用户名: 密码: 验证码:
两种环境友好型高效纳米农药制剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农药的大量使用,农药在保障农业生产的同时也给环境带来了不容忽视的负面影响。“高效、低毒、低残留”已成为未来农药发展的必然趋势。因此,开发一类既能提高其生物活性又能降低其环境残留的农药品种一直是广大农药研究工作者的重要课题。
     本文以光降解源纳米材料TiO_2的制备方法、表征、光催化活性及其改性和吸附行为的研究为基础,确定了纳米TiO_2与甲基嘧啶磷、溴虫腈两种不同农药的复合技术:表面活性剂包裹法制备10%溴虫腈纳米制剂和采用原位技术制备5%甲基嘧啶磷纳米制剂。并对复合形成的两种纳米农药制剂作了进一步的光降解性研究及生物活性评价。还对10%溴虫腈纳米制剂在甘蓝和土壤中的残留作了探讨。
     研究结果表明,纳米TiO_2的加入能明显提高农药制剂的光降解性:其中10%溴虫腈纳米制剂比10%溴虫腈悬浮剂在紫外灯下照射1h、3h、5h、22.5h的降解率分别高出12.9%、23.1%、32.6%、65.0%;5%甲基嘧啶磷纳米制剂比没加纳米TiO_2的5%甲基嘧啶磷对照样在紫外灯下照射1h、2h、4h的降解率分别高出14.2%、17.2%、11.1%。
     纳米农药制剂能明显提高农药的生物活性,室内毒力测定结果表明:10%溴虫腈纳米制剂的毒力是95%溴虫腈原药毒力的1.68倍、5%甲基嘧啶磷纳米制剂的毒力是90%甲基嘧啶磷原药毒力的1.32倍;田间药效试验结果表明:10%溴虫腈纳米制剂防治甘蓝斜纹夜蛾的田间防效优于20%溴虫腈乳油,药后1天和药后3天的校正防效分别高出4.89%和3.05%;5%甲基嘧啶磷纳米制剂防治水稻二化螟的田间防效比同等剂量的20%甲基嘧啶磷乳油高出16.4%,保苗效果高出18.4%。
     纳米农药制剂还能有效降低农药在作物和土壤中的残留,残留消解试验结
    
    果表明,澳虫腊在土壤中的半衰期分别为:10%澳虫睛纳米制剂4.38天,10%
    澳虫睛悬浮剂10.71天;澳虫睛在甘蓝中的半衰期分别为:10%澳虫睛纳米制
    剂1.50天,10%澳虫腊悬浮剂3.86天。最终残留试验结果表明,10%澳虫腊
    纳米制剂在土壤中的残留情况为:其高低浓度处理,施药二次、三次的药后3
    天、7天残留量均未检出,含量<0.012m叭g;其在甘蓝中的残留情况为:药后
    3天的残留量明显高于药后7天,低浓度药后3天在<0.02一0.033m叭g水平,
    高浓度药后3天在<0.02一0.122m叭g水平,而药后7天残留量在<
    0.02一0.047m眺g水平。
     本研究表明,纳米农药制剂是一类极具开发潜力、符合未来农药发展方向
    的优良制剂,具有较好的应用开发前景,可产生明显的经济效益、社会效益和
    环境效益。
While the wide use of pesticide ensures the agricultural production, the immense negative effect it brings to the environment cannot be ignored. "High-efficiency, low-noxious, low-residue" has been a natural trend for the development of future pesticide. Therefore, it is an -important task for pesticide researchers to exploit a kind of pesticide which can both improve biological activities and reduce residue.
    Based on the study of the preparation method, characterization, photocatalysis, modifcation and adsorption of photocatalytic degradative nano-TiO2, this thesis confirmed the composite methods of the two different kinds of pesticide, nano-TiO2 and chlorfenapyr and pirimiphos-methyl. And it studied the photocatalytic degradation and biological activities of the two kinds of nano-pesticides. It also conducted an exploratory study on the residue of nano-chlorfenapyr in cabbage and soil.
    The results demonstrated that the adding of nano-TiO2 could obviously improve photocatalytic degradation. The photocatalytic degradation rate of 10% nano-chlorfenapyr which is irradiated in unltra-violet lamp for 1hr, 3hrs, 5hrs and 22.5hrs is 12.9%, 23.1%, 32.6% and 65.0% higher than 10% chlorfenapyr SC respectively. The photocatalytic degradation rate of 5% nano-pirimiphos-methyl irradiated in unltra-violet lamp for Ihr, 2hrs and 4hrs is 14.2%, 17.2% and 11.1% higher than 5% pirimiphos-methyl CK respectively.
    The nano-pesticides can obviously improve the biological activities of pesticide. The results of the indoor bioassay test showed that the virulence of 10%
    
