用户名: 密码: 验证码:
微波辐射联用活性炭强化有毒物质去除及再生活性炭研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中有毒有害物的污染是世界各国关注的热点和治理难点。本文在较全面综述了国内外相关领域研究成果基础上,对微波辐射联用活性炭强化水中典型有毒有害污染物苯酚、苯胺和六价铬的去除以及利用微波再生和改性活性炭进行了深入研究,探讨了其影响因素和作用机理。
     通过单因素实验和正交实验发现,直接微波辐射联用活性炭工艺可在极短时间内显著提高苯酚去除效率,其苯酚去除效果随微波辐射时间的延长、微波功率的增加、活性炭投加量的增多而逐渐提高,且当溶液PH<8.2时苯酚去除效果最好。在100m1苯酚浓度约为1000mg/1的水样中加入5~10g活性炭,在300W-700W微波功率下辐射5min~30min,其苯酚去除率比相同作用时间下传统活性炭吸附效果提高了16.6%~29.5%。
     通过对微波辐射前后苯酚水样中的苯酚浓度与CODcr浓度之间的定量关系、以及水样的紫外一可见分光全扫描和色谱—质谱定性分析,确定微波辐射联用活性炭工艺强化苯酚去除的主要作用机理是微波热作用导致的加速吸附,没有发生苯酚的催化氧化分解和矿化作用。通过SEM扫描和BET表面分析发现,微波辐射使活性炭表面变得粗糙,并出现了明显的裂纹,平均孔径减小,比表面积及总孔隙体积增大,是苯酚去除效率提高的另一原因。
     通过单因素实验和正交实验考察了载氮气和无载气条件下,影响微波再生活性炭效果的主要因素依次是微波再生时间、微波功率和活性炭用量,而氮气量和活性炭含水率影响不大,饱和湿活性炭直接微波再生的效果优于常规热烘干后微波再生的效果,是本文推荐的活性炭再生方法。
     通过分析比较微波辐射联用活性炭工艺和两种微波再生活性炭方法的微波能耗与苯酚去除率或活性炭再生率及微波效能指标EZ值的关系表明,随着微波能耗增大,苯酚去除率或活性炭再生率升高,Ez值则呈逐渐减小趋势,但在相同微波能耗下,微波功率越高,苯酚去除率或活性炭再生率及EZ值越高。由此确定载氮气—微波再生活性炭的较佳工况为:10g废活性炭在500W微波功率下再生15min,通氮气量251/h,此时活性炭再生率为102.8%,Ez值为0.24mg/(g.kJ),再生能耗为45kJ/gGAC。无载气—微波再生活性炭的较佳工况为:活性炭再生量10g,微波功率700W、再生时间5min,此时活性炭再生率为73.9%,Ez值为0.31mg/(g.kJ),再生能耗为21kJ/gGAC。在相同条件下,载氮气时活性炭再生率及微波效能指标均高于无载气时的情形,是活性炭再生的较好方法;而微波再生法去除水中苯酚的的微波效能指标整体上高于直接微波辐射联用活性炭方法,说明采用微波再生法去除有机污染物比直接微波辐射联用活性炭方法更加经济有效。
     研究还表明,微波法多次再生活性炭后仍能获得较好的再生效果。载氮气时,10g活性炭在700W微波功率,1001/h氮气流量下再生30min,经7次重复再生后,再生率可稳定在90%以上,无载气时,10g活性炭在500W微波功率下再生35min,经5次重复再生后,再生率可稳定在70%左右。
     实验确定了硝酸—微波改性活性炭GACH-M制备条件为:原炭5g、硝酸浓度0.78mol/l、微波功率600W、辐射时间5min、氮气流量50L/h. GACH-M吸附去除苯胺的适宜PH值为5-12,苯胺去除效率可达90%左右,比原炭提高约14.1%;Cr(VI)去除效率可达94.3%,比原炭提高约44%。载氮气和无载气—微波改性炭的制备条件为:9g原炭在600W微波功率下辐射7min,载氮气时氮气流量501/h,两种改性炭吸附去除苯胺等有机物的效果均比原炭提高约20%,但Cr(Ⅵ)去除率不高。
     微波再生载苯酚活性炭机理为:再生初期,苯酚随反应体系升温从活性炭上解吸或蒸馏出来,随后苯酚在微波高温下发生复杂的裂解、缩合反应,绝大部分被裂解为C、CO、H2或低沸点物质,少部分被裂解其它有机物。微波再生功率越高,有机吸附质的高温裂解反应越彻底,尾气中有机质种类越少;微波功率较低时,尾气中含有多种裂解产物;载氮气降低了反应体系温度,苯酚未被彻底分解,尾气中含有多种有机物。
     微波加热和还原性氮气使活性炭表面酸性含氧基团分解而减少,碱性基团增加,零点电荷增加,非极性和疏水性增强,是强化弱极性、疏水性有机物去除的活性炭改性方法,但不利于极性金属离子的吸附。硝酸—微波改性炭的表面碱性基团和酸性基团均低于原炭,零点电荷增加,表面化学特性既有利于疏水性物质的去除、也有利于极性阳离子的去除。是较好的活性炭改性方法。
The pollution of toxic and hazardous compounds in water is the focus and difficult point in treatment all over the world. Based on the comprehesive summary of the national and international researching results in related fields, this paper made a thorough study about the way of strengthening the removal of typical toxic pollutants in water such as phenol,aniline and hexavalent chromium,and regenerating or modifying activated carbon by the process of microwave irradiation combined with activated carbon.The paper also made a deep discussion about the influencing factors and the functional mechanism of the above ways.
