用户名: 密码: 验证码:
灰岩皱叶报春小分子热激蛋白基因的克隆及其在逆境下的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
报春花属植物种类繁多,花色丰富而艳丽,具有很高的观赏价值,被誉为“世界三大高山花卉”之一,可用于花坛、花镜,高山景观、岩石园景观、野趣园以及沼泽园的构建,亦可作为盆栽观赏。但由于其为典型的暖温带植物,生长在低纬度高海拔区域,温度是影响其广泛应用的主要限制因素之一,提高其耐热性是引种及育种成功的关键。因此,报春耐热性的研究对扩大其生存适应范围,使报春花属植物在园林绿化中广泛的应用具有重要意义。在已有灰岩皱叶报春热激差减文库研究的基础上,克隆得到3个编码热激蛋白的基因PfHSP17.1,PfHSP17.2,及PfHSP21.4,为进一步研究验证3个基因的功能及其热激应答机制分别对3个基因进行功能研究,主要结论如下:
     1、为研究PfHSP17.1、PfHSP17.2、及PfHSP21.4,基因在活体中的作用,构建pET43.1a-PfHSP17.1、pEF43.1a-PfHSP17.2、pEF43.1a-PfHSP21.4,重组质粒,转入大肠杆菌BL21,以转pET43.1a空载的大肠杆菌为对照。通过SDS-PAGE和Western blot确定融合蛋白在大肠杆菌中的正确表达。对转目的基因大肠杆菌和pET43.1a空载的大肠杆菌进行胁迫实验,结果表明小分子热激蛋白的转入明显提高了大肠杆菌对高温、低温、盐和干旱胁迫的耐受能力。
     2、从灰岩皱叶报春中克隆得到PfHSp17.1,通过同源比对和系统发育分析,以及洋葱表皮细胞定位,将PfHSP17.1归类于细胞质Class Ⅰ小分子热激蛋白。热激条件下,PfHSP17.1的表达具有组织特异性,其在叶片中的表达量明显高于在根、茎、花等器官中的表达量。该小分子热激蛋白基因也受干旱、盐和氧化胁迫等的诱导。在拟南芥中过量表达PfHSP17.1提高了转基因植株对热、盐和干旱胁迫耐受能力。
     3、从灰岩皱叶报春中克隆得到pfhSp17.2,通过同源比对和系统发育分析,以及洋葱表皮细胞定位,将PfHSP17.2归类于细胞质Class Ⅱ小分子热激蛋白。热激条件下,PfHSP17.2在幼叶中的表达量略高于老叶,且明显高于其在根、茎、花等器官中的表达量,在种子萌发和发育中也检测到该基因的表达。此外,该小分子热激蛋白基因在低温、盐和氧化胁迫下也大量表达,而在干旱和ABA处理下表达较为微弱。PfHSP17.2基因在拟南芥中过量表达提高了转基因植株对热、盐和低温胁迫的耐受能力。
     4、从灰岩皱叶报春中克隆得到叶绿体小分子热激蛋白基因,PfHSP21.4。该基因能迅速被热激诱导,也参与了种子萌发的过程。热激条件下,PfHSP21.4在拟南芥中过量表达有效的维持了较高的叶绿素含量和光合系统Ⅱ的效率,细胞膜受到的损伤小于同等胁迫下的野生型株系,同时,pfHSP21.4的表达也提高了过氧化物酶和超氧化物歧化酶的活性,从而减少了活性氧对细胞的损害,热激后游离脯氨酸在转基因株系中的积累也更丰富。此外,pfHSP21.4可能参与激活HSP101,HSP70,P5CS和APX的表达,从而提高转基因植株的耐热性。
     本研究对小分子激蛋白基因在灰岩皱叶报春中的表达模式进行了分析,并将PfHSP17.1、PfHSP17.2、PfHSP21.4,三个不同亚家族的小分子热激基因转入拟南芥和大肠杆菌中进行较为全面的功能分析,为今后的报春耐热性研究奠定了基础。
Because of the number of varieties grown and its hold over the hearts and minds of the public, Primula is praised as one of the three great garden genera, only Rhododendron and Rosa can compare with it. With great wealth of species and high ornamental value, it is wildly sold as potted flowers; however, it could be also used in many other kinds of landscape decoration, such as parterre, rock garden, and bog and marsh garden. Approximately all species in this genus are distributed throughout the moister and cooler regions of the northern hemisphere where they are covered by snow during much of their resting period. Thus, high temperature becomes the primary barrier to cultivating them in warm areas. Therefore, it is interesting to research how to enhance the tolerance of plants to heat and other stresses. In our previous study, we found that Primula forrestii displayed the highest heat-resistance under heat stress compared with P. malacoides, P. obconica, P. veris, P. saxatilis and P. denticulatete. Through the suppression subtractive hybridization (SSH) method, three sHSP genes, PfHSP17.1, PfHSP17.2and PfHSP21.4, were highly expressed in the leaves of P. forrestii under high temperature treatment. In this study, we analyzed their expression patterns in P. forrestii under various abiotic stress treatments using RT-PCR. Then, the three genes were overexpressed in Arabidopsis thaliana and Escherichia coli to analyse their function.
     To elucidate the function of the three sHSP genes, recombinant plasmids expressing full-length PfHSP17.1, PJHSP17.2and PfHSP21.4were constructed. SDS-PAGE and Western blot analyses were used to confirm the expression of fusion proteins. The recombinant E. coli displayed enhanced viability under different stresses, such as high and low temperature, high salt and drought.
