [9]王光华,董发勤,张宝述.沸石离子交换的研究现状及发展趋势[J].中国非金属矿工业导刊.2007,(2):18-21.
    [10] LIU S, LIM M, AMAL R. TiO2-coated natural zeolite: Rapid humic acidadsorption and effective photocatalytic regeneration [J]. Chemical EngineeringScience.2014,105:46-52.
    [11] NEGOI A, TRIANTAFYLLIDIS K, PARVULESCU V I, et al. The hydrolytichydrogenation of cellulose to sorbitol over M (Ru, Ir, Pd, Rh)-BEA-zeolitecatalysts [J]. Catalysis Today.2014,223:122-128.
    [12] KATOH M, KATAYAMA K, TOMIDA T. Effect of temperature on airadsorption onto alkali metal ion-exchanged ZSM-5zeolites [J]. SeparationScience and Technology.1999,34(4):599-608.
    [13]白爱民,邹欣平,杨水金.镧掺杂二氧化钛光催化降解品红溶液的研究[J].稀有金属.2005,29(4):549-552.
    [14]孙也,刘宏菊. TiO2-沸石光催化剂的制备及其在采油废水处理中的应用[J].石化技术与应用.2009,27(1):1-5.
    [15]徐纯芳,黄妙良,程应汉.沸石负载TiO2催化剂降解有机物的研究[J].化工新型材料.2004,32(5):29-32.
    [16]曹建劲.沸石改性及其吸附性能研究[J].化工矿物与加工.2002,12:10-11.
    [1] GENG Z G, LIN Y, YU X X, et al. Highly efficient dye adsorption and removal:A functional hybrid of reduced graphene oxide-Fe3O4nanoparticles as an easilyregenerative adsorbent [J]. Journal of Materials Chemistry.2012,22(8):3527-3535.
    [2] WU Q H, ZHAO G Y, FENG C, et al. Preparation of a graphene-based magneticnanocomposite for the extraction of carbamate pesticides from environmentalwater samples [J]. Journal of Chromatography A.2011,1218(44):7936-7942.
    [3] CHENG G H, HE M, PENG H Y, et al. Dithizone modified magneticnanoparticles for fast and selective solid phase extraction of trace elements inenvironmental and biological samples prior to their determination by ICP-OES[J]. Talanta.2012,88:507-515.
    [4] JIANG H M, YAN Z P, ZHAO Y, et al. Zincon-immobilized silica-coatedmagnetic Fe3O4nanoparticles for solid-phase extraction and determination oftrace lead in natural and drinking waters by graphite furnace atomic absorptionspectrometry [J]. Talanta.2012,94:251-256.
    [5] DING J, GAO Q, LI X S, et al. Magnetic solid-phase extraction based onmagnetic carbon nanotube for the determination of estrogens in milk [J]. Journalof Separation Science.2011,34(18):2498-2504.
    [6] LIU Q, SHI J B, CHENG M T, et al. Preparation of graphene-encapsulatedmagnetic microspheres for protein/peptide enrichment and MALDI-TOF MSanalysis [J]. Chemical Communications.2012,48(13):1874-1876.
    [7] CHEN J M, ZOU J, ZENG J B, et al. Preparation and evaluation ofgraphene-coated solid-phase microextraction fiber [J]. Analytica Chimica Acta.2010,678(1):44-49.
    [8] LUO Y B, SHI Z G, GAO Q, et al. Magnetic retrieval of graphene: Extraction ofsulfonamide antibiotics from environmental water samples [J]. Journal ofChromatography A.2011,1218(10):1353-1358.
    [9] ZHANG J L, CHENG R M, TONG S S, et al. Microwave plasma torch-atomicemission spectrometry for the on-line determination of rare earth elements basedon flow injection preconcentration by TiO2-graphene composite [J]. Talanta.2011,86:114-120.
    [10] SHIH T T, CHEN W Y, SUN Y C. Open-channel chip-based solid-phaseextraction combined with inductively coupled plasma-mass spectrometry foronline determination of trace elements in volume-limited saline samples [J].Journal of Chromatography A.2011,1218(16):2342-2348.
    [11] YEONG WON J, CHOI J W, MIN J H. Micro-fluidic chip platform for thecharacterization of breast cancer cells using aptamer-assistedimmunohistochemistry [J]. Biosensors and Bioelectronics.2013,40(1):161-166.