     Single factor and orthogonal tests showed that the process of microwave irradiation directly combined with activated carbon can significantly improve the phenol removal efficiency in a very short period of time。The phenol removal efficiency raised with the increasing in microwave irradiation time, microwave power and the amount of activated carbon, and it turned to its best when the PH in the solution isn't greater than8.2. Compared with the traditional adsorption of activated carbon at the same action time, the phenol removal efficiency improved by16.6%~29.5%when5~10g of activated carbon was added into100ml water sample with the concentration of1000mg phenol/L at300W~700W microwave irradiation for5min~30min.
     It had been studied about the quantitative relations between the concentration of phenol and CODcr,and the qualitative analysis of phenol wastewater samples irradiated by microwave or not using full scan of ultraviolet spectrootometer and chromatogray-mass spectrometer. The results showed that the main functional mechanism of strengthening removal of enol in the process of activated carbon-microwave irradiation is accelerating adsorption because of the heating caused by microwave,and that there is not any catalytic oxidation and mineralization for phenol in this treatment. The scanning electron microscope(SEM) and the BET surface area for activated carbon had been analyzed; and the results showed that microwave irradiation let the surface of activated carbon rough and formed a clear crack, the average pore size decreased, the surface area and total pore volume increased, which was another reason of improving removal efficiency of phenol.
     Single factor and orthogonal tests under N2atmosere or not had been investigated.The results showed that the main factors affecting the regenerate effect of activated carbon irradiated by microwave were first the time of microwave regeneration,then microwave power,and last the amount of activated carbon.The flow of nitrogen and the moisture rate of activated carbon had little impact on the regenerate effect. Compared the effect of microwave regeneration of saturated wet activated carbon directly with that of wet activated carbon being dried by the conventional heatibg before microwave regeneration,the former is much better,and it is the recommended method for regeneration of activated carbon in this paper.
     It had been done that comparing the correlativity among the microwave energy consumption rate,the removal rate of phenol,the regeneration rate of activated carbon and the value of the microwave efficiency indicator Ez in the processes of microwave irradiation combined with activated carbon or two microwave regeneration activated carbon methods. The results showed that the higher the microwave energy consumption rate,the higher the removal rate of phenol or the regeneration rate of activated carbon,but the value of Ez decreasing gredually.However, at the same microwave energy consumption rate,the higher the microwave power,the higher the removal rate of phenol,the regeneration rate of activated carbon and the value of the microwave efficiency indicator Ez.So it could be determined that, the better conditions of microwave regeneration of activated carbon under nitrogen atmosere were that:10g activated carbon was irradiated by microwave at700W with the nitrogen flow of251/h for15min, and its regeneration rate would reach102.8%, the value of Ez,0.24mg/(g.kJ), and the regeneration energy consumption,45kJ/gGAC.The better conditions of microwave regeneration of activated carbon without any gas was that:10g activated carbon was irradiated by microwave at700W for5min, and the regeneration rate would reach73.9%, the value of Ez,0.31mg/(g.kJ), and the regeneration energy consumption,21kJ/gGAC. However, the regeneration rate of activated carbon and the value of microwave efficiency indicator of the former were both higher than the latter under the same condition,so the former is the better method for regeneration of activated carbon. On the other hand,the value of microwave efficiency indicator in the process of microwave regeneration activated carbon is higher than that of microwave irradiation combined with activated carbon on the whole,so it was proved that the former process was a more economical and effective way than the latter.
     The study also showed that a good regeneration effect could still be gotten after the activated carbon was regenerated repeatly for multiple times.Under the nitrogen flow of1001/h,the regeneration rate could stay stable at above90%when lOg activated carbon were irradiated by microwave at700W for30min after7times of repeated regenerations, and without any gas,the regeneration rate could also stay stable at70%or so when lOg activated carbon were irradiated by microwave at500W for35min after5times repeated regenerations.