     PfHSP17.1was isolated from heat treated P. forrestii. Sequence alignments and phylogenetic analysis showed that PfHSP17.1belonged to sHSP cytosolic class I. Subcellular localization confirmed that PfHSP17.1localized in cytosol. The expression of PfHSP17.1was also triggered remarkably by salt, drought and oxidative stress conditions but was only slightly induced by abscisic acid (ABA). It was highly expressed in young leaves, old leaves, roots and stems, and a lesser extent in flowers under heat stress. Transgenic A. thaliana constitutively expressing PfHSP17.1displayed increased thermotolerance and higher resistance to salt and drought compared with wild-type plants.
     A novel small heat shock protein gene, PfHSP17.2, coding a protein of152amino acids was isolated from heat treated P. forrestii. Sequence alignments and phylogenetic analysis indicate that PfHSP17.2is a cytosolic class Ⅱ sHSP, which was further supported by PfHSP17.2-GFP fusion protein. PfHSP17.2was detected in developing and germinating seeds under normal conditions, and was highly expressed in leaves, roots, stems and flowers under heat stress. This gene was also strongly induced by cold, salt and oxidative treatments and to a lesser extent by drought and ABA stresses. Overexpression of PfHSP17.2in Arabidopsis enhanced tolerance to heat, cold and salt stresses.
     Here, expression analysis showed that the Primula Cp-sHSP gene, PfHSP21.4, was highly induced by heat stress in all vegetative and generative tissues in addition to constitutive expression in certain development stages. PfHSP21.4was introduced into Arabidopsis, and its function was analysed in transgenic plants. Under heat stress, the PfHSP21.4transgenic plants showed increased heat tolerance as shown by preservation of hypocotyl elongation, membrane integrity, chlorophyll content and photosystem II activity (Fv/Fm), increased seedling survival and increase in proline content. Alleviation of oxidative damage was associated with increased activity of superoxide dismutase and HSP101, HSP70, APX and P5CS under heat stress was more pronounced in transgenic plants than in wild-type plants.
     These results highlight the important roles that PfHSP17.1, PfHSP17.2and PfHSP21.4play in diverse physiological and biochemical processes related to adverse conditions. This study paves the way for Primula sHSP genes future utilization in plant resistance breeding and facilitates the HSP research expanded to ornamental plants.
引文
[1]陈亚娟.亚洲棉GaP5CS与GaTPS基因的克隆与功能鉴定[J].北京:中国农业科学院研究生院,2009.
    [2]高松,苏培玺,严巧娣,丁松爽,张岭梅.C4荒漠植物猪毛菜与木本猪毛菜的叶片解剖结构及光合生理特征[J].植物生态学报,2009,33(2):347-354.
    [3]韩颖颖,明凤,王敬文,梁斌,郭滨,叶鸣明,沈大棱.蝴蝶兰查尔酮合酶基因cDNA的克隆,鉴定及其原核表达[J].复旦学报(自然科学版),2004,43(2).
    [4]和文家,徐中志,和加卫,李燕.灰岩皱叶报春的组织培养快速繁殖[J].植物生理学通讯,2007,43(2):323.
    [5]胡伟娟,潘会堂,董玲玲.报春叶片解剖结构与耐热性的关系[J].华中农业大学学报,2010,29(3):363-368.
    [6]胡伟娟,张启翔,潘会堂,董玲玲.灰岩皱叶报春和滇北球花报春在热锻炼胁迫下叶肉自保超微结构的差异[J].华南农业大学学报2010,31(3):43-45.
    [7]胡伟娟,张启翔,潘会堂,董玲玲.报春花属植物耐热性生理指标研究初探[J].中国农学通报,2010,26(5):158-163.
    [8]胡伟娟.报春花属耐热性评价及耐热基因的克隆与表达[D].北京林业大学,2010
    [9]李晓荣,王冬梅,李建平,李静,张帅,陈国华,黄乐平.小麦Wcor719基因的原核表达及转化烟草和棉花提高抗冷性研究[J].核农学报,2012,26(3):420-426.
    [10]刘飞虎,梁雪妮,刘晓莉.4种野生报春花光合作用特性的比较[J].园艺学报,2004,31(4):482-486.
    [11]刘小莉,刘飞虎,李宗菊,曾淑华.10种报春花亲缘关系的ISSR分析[J].云南大学学报(自然科学版),2004,26(5):454-458.
    [12]刘新光,梁念慈,马涧泉.重组人CK2ββ亚基的原核表达,纯化与鉴定[J].生物化学与生物物理进展,2000,27(2):201.
    [13]聂明珠,祖元刚,房思良.长春花Crlea基因的克隆及原核表达初步分析[J].植物研究,2006,26(5):577-582.
    [14]孟令波,秦智伟,李淑敏.高温胁迫对黄瓜幼苗根系生长的影响[J].园艺学报,2003,30(6):694.
    [15]秦俊,傅徽楠,王玉勤.芹菜的耐热生理研究[J].辽宁农业科学,2001,(6):24-27.
    [16]申丽丽.报春花属传粉生物学研究进展[J].安徽农业科学,2010(11):5574-5575.
    [17]吴玉丹,王文兵,李兵,王东,沈卫德.家蚕溶茧酶基因的克隆,序列分析及原核表达[J].中国农业科学,2008,41(10):3277-3285.
    [18]赵雷,刘靖华,唐靖,李志杰,刘亚伟,邓鹏,姜勇.人高迁移率族蛋白1的原核细胞表达及其功能研究[J].中国病理生理杂志,2006,22(6):1119-1123.s
    [19]中国科学院中国植物志委员会,中国植物志[M].北京:科学出版社,2006.
    [20]周蕴薇.翠南报春叶片细胞超微结构对低温的适应性变化[J].园艺学报,2006,33(6):1361-1364.