    [12] LIU J H, BURDETTE J E, XU H Y, et al. Evaluation of estrogenic activity ofplant extracts for the potential treatment of menopausal symptoms [J]. Journal ofAgricultural and Food Chemistry.2001,49(5):2472-2479.
    [13] ZHANG Y C, ALBRECHT D, BOMSER J, et al. Isoflavone profile andbiological activity of soy bread [J]. Journal of Agricultural and Food Chemistry.2003,51(26):7611-7616.
    [14] XU X, ROMAN J M, ISSAQ H J, et al. Quantitative measurement ofendogenous estrogens and estrogen metabolites in human serum by liquidchromatography-tandem mass spectrometry [J]. Analytical Chemistry.2007,79(20):7813-7821.
    [15] YAN W, LI Y, ZHAO L X, et al. Determination of estrogens and bisphenol A inbovine milk by automated on-line C30solid-phase extraction coupled withhigh-performance liquid chromatography-mass spectrometry [J]. Journal ofChromatography A.2009,1216(44):7539-7545.
    [16] CHANG C C, HUANG S D. Determination of the steroid hormone levels inwater samples by dispersive liquid–liquid microextraction with solidification of afloating organic drop followed by high-performance liquid chromatography [J].Analytica Chimica Acta.2010,662(1):39-43.
    [17] FERNANDEZ M P, IKONOMOU M G, BUCHANAN I. An assessment ofestrogenic organic contaminants in Canadian wastewaters [J]. Science of theTotal Environment.2007,373(1):250-269.
    [18] MIGOWSKA N, CABAN M, STEPNOWSKI P, et al. Simultaneous analysis ofnon-steroidal anti-inflammatory drugs and estrogenic hormones in water andwastewater samples using gas chromatography-mass spectrometry and gaschromatography with electron capture detection [J]. Science of the TotalEnvironment.2012,441:77-88.
    [19] AUFARTOVA J, TORRES PADRON M E, SOSA FERRERA Z, et al.Optimisation of an in-tube solid phase microextraction method coupled withHPLC for determination of some oestrogens in environmental liquid samplesusing different capillary columns [J]. International Journal of EnvironmentalAnalytical Chemistry.2012,92(4):382-396.
    [20] BASAGLIA G, PIETROGRANDE M C. Optimization of a SPME/GC/MSmethod for the simultaneous determination of pharmaceuticals and personal careproducts in waters [J]. Chromatographia.2012,75(7-8):361-370.
    [21] HU C, HE M, CHEN B B, et al. Determination of estrogens in pork and chickensamples by stir bar sorptive extraction combined with high-performance liquidchromatography-ultraviolet detection [J]. Journal of Agricultural and FoodChemistry.2012,60(42):10494-10500.
    [22] IPARRAGUIRRE A, PRIETO A, NAVARRO P, et al. Optimisation of stir barsorptive extraction and in-tube derivatisation-thermal desorption-gaschromatography-mass spectrometry for the determination of several endocrinedisruptor compounds in environmental water samples [J]. Analytical andBioanalytical Chemistry.2011,401(1):339-352.
    [23] WANG X Y, SARIDARA C, MITRA S. Microfluidic supported liquidmembrane extraction [J]. Analytica Chimica Acta.2005,543(1-2):92-98.
    [24] MA Z, MENG F B, ZHAO R, et al. Preparation and dual microwave-absorptionproperties of carboxylic poly(arylene ether nitrile)/Fe3O4hybrid microspheres [J].Journal of Magnetism and Magnetic Materials.2012,324(7):1365-1369.
    [25] YE J J, FENG W, TIAN M M, et al. Spectrophotometric determination ofphenol by flow injection on-line preconcentration with a micro-columncontaining magnetic microspheres functionalized with Cyanex272[J].Analytical Methods.2013,5(4):1046-1051.
    [26] WANG S, LI Y, WU X L, et al. Construction of uniformly sized pseudotemplate imprinted polymers coupled with HPLC-UV for the selectiveextraction and determination of trace estrogens in chicken tissue samples [J].Journal of Hazardous Materials.2011,186(2-3):1513-1519.
    [27] STAFIEJ A, PYRZYNSKA K, REGAN F. Determination of anti-inflammatorydrugs and estrogens in water by HPLC with UV detection [J]. Journal ofSeparation Science.2007,30(7):985-991.
    [28] WANG L, CAI Y Q, HE B, et al. Determination of estrogens in water byHPLC–UV using cloud point extraction [J]. Talanta.2006,70(1):47-51.