    
    nano-chlorfenapyr is 1.68 times stronger than that of 95% chlorfenapyr TC and the virulence of 5% nano-pirimiphos-methyl is 1.32 times stronger than that of 90% pirimiphos-methyl TC. The results of the field test showed that the field effect of 10% nano- chlorfenapyr to spodoptera litura on cabbage is 20% superior to that of chlorfenapyr EC and the Id and 3d corrected controlling ratios are 4.89% and 3.05% higher respectively. The effect of field of 5% nano-pirimiphos-methyl to Chilo suppressallis Walker on rice is 16.4% higher than that of 20% pirimiphos-methyl EC and the protection effect upon seedlings is 18.4% better.
    In addition, the nano-pesticides can also efficiently reduce the residue of pesticide in crops and soil. The result of residue and dissipation of chlorfenapyr showed that the half-life of 10% nano-chlorfenapyr in soil is 4.38 days and that of 10% chlorfenapyr SC in soil is 10.71 days; the half-life of 10% nano-chlorfenapyr in cabbage is 1.50 days and that of 10% chlorfenapyr SC in cabbage is 3.86 days. The results of ultimate residue test of chlorfenapyr showed that the residue amount of 10% nano-chlorfenapyr in the soil which is treated with high and low rate 3 days and 7 days after 2 and 3 treatments has not been detected and is lower than 0.012mg/kg. The amount of residue which is detected in cabbage after 3 days is obviously higher than that after 7 days. The amount of residue after 3 days in the low-rate-treated cabbage is less than 0.02-0.033mg/kg and that in the high-rate-treated cabbage is less than 0.02-0.122mg/kg. But the amount of residue after 7days is less than 0.02-0.047mg/kg.
    The results of the research showed that the nano-pesticides formulation is a kind of promising pesticide formulation which conforms to the developing trend of future pesticide, will have a bright application prospect and bring obvious economic benefit, social benefit and environmental benefit.
引文
[1] 陈士夫,赵梦月,陶跃武等.光催化降解有机磷农药的研究[J].环境科学,1995,1(S):61-63
    [2] 陈士夫,赵梦月,陶跃武等.光催化降解有机磷农药废水的研究[J].工业水处理,1996,16(1):17-19
    [3] 李晓明,颜秀茹,张月萍等.TiO_2/SnO_2复合光催化剂的制备及光降解敌敌畏[J].应用化学,2001,18(1):32-35
    [4] 岳林海.稀土元素掺杂二氧化钛催化剂光降解久效磷的研究[J].上海环境科学,1998,17(9):17-19
    [5] 徐悦华,古国榜,李新军.光催化降解甲胺磷影响因素的研究[J].华南理工大学学报,2001,29(5):68-71
    [6] 赵银德,张华.“入世”后我国农业发展问题探讨[J].江苏大学学报,2002,4(2):116-120
    [7] 杨化励,申国正.一起蔬菜农药残留引起食物中毒的调查.现代预防医学.1997,24(3):360
    [8] 卢植新.当前农药发展趋势和农药开发工作综述[J].广西植保,2002,15(1):17-20
    [9] 高瑞平.纳米材料和技术的研究和展望[J].材料导报,2001,15(5):6-7
    [10] 张力德.纳米材料技术的发展趋势和应用机遇[J].世界科技研究与发展,2002,24(6):18-22
    [11] 薛向东,金奇庭.TiO_2光降解水中的污染物的研究进展[J].中国给水排水,2001,17(6):26-29
    [12] Ollis D F, Al-EkabiH. Photocatalytic Purification and Treatment of water and Air, Elsevier Science Publishers B V, 1993
    [13] 刘利萍,李苹军.水基药用磁纳米粒子的制备条件对性质的影响[J].重庆大学学报,2002,25(10):17-19
    [14] 周静芳,祝迎春.量子尺寸TiO_2纳米粒子的制备和表征[J].河南化工,1994(7):11-14
    