    [21]朱惠芬.五种观赏报春引种驯化的初步研究[D].昆明:中科院昆明植物研究所,2001.
    [22]邹喻苹,葛颂,王小东.系统与进化植物学中的分子标记[M].北京:科学出版社2003.
    [23]AHN Y, Zimmerman J. Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro[J]. Plant, cell & environment,2006, 29(1):95-104.
    [24]Ahuja I, de Vos R C H, Bones A M, Hall R. D. Plant molecular stress responses face climate change [J]. Trends in plant science,2010,15(12):664-674.
    [25]Almoguera C, Coca M A, Jordano J. Tissue-specific expression of sunflower heat shock proteins in response to water stress [J]. The Plant Journal,1993,4(6):947-958.
    [26]Almoguera C, Jordano J. Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs [J]. Plant molecular biology,1992,19(5):781-792.
    [27]Balogi Z, Cheregi O, Giese K C, Juhasz K, Vierling E, Vass I, Horvath, I.A mutant small heat shock protein with increased thylakoid association provides an elevated resistance against UV-B damage in Synechocystis 6803[J]. Journal of biological chemistry,2008,283(34):22983-22991.
    [28]Balogi Z, Torok Z, Balogh G, Josvay K, Shigapova N, Vierling, E, Horvath I. "Heat shock lipid" in cyanobacteria during heat/light-acclimation [J]. Archives of biochemistry and biophysics,2005, 436(2):346-354.
    [29]Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors [J]. Biosci,2004,29:471-487.
    [30]Baniwal SK, Chan KY, Scharf KD, Nover L:Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. J Biol Chem 2007,282:3605-3613
    [31]Barua D, Downs C A, Heckathorn S A. Variation in chloroplast small heat-shock protein function is a major determinant of variation in thermotolerance of photosynthetic electron transport among ecotypes of Chenopodium album[J]. Functional Plant Biology,2003,30(10):1071-1079.
    [32]Basha E, Jones C, Wysocki V, et al. Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol[J]. Journal of biological chemistry,2010, 285(15):11489-11497.
    [33]Basha E, Lee G J, Breci L A, Hausrath A C, Buan N. R, Giese K C, Vierling E. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions [J]. Journal of Biological Chemistry,2004, 279(9):7566-7575.
    [34]Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies [J]. Plant and soil,1973r 39(1):205-207.
    [35]Beere H. The stress of dying':the role of heat shock proteins in the regulation of apoptosiss [J]. J Cell Sci,2004,117:2641-2651
    [36]Beyer Jr W F, Fridovich I. Assaying for superoxide dismutase activity:some large consequences of minor changes in conditions[J]. Analytical biochemistry,1987,161(2):559-566.
    [37]Bondino H G, Valle E M, Ten Have A. Evolution and functional diversification of the small heat shock protein/alpha-crystallin family in higher plants. Planta,2012,235,1299-1313.
    [38]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry,1976,72(1): 248-254.
    [39]Burke J J.Characterization of acquired thermotolerance in soybean seedlings [J]. Plant Physiol Biochem,1998,36(8):601-607
    [40]Busch W, Wunderlich M, Scho'ffl F. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana[J]. The Plant Journal,2005,41(1):1-14.
    [41]Camejo D, Rodriguez P, Morales M A, Dell'Amico JM, Torrecillas A, Alarcon JJ High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility [J]. J Plant Physiol,2005,162:281-289
    [42]Campbell J L, Klueva N Y, Zheng H, Nieto-Sotelo J., Ho T. H., Nguyen H. T. Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA [J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2001,1517(2):270-277.
    [43]Carranco R, Almoguera C, Jordano J. A plant small heat shock protein gene expressed during zygotic embryogenesis but noninducible by heat stress[J]. Journal of Biological Chemistry,1997, 272(43):27470-27475.
    [44]Charng Y, Liu H, Liu N, Liu N. Y, Hsu F. C, Ko S. S. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimationfJ]. Plant physiology,2006,140(4):1297-1305.
    [45]Charng Y Y, Liu H C, Liu N Y, Chi W T, Wang C N, Chang S H, Wang T T. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology,2007,143(1):251-262.
    [46]Chauhan H, Khurana N, Nijhavan A, Khurana J. P., Khurana P. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress[J]. Plant, cell & environment,2012,35(11):1912-1931.
    [47]Chen Q, Vierling E. Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein[J]. Molecular and General Genetics MGG,1991,226(3):425-431.
    [48]Clarke S M, Mur L A J, Wood J E, Scott I. M. Salicylic acid dependent signaling promotes basal thennotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana[J]. The Plant Journal,2004,38(3):432-447.
    [49]Clough S J, Bent A F. Floral dip:a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana[J]. The plant journal,1998,16(6):735-743.
    [50]Coca M A, Almoguera C, Thomas T L, Jordano J.. Differential regulation of small heat-shock genes in plants:analysis of a water-stress-inducible and developmentally activated sunflower promoter[J]. Plant molecular biology,1996,31(4):863-876.
    [51]Dafny-Yelin M, Tzfira T, Vainstein A, Adam Z. Non-redundant functions of sHSP-Cis in acquired thermotolerance and their role in early seed development in Arabidopsis[J]. Plant molecular biology,2008,67(4):363-373.
    [52]Dash S, Mohanty N. Evaluation of assay for the analysis of thermo-tolerance and recovery potentials of seedlings of wheat (Triticum aestivum L.) cultivars. J Plant Physiol,2001, 158:1153-1165
    [53]Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler. Cytosolic ascorbateperoxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell,2005,17:268-281.