    [1] SEIBER J N, KLEINSCHMIDT L A. Contributions of pesticide residuechemistry to improving food and environmental safety: Past and presentaccomplishments and future challenges [J]. Journal of Agricultural and FoodChemistry.2011,59(14):7536-7543.
    [2] LIKAS D T, TSIROPOULOS N G, MILIADIS G E. Rapid gaschromatographic method for the determination of famoxadone, trifloxystrobinand fenhexamid residues in tomato, grapeand wine samples [J]. Journal ofChromatography A.2007,1150(1-2):208-214.
    [3] ZHU X L, QI X Y, WANG J, et al. Determination of procymidone,pentachloroaniline and methyl-pentachloro-phenylsulfide residues in wine byMSPD-GC-ECD [J]. Chromatographia.2007,65(9-10):625-628.
    [4] ZACHARIS C K, CHRISTOPHORIDIS C, FYTIANOS K. Vortex-assistedliquid-liquid microextraction combined with gas chromatography-massspectrometry for the determination of organophosphate pesticides inenvironmental water samples and wines [J]. Journal of Separation Science.2012,35(18):2422-2429.
    [5] ZAMBONIN C G, QUINTO M, DE VIETRO N, et al. Solid-phasemicroextraction-gas chromatography mass spectrometry: A fast and simplescreening method for the assessment of organophosphorus pesticides residuesin wine and fruit juices [J]. Food Chemistry.2004,86(2):269-274.
    [6] SAGRATINI G, MANES J, GIARDINA D, et al. Analysis of carbarnate andphenylurea pesticide residues in fruit juices by solid-phase microextraction andliquid chromatography-mass spectrometry [J]. Journal of Chromatography A.2007,1147(2):135-143.
    [7] WU J C, TRAGAS C, LORD H, et al. Analysis of polar pesticides in water andwine samples by automated in-tube solid-phase microextraction coupled withhigh-performance liquid chromatography-mass spectrometry [J]. Journal ofChromatography A.2002,976(1-2):357-367.
    [8] MOEDER M, BAUER C, POPP P, et al. Determination of pesticide residues inwine by membrane-assisted solvent extraction and high-performance liquidchromatography-tandem mass spectrometry [J]. Analytical and BioanalyticalChemistry.2012,403(6):1731-1741.
    [9] BRAGA J W B, BOTTOLI C B G, JARDIM I C S F, et al. Determination ofpesticides and metabolites in wine by high performance liquid chromatographyand second-order calibration methods [J]. Journal of Chromatography A.2007,1148(2):200-210.
    [10] LIKAS D T, TSIROPOULOS N G. Residue screening in apple, grape and winefood samples for seven new pesticides using HPLC with UV detection. Anapplication to trifloxystrobin dissipation in grape and wine [J]. InternationalJournal of Environmental Analytical Chemistry.2009,89(8-12):857-869.
    [11] TUZIMSKI T. Determination of pesticides in wines samples by HPLC-DADand HPTLC-DAD [J]. Journal of Liquid Chromatography&RelatedTechnologies.2012,35(10):1415-1428.
    [12] WANG S L, REN L P, XU Y J, et al. Application of ultrasound-assisted ionicliquid dispersive liquid-phase microextraction followed high-performanceliquid chromatography for the determination of fungicides in red wine [J].Microchimica Acta.2011,173(3-4):453-457.
    [13] LUO Y B, YU Q W, YUAN B F, et al. Fast microextraction of phthalate acidesters from beverage, environmental water and perfume samples by magneticmulti-walled carbon nanotubes [J]. Talanta.2012,90:123-131.
    [14] RASTKARI N, AHMADKHANIHA R. Magnetic solid-phase extraction basedon magnetic multi-walled carbon nanotubes for the determination of phthalatemonoesters in urine samples [J]. Journal of Chromatography A.2013,1286:22-28.
    [15] WANG Y X, WANG S H, NIU H Y, et al. Preparation of polydopamine coatedFe3O4nanoparticles and their application for enrichment of polycyclic aromatichydrocarbons from environmental water samples [J]. Journal ofChromatography A.2013,1283:20-26.
    [16] BIANCHI F, CHIESI V, CASOLI F, et al. Magnetic solid-phase extractionbased on diphenyl functionalization of Fe3O4magnetic nanoparticles for thedetermination of polycyclic aromatic hydrocarbons in urine samples [J]. Journalof Chromatography A.2012,1231:8-15.