     Conditions for the preparation of nitric acid-microwave modified activated carbon GACH-M are:5g of original carbon,0.78mol/1of nitric acid concentration,600W of microwave power, microwave irradiation for5min, and501/h of nitrogen flow. The removal efficiency of aniline for GACH-M adsorption was about90%under the condition of appropriate PH of5-12, which was14.1%higher than that of original carbon; and the Cr (VI) removal efficiency could reach to94.3%, which was44%higher than that of original carbon.Conditions for the preparation of microwave modified activated carbon under nitrogen atmosere or no carrier gas are:9g of original carbon,600W of microwave power, microwave irradiation for7min, and501/h of nitrogen flow if nitrogen gas is needed.The removal effects of organisms such as aniline for the above two kinds of microwave modified activated carbon were both increased by about20%compared with original carbon, but the removal rate of Cr (VI) was not high.
     The mechanism of microwave regeneration activated carbon loaded by phenol is that:first,phenol was warmed up to be desorbed or distilled from the activated carbon with the increasing temperature of the reaction system, then,it would start complex pyrolysis and condensation reactions under the conditions of high temperature in the microwave oven.A large part of phenol was decomposed to low boiling point substances such as C,CO, H2,etc., and a small part of it was split into other organisms. The higher the microwave regenerative power,the more thoroughly the high-temperatured pyrolysis reaction for organic adsorbate,and the fewer kinds of the organic matter in eshausted gas. When irradiated by low microwave power, there were various of pyrolysis products in the eshausted gas.But under nitrogen atmosere,the temperature of reaction system would reduce,and phenol was not completely decomposed, so there were a variety of organic compounds in the eshausted gas.
     Heated by microwave or passing through by reducing nitrogen,the acidity oxygen-containing groups on the surface of activated carbon decreased because of decomposition, the basic groups,zero charge,non-polarity and hydroilicity increased, which is a good way of modifying activated carbon to strengthen the removal of weak polar and hydroobic organisms.However, it doesn't benefit for the modified activated carbon to adsorb polar metal ions. The basic groups and acidic groups on the surface of nitric acid-microwave modified activated carbon were both lower than that of original carbon,and the zero charge increased.The surface chemical properties of modified activated carbon is advantageous to the removal of both hydroobic substances and polar cations,which is the better method for activated carbon to be modified.
引文
[1]周雯,王连生.水体有毒有机污染研究.中国环境监测,2006,22(1):91-95
    [2]Jone K C,Voogt P D. Persistent organic pollutants:State of the science. Environmental Pollution,1999,100(1):209-221
    [3]Perira W E,Domagaiski J K,Hostettler F D,et al. Occurrence and accumulation of pesticides and organic contaminants in river sediment,water and clam from the San Joaquin river and tributaries California. Environmantal Toxicology and Chemistry,1996,(15):172-180
    [4]USEPA office of water. Drinking water and health advisorise. EPA-822-B-96-002, 1996
    [5]刘晓茹,冯惠华,张燕.我国水环境有机污染现状与控制对策.水利技术监督,2004,(5):58-60
    [6]中国国家环保局.2007年中国环境状况公报.北京:国家环保局,2007,1-8
    [7]申森,王振强,付慧坛.水体中有机污染物的治理技术.科技资讯,2007,(2):100-101
    [8]李星,徐夫元,陈英文,等.废水处理中高级氧化非均相催化剂的研究进展.环境科学与技术,2010,33(2):90-93
    [9]聂颖,崔小明.国内外苯酚的供需现状及发展前景.化工技术经济,2006,24(6):18-27
    [10]赵天,关晓梅,杨春生.水体污染物的种类、来源及对人体的危害.黑龙江水利科技,2004,(2):99-100
    [11]Maria A M,Crisostomo B, Alfonso M,et al. Kinetic modelling and dynamic simulation of enol biodegradation of petroleum refinery effluents in Colombia. Journal of Biotechnology,2007,(131):133-187
    [12]Jesus B H,Joaquin T. Kinetics of the reaction between ozone and enolic acids present in agro-industrial wastewater. Water Research,2001,35(4):1077-1085
    [13]Namgoo K, Dong S L, Jeyong Y. Kinetic modeling of Fenton oxidation of enol and monochloroenols. Chemosere,2002,47(9):915-924
    [14]Yan L X,Hong C y. Reaction and mechanisms of the electrochemical degradation of enol on different electrodes. Water Research,2005,39(9):1972-1981
    [15]Juang R S,Shiau J Y. Adsorption isotherms of enols from water onto macroreticular resins. Journal of Hazardous Materials,1999,B70:171-183
    [16]Edward C, Patricia Z, Silvia P, et al. otocatalytic degradation of enol using TiO2 nanocrystals supported on activated carbon. Journal of Molecular Catalysis A: Chemical,2005(228):293-298
    [17]Mollah A H,Robinson C W. Pentachloroenol adsorption and desorption characteristics of granular activated carbon. Water Res.,1996,30(12):2901-2906.