    [54]de Klerk GJ, Pumisutapon P.Protection of in-vitro grown Arabidopsis seedlings against abiotic stresses. Plant Cell Tiss Organ Cult,2008,95:149-154
    [55]DeRocher A E, Helm K W, Lauzon L M, Vierling E. Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery[J]. Plant physiology,1991,96(4):1038-1047.
    [56]DeRocher A E, Vierling E. Developmental control of small heat shock protein expression during pea seed maturation[J]. The Plant Journal,1994,5(1):93-102.
    [57]DHINDSA R S, PLUMB-DHINDSA P, THORPE T A. Leaf senescence:correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental botany,1981,32(1):93-101.
    [58]Dietrich P S, Bouchard R A, Casey E S, Sinibaldi R. M. Isolation and characterization of a small heat shock protein gene from maize[J]. Plant physiology,1991,96(4):1268-1276.
    [59]Downs C A, Jones L R, Heckathorn S A. Evidence for a novel set of small heat-shock proteins that associates with the mitochondria of murine PC12 cells and protects NADH:ubiquinone oxidoreductase from heat and oxidative stress[J]. Archives of biochemistry and biophysics,1999, 365(2):344-350.
    [60]Downs C A, Ryan S L, Heckathorn S A. The chloroplast small heat-shock protein:evidence for a general role in protecting photosystem 11 against oxidative stress and photoinhibition[J]. Journal of plant physiology,1999,155(4):488-496.
    [61]Ducruet JM, Peeva V, Havaux M. Chlorophyll thermofluorescence and thermoluminescence as complementary tools for the study of temperature stress in plants. Photosynth Res,2007, 93:159-171
    [62]Duncan R R, Carrow R N. Turfgrass molecular genetic improvement for abiotic/edaphic stress resistance[J]. Advances in agronomy,1999,1999.
    [63]Epple P, Mack AA, Morris VR, Dangl JL. Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant specific zinc finger proteins. Proc NatI Acad Sci,2003, 100:6831-6836
    [64]Flagel L E, Wendel J F. Gene duplication and evolutionary novelty in plants[J]. New Phytologist, 2009,183(3):557-564.
    [65]Gao C, Jiang B, Wang Y, Yang C. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast[J]. Molecular biology reports,2012,39(4): 4889-4897.
    [66]Gifford D J, Taleisnik E. Heat-shock response of Pinus and Picea seedlings[J]. Tree physiology, 1994,14(1):103-110.
    [67]Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930.
    [68]Guan JC, Jinn TL, Yeh CH, Feng SP, Chen YM, Lin CY. Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.)[J]. Plant molecular biology,2004,56(5):795-809.
    [69]Guo SJ, Zhou HY, Zhang XS, Li XG, Meng QW. Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance[J]. Journal of plant physiology,2007,164(2):126-136.
    [70]Haq N U, Ammar M, Bano A, Luthe D S, Heckathorn S A, Shakeel S N. Molecular Characterization of Chenopodium album Chloroplast Small Heat Shock Protein and Its Expression in Response to Different Abiotic Stresses[J]. Plant Molecular Biology Reporter,2013,31(6): 1230-1241.
    [71]Haq NU, Raza S, Luthe DS, Heckathorn SA, Shakeel S. A dual role for the chloroplast small heat shock protein of Chenopodium album including protection from both heat and metal stress[J]. Plant Molecular Biology Reporter,2013,31(2):398-408.
    [72]Heckathorn S, Ryan SL, Bay Us JA, Wang D, Hamilton EW, Cundiff L, Luthe DS. In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photo-system II during heat stress[J]. Funct Plant Biol,2002,29:933-944
    [73]Heckathorn SA, Downs CA, Sharkey TD, Coleman JS. The small, methionine-rich chloroplast heat-shock protein protects photosystem Ⅱ electron transport during heat stress[J]. Plant Physiology,1998,116(1):439-444.
    [74]Helm K W, Schmeits J, Vierling E. An endomembrane-localized small heat-shock protein from Arabidopsis thaliana[J]. Plant physiology,1995,107(1):287.
    [75]Hong SW, Vierling E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress[J]. Proceedings of the National Academy of Sciences,2000,97(8): 4392-4397.
    [76]Hong SW, Lee U, Vierling E. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures[J]. Plant Physiol,2003,132:757-767
    [77]Howarth CJ. Molecular responses of plants to an increased incidence of heat shock [J]. Plant, Cell & Environment,1991,14(8):831-841.
    [78]Howarth CJ, Pollock CJ, Peacock JM. Development of laboratory-based methods for assessing seedling thermotolerance in pearl millet[J]. New Phytol,1997,137:129-139.
    [79]Hsieh M H, Chen J T, Jinn T L, Chen Y M, Lin C Y.A class of soybean low molecular weight heat shock proteins immunological study and quantitation[J]. Plant physiology,1992,99(4):1279-1284.
    [80]Hu W, Zhang L, Pan H, Gao Y, Zhang Q. Differential gene expression in Primula under heat stress conditions. J Food, Agri & Environ.2013. (in press)
    [81]Hu W, Zhang Q, Pan H, Dong L.Preliminary Study on Physiological Indexes of Heat-resistance of Primula. Chinese Agricultural Science Bulletin,2010,26:158-163
    [82]Humphreys M O. The contribution of conventional plant breeding to forage crop improvement[C]. Proceedings of the XVIII International Grassland Congress, Winnipeg, MB, and Saskatoon, SK, Canada.1997:8-19.
    [83]Jiang C, Xu J, Zhang H A O, Zhang X, Shi J, Li M. I. N, Ming F. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana[J]. Plant, cell & environment,2009,32(8): 1046-1059.