    
    [15] Pelizzetti E, Minero C. Metal oxides as photocatalysts for environmental detoxi-fication [J]. Comments Inorg Chem, 1993, 15(5, 6):297.
    [16] 孙奉玉,吴鸣,李文创等.二氧化钛表面光学特性与光催化活性的关系[J].催化学报.1998.19(2):121-125.
    [17] Ollis D F, Pelizzetti E, Sserpone N. Environ Sci Technol, 1991, 25(9):15-23.
    [18] 肖奇,邱冠周,胡岳华等.纳米TiO_2制备及其应用新进展[J].材料导报,2000,14(8):99-100
    [19] 梅燕,谈廷凤.纳米TiO_2光催化活性及其应用[J].河北师范大学学报,2002,26(3):286-287
    [20] 王春晓.光催化氧化法分解水中有机物机理初探[J].黑龙江农垦师专学报,2002,16(3):83-84
    [21] 曹耀华,杨绍文等.纳米二氧化钛降解有机污染物的试验研究[J].矿产保护与利用,2002(3):37-40
    [22] Fox M A, Dulay M T. Hetemgeneous Photocatalysis[J].Chem Rev, 1993,95(2):341-357
    [23] Linsebiglay A L, Lu Guangquan, Yates J T, Photocatalysis on TiO_2 Surfaces:Principles, Mechanics, and Selected Results[J],chem. Hev, 1995,95(3):735-758
    [24] Litter M L Navio J A photocatalytic properties of ironodoped titania semiconductors[J], J Photochem Photobiol A:Chem, 1996,98:171-181
    [25] 余家国,赵修建等.太阳光TiO_2多孔纳米薄膜催化降解有机磷农药的研究[J].太阳能学报,2000,21(2):165-170
    [26] 朱莉.食品工业中的纳米技术.食品科技,2002(11):6-8
    [27] 贾堤,章书建等.杀菌性建材涂料的研制[J].新型建筑涂料,2002,(4):18-19
    [28] 方世杰,张玉珍等.二氧化钛光催化降解作用的研究综述[J].材料导报,
    
    2001,15(12):32-34
    [29] 魏玲,李慧.“纳米技术”开创21世纪人类生活的新时代——纳米时代[J].昌吉学院学报,2002,(3):99-102
    [30] 李国栋.纳米粉体表面结构与分散机理研究[J].襄樊学院学报,2002,23(5):50-54
    [31] 秦立洁,朱军等.纳米材料复合农膜农田应用技术初探[J].塑料,2002,3(5):13-14
    [32] 潘志峰,孔令斌.基于纳米技术上的纳米医学的应用展望[J].济宁医学院学报,2002,25(4):60-61
    [33] 张俊山,陈晓春等.纳米药物研究进展[J].中国现代医学杂志,2002,12(4):39-42
    [34] 王聚乐.纳米药物的研究进展[J].西藏大学学报,2002,(3):43-46
    [35] 平其能.纳米药物和纳米载体系统[J].中国新药杂志,2002,11(1):42-46
    [36] 梁勇.纳米微粒在医药学中的应用[J].中国粉体技术,2001,7(5):39-41
    [37] 赵善欢主编,植物化学保护,中国农业出版社,北京,2000
    [38] 韩熹莱主编,中国农业百科全书(农药卷),北京中国农业出版社,北京,1995
    [39] 张敬畅,刘慷等.纳米粒子的特性、应用及制备方法[J].石油化工高等学校学报,2001,14(2):21-26
    [40] 刘朝晖,杨怀霞,沈新元等.纳米TiO_2的制备研究进展[J].河南化工,2002,(8):3-5
    [41] 顾达等.高纯超细TiO_2粉制备的新工艺研究[J].无机盐工业,1995,(5):1-4
    [42] 宋宽秀,刘小波.TiO_2-SiO_2复合材料的制备与表征[J].硅酸盐通报,2000,19(5):36-39
    [43] 段学臣,高桂兰等.纳米二氧化钛粉末的研制[J].稀有金属与硬质合金,2002,30(4):17-30
    [44] 王成国,周井炎.纳米TiO_2粉体的制备[J].武汉科技学院学报,2002,15(1):33-35
    