    [17] GIOKAS D L, ZHU Q, PAN Q M, et al. Cloud point-dispersive μ-solid phaseextraction of hydrophobic organic compounds onto highly hydrophobiccore-shell Fe2O3@C magnetic nanoparticles [J]. Journal of Chromatography A.2012,1251:33-39.
    [18] HEIDARI H, RAZMI H, JOUYBAN A. Preparation and characterization ofceramic/carbon coated Fe3O4magnetic nanoparticle nanocomposite as asolid-phase microextraction adsorbent [J]. Journal of Chromatography A.2012,1245:1-7.
    [19] LI X S, XU L D, SHAN Y B, et al. Preparation of magnetic poly(diethylvinylphosphonate-co-ethylene glycol dimethacrylate) for the determination ofchlorophenols in water samples [J]. Journal of Chromatography A.2012,1265:24-30.
    [20] WANG W N, MA R Y, WU Q H, et al. Magnetic microsphere-confinedgraphene for the extraction of polycyclic aromatic hydrocarbons fromenvironmental water samples coupled with high performance liquidchromatography-fluorescence analysis [J]. Journal of Chromatography A.2013,1293:20-27.
    [21] ZHANG S X, NIU H Y, ZHANG Y Y, et al. Biocompatiblephosphatidylcholine bilayer coated on magnetic nanoparticles and theirapplication in the extraction of several polycyclic aromatic hydrocarbons fromenvironmental water and milk samples [J]. Journal of Chromatography A.2012,1238:38-45.
    [22] ZHANG X C, XIE S P, PAAU M C, et al. Ultrahigh performance liquidchromatographic analysis and magnetic preconcentration of polycyclic aromatichydrocarbons by Fe3O4-doped polymeric nanoparticles [J]. Journal ofChromatography A.2012,1247:1-9.
    [23] OGOSHI T, KANAI S, FUJINAMI S, et al. Para-bridged symmetrical pillar5arenes: Their Lewis acid catalyzed synthesis and host-guest property [J].Journal of the American Chemical Society.2008,130(15):5022-5023.
    [24] CAO D R, KOU Y H, LIANG J Q, et al. A facile and efficient preparation ofpillararenes and a pillarquinone [J]. Angewandte Chemie-International Edition.2009,48(51):9721-9723.
    [25] LI C J, ZHAO L, LI J, et al. Self-assembly of [2]pseudorotaxanes based onpillar[5]arene and bis(imidazolium) cations [J]. Chemical Communications.2010,46(47):9016-9018.
    [26] OGOSHI T, YAMAGISHI T A. Pillararenes: Versatile synthetic receptors forsupramolecular chemistry [J]. European Journal of Organic Chemistry.2013,2013(15):2961-2975.
    [27] XUE M, YANG Y, CHI X D, et al. Pillararenes, a new class of macrocycles forsupramolecular chemistry [J]. Accounts of Chemical Research.2012,45(8):1294-1308.
    [28] WANG K, TAN L L, CHEN D X, et al. One-pot synthesis of pillar[n]arenescatalyzed by a minimum amount of TfOH and a solution-phase mechanisticstudy [J]. Organic&Biomolecular Chemistry.2012,10(47):9405-9409.
    [29] LI C J, SHU X Y, LI J, et al. Complexation of1,4-bis(pyridinium)butanes bynegatively charged carboxylatopillar[5]arene [J]. The Journal of OrganicChemistry.2011,76(20):8458-8465.
    [30] LI H, CHEN D X, SUN Y L, et al. Viologen-mediated assembly of and sensingwith carboxylatopillar[5]arene-modified gold nanoparticles [J]. Journal of theAmerican Chemical Society.2012,135(4):1570-1576.
    [31] OGOSHI T, DEMACHI K, KITAJIMA K, et al. Monofunctionalizedpillar[5]arenes: Synthesis and supramolecular structure [J]. ChemicalCommunications.2011,47(25):7164-7166.
    [32] CHEN D X, SUN Y L, ZHANG Y, et al. Supramolecular self-assembly andphotophysical properties of pillar[5]arene-stabilized CdTe quantum dotsmediated by viologens [J]. Rsc Advances.2013,3(17):5765-5768.