    [84]Jiang CH.Cloning and functional analysis of RcHSP77.8 gene encoding a small heat shock protein in Rosa Chinensis[D]. Dissertation,2009, University of Fudan
    [85]Jiang YW, Huang BR.Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci,2001,41(2):436-442
    [86]Jofre A, Molinas M, Pla M. A 10-kDa class-C1 sHsp protects E. coli from oxidative and high-temperature stress[J]. Planta,2003,217(5):813-819.
    [87]Johri B.M, Ambegaokar K.B, Srivastava P.S. Comparative embryology of angiosperms[M]. BerlimSpringer-Verlag,1992:42-48.
    [88]Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL. Exploring the temperature-stress metabolome of Arabidopsis[J]. Plant Physiol,2004,136:4159-4168
    [89]Kim D H, Xu Z Y, Na Y J, Yoo Y J, Lee J, Sohn E J, Hwang I. Small heat shock protein Hspl7.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis[J]. Plant physiology,2011,157(1):132-146.
    [90]Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf K. D. Complexity of the heat stress response in plants[J]. Current opinion in plant biology,2007,10(3):310-316.
    [91]Kotak S, Vierling E, Baumlein H, von Koskull-Doring P. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis[J]. The Plant Cell Online,2007,19(1):182-195.
    [92]Krishna P, Felsheim R F, Larkin J C, Das A. Structure and light-induced expression of a small heat-shock protein gene of Pharbitis nil[J]. Plant physiology,1992,100(4):1772-1779.
    [93]Kumar G, Krishnaprasad BT, Savitha M, Gopalakrishna R, Mukhopadhyay K, Ramamohan G, Udayakumar M (1999) Enhanced expression of heat-shock proteins in thermotolerant lines of sunflower and their progenies selected on the basis of temperature-induction response (TIR)[J]. Theor Appl Genet,1999,99:359-367
    [94]Larkindale J, Hall J D, Knight M R, Vierling E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance[J]. Plant Physiology, 2005,138(2):882-897.
    [95]Larkindale J, Huang B (2005) Effect of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regul 47(1):17-28
    [96]Larkindale J, Huang B. Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene[J]. Journal of plant physiology,2004,161(4):405-413.
    [97]Larkindale J, Mishkind M, Vierling E. Plant responses to high temperature[J]. Plant abiotic stress, 2005:100-144.
    [98]Larkindale J, Vierling E. Core genome responses involved in acclimation to high temperature[J]. Plant Physiol,2008,146:748-761
    [99]Lea P J, Blackwell R D. Lichtenthaler H K. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes[J]. Methods Enzymol.,1987,148:350-382.
    [100]Lee G J, Pokala N, Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea[J]. Journal of Biological Chemistry,1995,270(18): 10432-10438.
    [101]Lee G J, Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol,2000,122:189-197
    [102]Lee K W, Choi G J, Kim K Y, Ji H J, Park H S., Kim Y, Lee S H.Transgenic Expression of MsHsp23 Confers Enhanced Tolerance to Abiotic Stresses in Tall Fescue[J]. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES,2012,25(6):818-823.
    [103]Lenne C, Block M A, Garin J, Garin, J., Douce, R. Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves[J]. Biochem. J,1995, 311:805-813.
    [104]Li M, Ji L, Yang X, Meng Q, Guo S. The protective mechanisms of CaHSP26 in transgenic tobacco to alleviate photoinhibition of PSII during chilling stress[J]. Plant cell reports,2012, 31(11):1969-1979.
    [105]Lichtenthaler H K. Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown[J]. Journal of plant physiology,1987,131(1):101-110.
    [106]Lim C J, Yang K, Hong J K, Choi J S, Yun D J, Hong J C, Chung W S, Lee S Y, Cho M J, Lim CO Gene expression profiles during heat acclimation in Arabidopsis thaliana suspensionculture cells[J]. J Plant Res,2006,119:373-383
    [107]Lindquist S, Craig E A. The heat-shock proteins[J]. Annual review of genetics,1988,22(1): 631-677.
    [108]LIU HTAO, LI GUOL, Chang HUI, SUN DY, ZHOU RQ Li B. Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis[J]. Plant, cell & environment,2007, 30(2):156-164.
    [109]LIU HTAO, SUN DAYE, ZHOU RENG Ca2+ and AtCaM3 are involved in the expression of heat shock protein gene in Arabidopsis[J]. Plant, Cell & Environment,2005,28(10):1276-1284.
    [110]Liu H T, Liu Y Y, Pan Q H, Yang H. R, Zhan J C, Huang, W. D. Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves[J]. Journal of experimental botany,2006, 57(12):3337-3347.
    [111]Liu HT, Yang HR, Huang WD, Hou ZX, Tang K. Salicylic acid 2-O-b-D-glucose:a possible signal substance involved thermotolerance induced by heat acclimation[J]. Chin Bull Bot,2009, 44(2):211-215
    [112]Liu XZ, Huang BR. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass[J]. Crop Sci,2000,40:503-510
    [113]Lohmann C, Eggers-Schumacher G, Wunderlich M, Schoffl F. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis[J]. Mol Genet Genomics,2004,271:11-21
    [114]Low D, Brandle K, Nover L, Forreiter C. Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class Ⅱ of tomato act as molecular chaperones in vivo[J]. Planta,2000,211(4):575-582.
    [115]Lubaretz O, zur Nieden U. Accumulation of plant small heat-stress proteins in storage organs[J]. Planta,2002,215(2):220-228.
    [116]Ma C, Haslbeck M, Babujee L, Jahn O, Reumann S. Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes[J]. Plant physiology,2006,141(1):47-60.