    
    [45] 鄢程,李竟先等.纳米TiO_2颗粒的表面改性研究进展[J].陶瓷学报,2002,23(1):62-66
    [46] 徐锐,童仕唐.二氧化钛光催化活性及其改性研究[J].武汉科技大学学报:自然科学版,2001,24(4):358-360
    [47] 李晓娥,邓红,张粉艳等.纳米二氧化钛有机化改性工艺研究[J].无机盐工业,2001,33(4):5-7
    [48] 李春霞,李立平等.纳米粒子表面改性的研究进展[J].北京纺织,2002,23(1):57-61
    [49] 蒋子铎,吴壁耀,刘安华.二氧化钛的表面化学改性[J].现代化工,1991,5(5):14-18
    [50] 宋胜梅,曾瑞等.纳米TiO_2的特性及应用[J].化工时刊,2001,15(5):22-25
    [51] 陶贤鉴,陈明.含氟杀虫剂溴虫腈的制备[J].湖南化工,2000,30(5):29-31
    [52] 周玉昆,于春海等.甲基嘧啶磷的合成研究[J].农药,2002,41(1):14-15
    [53] 化工部农药信息总站.国外农药品种手册,85-86
    [54] 今井淳一郎.日本公开特许公报[P].平2-194063.
    [55] 梅燕,刘清福等.不同晶型的纳米TiO_2粉体的制备与表征[J].光谱实验室,2002,19(4):525-527
    [56] 梅燕.晶型、粒径、形貌对TiO_2纳米多孔膜电极光电性能影响的研究[D],石家庄:河北师范大学,2001
    [57] 蔡乃才,董庆华.悬浮体系中的半导体光催化及其应用[J].化学通报,1991,(7):9-13
    [58] 郑红,汤鸿霄,王怡中.有机污染物半导体多相光催化氧化机理及动力学研究进展[J].环境科学进展,1996(3):1-18
    [59] 刘朝晖,缪菊红,沈新元.纳米TiO_2的多相光催化应用研究进展[J].郑州轻工业学院学报:自然科学版,2002,17(3):85-86
    [60] 李晓平,吴凤清.纳米TiO_2光催化降解水中有机污染物的研究与发展[J].功能材料,1999,30(3):242-243
    
    
    [61] 肖奇,邱冠周,胡岳华等.纳米TiO_2制备及其应用新进展[J].材料导报,2000,14(8):35
    [62] 张宗炳编著.1998.杀虫剂的毒力测定原理、方法、应用.科学出版社
    [63] 黄国洋主编.1999.农药试验技术与评价方法.北京:中国农业出版社
    [64] 国家质量技术监督局发布.农药田间药效试验准则(一).北京:中国标准出版社,2000:51-54
    [65] 郁伟.米满防治斜纹夜蛾试验[J].长江蔬菜,1998,(6):14
    [66] 高丰,武琴.菜虫净乳油防治甘蓝斜纹夜蛾[J].上海蔬菜,1997,(4):32
    [67] 林党恩,王长方.卡死克防治甘蓝夜蛾,斜纹夜蛾试验[J].福建农业科技,1995,(5):20
    [68] 国家质量技术监督局发布.农药田间药效试验准则(一).北京:中国标准出版社,2000:1-4
    [69] 金文灶,何云飞等.15%三唑磷微乳剂防治水稻二化螟药效试验[J].浙江农业科学,2002,(5):244-245
    [70] 石键波,彭兆普.40%甲基辛硫磷防治二化螟田间药效试验简报[J]。湖南农业科学,1992,(4):41-42
    [71] 成其仓,陈桂华.5%锐劲特悬浮剂防治二化螟试验[J].农药,1998,37(5):28-29
    [72] 何艺兵.氟虫腈在甘蓝和土壤中的残留分析方法[J].农药科学与管理,2000,21(3):16-19
    [73] 樊德方主编.农药残留分析与检测.上海科学技术出版社,1982
    [74] 钱传范主编.农药分析.北京农业大学出版社,1992
    [75] 李本昌主编.农药残留量实用检测方法手册(第一卷).中国农业出版社,北京,1995
    [76] 何增耀主编.环境监测.农业出版社,北京,1994
    [77] 李九团主编.最新农药使用与残留检测标准实施手册.北京伯通电子出版社,北京,2002
    [78] 全国农药残留试验研究协作组编.农药残留量实用检测方法手册(第二
    
    卷).化学工业出版社,北京,2001
    [79] 奚旦立,孙裕生,刘秀英编.环境监测(修订版).高等教育出版社,北京,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700