    [33] XIA B Y, HE J M, ABLIZ Z, et al. Synthesis of a pillar[5]arene dimer byco-oligomerization and its complexation with n-octyltrimethyl ammoniumhexafluorophosphate [J]. Tetrahedron Letters.2011,52(34):4433-4436.
    [34] YU G C, XUE M, ZHANG Z B, et al. A water-soluble pillar[6]arene: Synthesis,host-guest chemistry, and its application in dispersion of multiwalled carbonnanotubes in water [J]. Journal of the American Chemical Society.2012,134(32):13248-13251.
    [35] ZHAO L, WU R A, HAN G H, et al. The highly selective capture ofphosphopeptides by zirconium phosphonate-modified magnetic nanoparticlesfor phosphoproteome analysis [J]. Journal of the American Society for MassSpectrometry.2008,19(8):1176-1186.
    [36] JIANG B, YANG K G, ZHAO Q, et al. Hydrophilic immobilized trypsin reactorwith magnetic graphene oxide as support for high efficient proteome digestion[J]. Journal of Chromatography A.2012,1254:8-13.
    [37] ALMEIDA C, NOGUEIRA J M F. Comparison of the selectivity of differentsorbent phases for bar adsorptive microextraction-application to trace levelanalysis of fungicides in real matrices [J]. Journal of Chromatography A.2012,1265:7-16.
    [38] MELO A, AGUIAR A, MANSILHA C, et al. Optimisation of a solid-phasemicroextraction/HPLC/diode array method for multiple pesticide screening inlettuce [J]. Food Chemistry.2012,130(4):1090-1097.
    [39] BAGGIANI C, BARAVALLE P, GIRAUDI G, et al. Molecularly imprintedsolid-phase extraction method for the high-performance liquid chromatographicanalysis of fungicide pyrimethanil in wine [J]. Journal of Chromatography A.2007,1141(2):158-164.
    [40] ZHANG K, WONG J W, HAYWARD D G, et al. Multiresidue pesticideanalysis of wines by dispersive solid-phase extraction andultrahigh-performance liquid chromatography-tandem mass spectrometry [J].Journal of Agricultural and Food Chemistry.2009,57(10):4019-4029.
    [1] HIDALGO C, SANCHO J V, HERN NDEZ F. Trace determination of triazineherbicides by means of coupled-column liquid chromatography and large volumeinjection [J]. Analytica Chimica Acta.1997,338(3):223-229.
    [2] PAC KOV V, STUL K K, PR HODA M. High-performance liquidchromatography of s-triazines and their degradation products using ultravioletphotometric and amperometric detection [J]. Journal of Chromatography A.1988,442:147-156.
    [3] ARTHUR C L, PAWLISZYN J. Solid phase microextraction with thermaldesorption using fused silica optical fibers [J]. Analytical Chemistry.1990,62(19):2145-2148.
    [4] GALLARDO-CHACON J, VICHI S, LOPEZ-TAMAMES E, et al. Analysis ofsparkling wine lees surface volatiles by optimized headspace solid-phasemicroextraction [J]. Journal of Agricultural and Food Chemistry.2009,57(8):3279-3285.
    [5] ZHANG X, ES-HAGHI A, CAI J, et al. Simplified kinetic calibration ofsolid-phase microextraction for in vivo pharmacokinetics [J]. Journal ofChromatography A.2009,1216(45):7664-7669.
    [6] LIN C, LIU C, CHANG H, et al. Enrichment and separation of acidic and basicproteins using the centrifugal ultrafiltration followed by nanoparticle-filledcapillary electrophoresis [J]. Electrophoresis.2008,29(14):3024-3031.
    [7] HERBERT P, SILVA A L, JOAO M J, et al. Determination of semi-volatilepriority pollutants in landfill leachates and sediments using microwave-assistedheadspace solid-phase microextraction [J]. Analytical and BioanalyticalChemistry.2006,386(2):324-331.
    [8] DJOZAN D, EBRAHIMI B, MAHKAM M, et al. Evaluation of a new methodfor chemical coating of aluminum wire with molecularly imprinted polymerlayer. Application for the fabrication of triazines selective solid-phasemicroextraction fiber [J]. Analytica Chimica Acta.2010,674(1):40-48.
    [9] BASHEER C, JEGADESAN S, VALIYAVEETTIL S, et al. Sol-gel-coatedoligomers as novel stationary phases for solid-phase microextraction [J]. Journalof Chromatography A.2005,1087(1-2):252-258.