    [117]MacAdam J W, Nelson C J, Sharp R E. Peroxidase Activity in the Leaf Elongation Zone of Tall Fescue I. Spatial Distribution of Ionically Bound Peroxidase Activity in Genotypes Differing in Length of the Elongation Zone[J]. Plant Physiology,1992,99(3):872-878.
    [118]Mahmood T, Safdar W, Abbasi B H, Naqvi S. S. An overview on the small heat shock proteins[J]. African Journal of Biotechnology,2010,9(7):927-939.
    [119]Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A. Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum[J]. Plant physiology,2007,145(4):1588-1599.
    [120]Marangoni A G, Palma T, Stanley D W. Membrane effects in postharvest physiology [J]. Postharvest Biology and Technology,1996,7(3):193-217.
    [121]Marcum K B. Cell membrane thermostability and whole-plant heat tolerance of Kentucky bluegrass[J]. Crop Science,1998,38(5):1214-1218.
    [122]Martins L, Oberprieler C, Hell wig F H. A phylogenetic analysis of Primulaceae sl based on internal transcribed spacer (ITS) DNA sequence data[J]. Plant Systematics and Evolution,2003, 237(1-2):75-85.
    [123]Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide[J]. Journal of experimental botany,2000,51(345):659-668.
    [124]Meiri D, Tazat K, Cohen-Peer R, Farchi-Pisanty O, Aviezer-Hagai K, Avni A, Breiman A. Involvement of Arabidopsis ROF2 (FKBP65) in thermo tolerance[J]. Plant Mol Biol,2010, 72:191-203
    [125]Miller G A D, Mittler R O N. Could heat shock transcription factors function as hydrogen peroxide sensors in plants?[J]. Annals of Botany,2006,98(2):279-288.
    [126]Mu C, Wang S, Zhang S, Pan J, Chen N, Li X, Wang Z, Liu H. Small heat shock protein LimHSP16.45 protects pollen mother cells and tapetal cells against extreme temperatures during late zygotene to pachytene stages of meiotic prophase I in David Lily[J]. Plant cell reports,2011, 30(10):1981-1989.
    [127]Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants[J]. Molecular Breeding,2004,13(2):165-175.
    [128]Narberhaus F. a-Crystallin-type heat shock proteins:socializing minichaperones in the context of a multichaperone network[J]. Microbiol Mol Biol Rev,2002,66:64-93.
    [129]Narberhaus F. mRNA-mediated detection of environmental conditions[J]. Archives of microbiology,2002,178(6):404-410.
    [130]Nei M, Rooney A P. Concerted and birth-and-death evolution of multigene families[J]. Annual review of genetics,2005,39:121.
    [131]Neta-Sharir I, Isaacson T, Lurie S, Weiss D. Dual role for tomato heat shock protein 21: protecting photosystem Ⅱ from oxidative stress and promoting color changes during fruit maturation[J]. The Plant Cell Online,2005,17(6):1829-1838.
    [132]Nieto-Sotelo J, Kannan K B, Marti nez L M, Segal C. Characterization of a maize heat-shock protein 101 gene, HSP101, encoding a C1pB/Hsp100 protein homologue[J]. Gene,1999,230(2): 187-195.
    [133]Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S:Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress[J]. Plant J,2007,48:535-547
    [134]Nover L, Bharti K, Doring P. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell stress & chaperones,2001,6(3):177.
    [135]Osteryoung K W, Vierling E. Dynamics of small heat shock protein distribution within the chloroplasts of higher plants[J]. Journal of Biological Chemistry,1994,269(46):28676-28682.
    [136]Pang C H, Li K, Wang B. Overexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana[J]. Physiologia plantarum, 2011,143(4):355-366.
    [137]Perez D E, Hoyer J S, Johnson A I, Moody Z. R, Lopez J, Kaplinsky N. J. BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance[J]. Plant physiology,2009,151(1):241-252.
    [138]Perez DE, SteenHoyer J, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ. BOBBER 1 Is a noncanonical Arabidopsis small heat shock protein required for both development and thermo tolerance[J]. Plant Physiol,2009,151:241-252
    [139]Port M, Tripp J, Zielinski D, et al. Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2[J]. Plant physiology,2004,135(3): 1457-1470.
    [140]Porter J R. Rising temperatures are likely to reduce crop yields[J]. Nature,2005,436(7048): 174-174.
    [141]Preczewski P, Heckathorn SA, Downs CA, Coleman JS. Photosynthetic thermotolerance is quantitatively and positively correlated with production of specific heat-shock proteins among nine genotypes of Lycopersicon (tomato)[J]. Photosynthetica,2000,38(1):127-134.
    [142]Prieto-Dapena P, Castafto R, Almoguera C, Jordano J. Improved resistance to controlled deterioration in transgenic seeds[J]. Plant Physiology,2006,142(3):1102-1112.
    [143]Pumisutapon P, Visser R G F, de Klerk G J. Moderate abiotic stresses increase rhizome growth and outgrowth of axillary buds in Alstroemeria cultured in vitro[J]. Plant Cell, Tissue and Organ Culture (PCTOC),2012,110(3):395-400.
    [144]Qu A L, Ding Y F, Jiang Q, Zhu, C. Molecular mechanisms of the plant heat stress response[J]. Biochemical and biophysical research communications,2013,432(2):203-207.
    [145]Quan RD, Shang M, Zhang H, Zhao YX, Zhang JR.Improved chilling tolerance by transformation with har gene for the enhancement of glycinebetaine synthesis in maize[J]. Plant Science,2004,166(1):141-149.
    [146]Real L.Pollination Biology[M].Florida:Academie Press.1983.
    [147]Richards AJ, Primula[M]. Batsford, London,1993
    [148]Ristic Z, Bukovnik U, Prasad P V. Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress[J]. Crop science,2007,47(5):2067-2073.
    [149]Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K:Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 2006,103:18822-18827.
    [150]Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E. Exceptional sensitivity of rubisco activase to thermal denaturation in vitro and in vivo[J]. Plant Physiol,2001,127:1053-1064
    [151]Sanmiya K, Suzuki K, Egawa Y, Shono M. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants[J]. FEBS letters,2004,557(1):265-268.
    [152]Sarkar N K, Kim Y K, Grover A. Rice sHsp genes:genomic organization and expression profiling under stress and development[J]. BMC genomics,2009,10(1):393.
    [153]Sato Y, Yokoya S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7[J]. Plant cell reports,2008,27(2):329-334.
    [154]Scarpeci T E, Zanor M I, Valle E M. Investigating the role of plant heat shock proteins during oxidative stress[J]. Plant Signal Behav,2008,3(10):856-857.
    [155]Scharf K D, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing a-crystallin domains (Acd proteins)[J]. Cell stress & chaperones,2001,6(3):225.
    [156]Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Doring P. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis[J]. Plant Mol Biol 2006,60:759-772.
    [157]Senthil-Kumar M, Srikanthbabu V, Mohanraju B, Kumar G, Shivaprakash N, Udayakumar M. Screening of inbred lines to develop a thermotolerant sunflower hybrid using the temperature induction response (TIR) technique:a novel approach by exploiting residual variability[J]. J Exp Bot,2003,54:2569-2578
    [158]Shakeel S N, Haq N U, Heckathorn S, et al. Analysis of gene sequences indicates that quantity not quality of chloroplast small HSPs improves thermotolerance in C4 and CAM plants[J]. Plant cell reports,2012,31(10):1943-1957.
    [159]Shakeel S, Haq N U, Heckathorn S A, et al. Ecotypic variation in chloroplast small heat-shock proteins and related thermotolerance in Chenopodium album [J]. Plant Physiology and Biochemistry,2011,49(8):898-908.
    [160]Sharom M, Willemot C, Thompson J E. Chilling injury induces lipid phase changes in membranes of tomato fruit[J]. Plant physiology,1994,105(1):305-308.
    [161]Siddique M, Gernhard S, von Koskull-Doring P, Vierling E, Scharf K. D. The plant sHSP superfamily:five new members in Arabidopsis thaliana with unexpected properties[J]. Cell Stress and Chaperones,2008,13(2):183-197.
    [162]Song L, Jiang Y, Zhao H, Hou M. Acquired thermotolerance in plants[J]. Plant Cell, Tissue and Organ Culture (PCTOC),2012,111(3):265-276.
    [163]Song LL, Ding W, Shen J, Zhang ZG, Bi YR, Zhang LX. Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress[J]. Plant Sci,2008,175(6):826-832
    [164]Song LL, Ding W, Zhao MG, Sun BT, Zhang LX. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed[J]. Plant Sci,2006,171:449-458
    [165]Song LL, Jiang YL, Zhao HQ, Zhang ZG. Comparative study on calli from two reed ecotypes under heat stress[J]. Russ J Plant Physiol,2012,59(3):381-388
    [166]Soto A, Allona I, Collada C, Guevara M. A, Casado R, Rodriguez-Cerezo, E, Gomez L. Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress[J]. Plant Physiology,1999,120(2):521-528.
    [167]Srikanthbabu V, Kumar G, Krishnaprasad BT, Gopalakrishna R,Savitha M, Udayakumar M. Identification of pea genotypeswith enhanced thermotolerance using temperature induction response (TIR) technique[J]. J Plant Physiol,2002,159:535-545.
    [168]Stewart G R, Robertson B D, Young D B. Analysis of the function of mycobacterial DnaJ proteins by overexpression and microarray profiling[J]. Tuberculosis,2004,84(3):180-187.
    [169]Sun L, Liu Y, Kong X, Zhang D, Pan J, Zhou Y, Yang X. ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco[J]. Plant cell reports,2012,31(8):1473-1484.
    [170]Sun W, Bernard C, Van De Cotte B, Van Montagu M, Verbruggen N. At-HSP 17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression[J]. The Plant Journal,2001,27(5):407-415.
    [171]Sun Y, MacRae T H. Small heat shock proteins:molecular structure and chaperone function[J]. Cellular and Molecular Life Sciences CMLS,2005,62(21):2460-2476.
    [172]Tarantino D, Vianelli A, Carraro L, Soave C. A nuclear mutant of Arabidopsis thaliana selected for enhanced sensitivity to light-chill stress is altered in PSII electron transport activity[J]. Physiologia Plantarum,1999,107(3):361-371.
    [173]Torok Z, Goloubinoff P, Horvath I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vigh L.Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding[J]. Proceedings of the National Academy of Sciences,2001,98(6):3098-3103.
    [174]Tripp J, Mishra S K, SCHARF K D. Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts[J]. Plant, cell & environment,2009,32(2):123-133.
    [175]Tsai CM, Hsu BD. Thermotolerance of the photosynthetic light reactions in two Phaseolus species:a comparative study. Photosynthetica,2009,47:255-262
    [176]Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Yoshida S, Fujikawa S. Accumulation of small heat-shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation[J]. Plant Physiology,1999,120(2): 481-490.
    [177]Vacca R A, de Pinto M C, Valenti D, Passarella S, Marra E, De Gara L. Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells[J]. Plant Physiology,2004,134(3):1100-1112.