    [10] ROCHA C, PAPPAS E A, HUANG C. Determination of trace triazine andchloroacetamide herbicides in tile-fed drainage ditch water using solid-phasemicroextraction coupled with GC-MS [J]. Environmental Pollution.2008,152(1):239-244.
    [11] HUANG S D, HUANG H I, SUNG Y H. Analysis of triazine in water samplesby solid-phase microextraction coupled with high-performance liquidchromatography [J]. Talanta.2004,64(4):887-893.
    [12] LORD H L, MODER M, POPP P, et al. In vivo study of triazine herbicides inplants by SPME [J]. Analyst.2004,129(2):107-108.
    [13] DIETZ C, SANZ J, CAMARA C. Recent developments in solid-phasemicroextraction coatings and related techniques [J]. Journal of ChromatographyA.2006,1103(2):183-192.
    [14] KUMAR A, GAURAV, MALIK A K, et al. A review on development of solidphase microextraction fibers by sol-gel methods and their applications [J].Analytica Chimica Acta.2008,610(1):1-14.
    [15] OUYANG G, PAWLISZYN J. SPME in environmental analysis [J]. Analyticaland Bioanalytical Chemistry.2006,386(4):1059-1073.
    [16] WANG X, LIU J, LIU A, et al. Preparation and evaluation of mesoporouscellular foams coating of solid-phase microextraction fibers by determination oftetrabromobisphenol A, tetrabromobisphenol S and related compounds [J].Analytica Chimica Acta.2012,753:1-7.
    [17] BIANCHI F, BISCEGLIE F, CARERI M, et al. Innovative sol-gel coatings forsolid-phase microextraction development of fibers for the determination ofpolycyclic aromatic hydrocarbons at trace level in water [J]. Journal ofChromatography A.2008,1196:15-22.
    [18] HAN X X, ARMSTRONG D W. Using geminal dicationic ionic liquids assolvents for high-temperature organic reactions [J]. Organic Letters.2005,7(19):4205-4208.
    [19] HAGIWARA H, SUGAWARA Y, ISOBE K, et al. Immobilization of Pd(OAc)2in ionic liquid on silica: Application to sustainable Mizoroki-Heck reaction [J].Organic Letters.2004,6(14):2325-2328.
    [20] ANDERSON J L, ARMSTRONG D W. High-stability ionic liquids. A new classof stationary phases for gas chromatography [J]. Analytical Chemistry.2003,75(18):4851-4858.
    [21] LUO H M, DAI S, BONNESEN P V, et al. Extraction of cesium ions fromaqueous solutions using calix4arene-bis(tert-octylbenzo-crown-6) in ionicliquids [J]. Analytical Chemistry.2004,76(11):3078-3083.
    [22] HUANG K, WANG G, HUANG B, et al. Preparation and application of ionicliquid-coated fused-silica capillary fibers for solid-phase microextraction [J].Analytica Chimica Acta.2009,645(1-2):42-47.
    [23] LOPEZ-DARIAS J, PINO V, MENG Y, et al. Utilization of a benzylfunctionalized polymeric ionic liquid for the sensitive determination ofpolycyclic aromatic hydrocarbons, parabens and alkylphenols in waters usingsolid-phase microextraction coupled to gas chromatography-flame ionizationdetection [J]. Journal of Chromatography A.2010,1217(46):7189-7197.
    [24] MENG Y, PINO V, ANDERSON J L. Role of counteranions in polymeric ionicliquid-based solid-phase microextraction coatings for the selective extraction ofpolar compounds [J]. Analytica Chimica Acta.2011,687(2):141-149.
    [25] GHOLIVAND M B, KARIMIAN N, MALEKZADEH G. Computational designand synthesis of a high selective molecularly imprinted polymer forvoltammetric sensing of propazine in food samples [J]. Talanta.2012,89:513-520.
    [26] BAGHERI H, BABANEZHAD E, KHALILIAN F. A novel sol-gel-basedamino-functionalized fiber for headspace solid-phase microextraction of phenoland chlorophenols from environmental samples [J]. Analytica Chimica Acta.2008,616(1):49-55.
    [27] ZHOU Q X, XIAO J P, WANG W D, et al. Determination of atrazine andsimazine in environmental water samples using multiwalled carbon nanotubes asthe adsorbents for preconcentration prior to high performance liquidchromatography with diode array detector [J]. Talanta.2006,68(4):1309-1315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700