    [178]Vallelian-Bindschedler L, Schweizer P, Mosinger E, Metraux JP (1998) Heat induced resistance in barley to powdery mildew (Blumeria graminis f. sp. Hordei) is associated with a bust of AOS. Physiol Mol Plant Pathol 52:185-199
    [179]van Berkel J, Salamini F, Gebhardt C. Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive genes[J]. Plant physiology, 1994,104(2):445-452.
    [180]Vierling E. The roles of heat shock proteins in plants[J]. Annual review of plant biology,1991, 42(1):579-620.
    [181]Volkov R A, Panchuk 11, Mullineaux P M, Schoffl F. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis[J]. Plant molecular biology,2006,61(4-5): 733-746.
    [182]Volkov R A, Panchuk II,Schoffl F. Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco[J]. Plant molecular biology,2005, 57(4):487-502.
    [183]Volkov RA, Panchuk II, Mullineaux PM, Schoffl F. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis[J]. Plant molecular biology,2006,61(4-5): 733-746.
    [184]Wang D, Luthe D S. Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance[J]. Plant physiology,2003, 133(1):319-327.
    [185]Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends in plant science,2004,9(5): 244-252.
    [186]Wang Y, Wisniewski M, Meilan R. Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress[J]. Journal of applied horticulture,2006,8(2):87-90.
    [187]Wang Y, Ye Q, Zhang M, Yang C. Involvement of Arabidopsis CPR5 in thermotolerance[J]. Acta Physiologiae Plantarum,2012,34(6):2093-2103.
    [188]Wang YH, Ying Y, Chen J, Wang XC. Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance[J]. Plant science,2004,167(4):671-677.
    [189]Waters E R, Aevermann B D, Sanders-Reed Z. Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns[J]. Cell Stress and Chaperones,2008a,13(2):127-142.
    [190]Waters E R, Lee G J, Vierling E. Evolution, structure and function of the small heat shock proteins in plants[J]. Journal of Experimental Botany,1996,47(3):325-338.
    [191]Waters E R, Nguyen S L, Eskandar R, Behan J, Sanders-Reed Z. The recent evolution of a pseudogene:diversity and divergence of a mitochondria-localized small heat shock protein in Arabidopsis thaliana[J]. Genome,2008b,51(3):177-186.
    [192]Waters E R, Rioflorido I. Evolutionary analysis of the small heat shock proteins in five complete algal genomes[J]. Journal of molecular evolution,2007,65(2):162-174.
    [193]Waters E R, Vierling E. Chloroplast small heat shock proteins:evidence for atypical evolution of an organelle-localized protein[J]. Proceedings of the National Academy of Sciences,1999, 96(25):14394-14399.
    [194]Waters E R, Vierling E. The diversification of plant cytosolic small heat shock proteins preceded the divergence of mossesfJ]. Molecular biology and evolution,1999,16(1):127-139.
    [195]Waters E R. The evolution, function, structure, and expression of the plant sHSPs[J]. Journal of experimental botany,2013,64(2):391-403.
    [196]Waters E R. The molecular evolution of the small heat-shock proteins in plants[J]. Genetics, 1995,141(2):785-795.
    [197]Wehmeyer N, Hernandez L D, Finkelstein R R, et al. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation[J]. Plant Physiology,1996,112(2): 747-757.
    [198]Wehmeyer N, Vierling E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance[J]. Plant Physiology,2000,122(4):1099-1108.
    [199]Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q. Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance[J]. Biologia plantarum,2010,54(1): 105-111.
    [200]YAN H.F, HE C.H, PENG C.I, HU CM, Hao G. Circumscription of Primula subgenus Auganthus (Primulaceae) based on chloroplast DNA sequences[J]. Journal of Systematics and Evolution,2010,48(2):123-132.
    [201]Yildiz M, Terzi H. Evaluation of acquired thermotolerance in wheat (Triticum Aestivum and T Durum) cultivars grown in Turkey[J]. Pak J Bot,2008,40(1):317-327
    [202]Yuan Y, Qian HM, Yu YD, Lian FQ, Tang DQ (2011) Thermotolerance and antioxidant response induced by heat acclimation in Freesia seedlings. Acta Physiol Plant 33(3):1001-1009
    [203]Zarsky V, Garrido D, Eller N, Tupy J, Vicente O, SchSffl F, HEBERLE-BORS E. The expression of a small heat shock gene is activated during induction of tobacco pollen embryogenesis by starvation [J]. Plant, Cell & Environment,1995,18(2):139-147.
    [204]Zhang X, Liu S, Takano T. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance[J]. Plant molecular biology,2008,68(1-2):131-143.
    [205]Zhang Y, Mian M A R, Bouton J H. Recent molecular and genomic studies on stress tolerance of forage and turf grasses[J]. Crop science,2006,46(2):497-511.
    [206]Zhang Y, Mian M A R, Chekhovskiy K, So S, Kupfer D, Lai H, Roe B A. Differential gene expression in Festuca under heat stress conditions[J]. Journal of experimental Botany,2005, 56(413):897-907.
    [207]Zhou Y, Chen H, Chu P, Li Y, Tan B, Ding Y, Huang S. NnHSPl 7.5, a cytosolic class Ⅱ small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis[J]. Plant cell reports,2012,31(2):379-389.
    [208]Zhu Y, Wang Z, Jing Y, Wang L, Liu X, Liu Y, Deng X. Ectopic over-expression of BhHsfl, a heat shock factor from the resurrection plant Boea hygrometrica, leads to increased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco[J]. Plant molecular biology,2009,71(4-5):451-467.
    [209]Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment[J]. Journal of plant physiology, 2009,166(8):851-861.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700