    [18]李晓平.国内苯胺的生产消费情况及发展建议.氯碱工业,2006,2((2):29-30
    [19]聂永平,邓正栋,袁进.苯胺废水处理技术研究进展.环境污染治理技术与设备,2003,4(3):77-81
    [20]陶红,周仕林,高廷耀.13X分子筛处理含苯胺废水的实验研究.环境科学学报,2002,22(3):408-411
    [21]Ramanamuithy D, Francis J. Separation of aniline from aqueous solutions using emusion liquid membranes. Journal of Hazardous Materials,1999,(B70):157-170
    [22]Eneic B,Juan C. Aniline degradation by electeo-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosere,2002, (22): 241-248
    [23]Meguru T,Masakazu I. Plasma-induced degradation of aniline in aqueous solution. Thin Solid Film,2001,(386):204-207
    [24]Giti E, Mohamad S, Fatemeh M. The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water. Water Research. 2001,35(5):1219-1224
    [25]Hyung-Yeel K,Jerome J,Kukor,et al. Characterization of strin HY99,a novel microorganism capable of aerobic and anaerobic degradation of aniline. FEMS Microbiology Letters,2000,(190):215-221
    [26]Ayuso E A, Sanchez A G, Querol X. Purification of metal electroplating waste waters using zeolites. Water Research,2003,37(20):4855-4862
    [27]Edwward J K,Janet H,Samantha M,et al. otochemical reduction of hexavalent chromium in giycerol-containing solution. Environmental Pollution,2003, (117):1-3
    [28]Nafaa A, Lotfimonser, Nizar B, et al. Treatment of electroplating wastewater containing Cu2+, Zn2+and Cr(VI) by electrocoagulation. Journal of Hazardous Materials,2004,(B 112):207-213
    [29]刘守新,陈孝云,陈曦.表面酸碱2步改性对活性炭吸附Cr(Ⅵ)的影响.环境化学,2005,26(6):91-93
    [30]Zoubolis A I,Kydros K A,Matis K A. Removal of hexavalent chromium anious from solutions by pyrite fines. War Res,1995,129 (7):175
    [31]Lanouetle K, Pauison E G. Treatment of heavy mentas in wasterwater. Pollute Engin,1976,(8):55
    [32]Manuel P,Jose M M,Rosa T. Chromium(VI) removal with activated carbons. Wat Res.,1995,29(9):2174
    [33]Broom G P. The treatment of heavy metal efluents by crossflow microfiltration. Journal of Membrane Science,1994,87:219-230
    [34]Enoch G. D. Removal of heavy metals and suspended solids from wastewater from wetlime (stone)-gypsum flue gas deslurication plants by means of hydroobic and hydroilic crossflow microfiltration membranes. Journal of Membrane Science,1994,(87):191-198
    [35]Kratochivll D,Volesky B. Advance in the Biosorption of Heavy Metals. Trends Biotechnol,1998,(16):291-300
    [36]沈曾民,张文辉,张学军,等.活性炭材料的制备与应用.北京:化学工业出版社,2006,1-23
    [37]立本英机,安部郁夫.活性炭的应用技术—其维持管理及存在问题(日).高尚愚(译).江苏:东南大学出版社,2002,7-16
    [38]Roop C B, Meenakshi G. Activated carbon adsorption. Boca Raton:Taylor and Francis/CRC Press,2005
    [39]黄伟,贾艳秋,孙盛凯.活性炭及其改性研究进展.化学工业与工程,2006,27(5):39-44
    [40]Grajek H, Swiatkowski A, Witkiewicz Z, et al. Changes in the surface chemistry and adsorptive properties of active carbon previously oxidized and heat-treated at various temperatures, ysicochemical properties of the modified carbon surface. Adsorption Science and Technology,2001,19(7):565-576
    [41]Fabish T J, Schleifer D E. Surface chemistry and the carbon black work function. Carbon,1984,22(1):19-38
    [42]范延臻,王宝贞.活性炭材料表面化学.煤炭转化,2000,23(4):26-30
    [43]Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon,1994,32(5):759-769
    [44]Kienle H, Bader E.活性炭材料及其工业应用.魏同成(译).北京:中国环境科学出版社,1990,7-13
    [45]杨金红,郑经堂,王茂章,等.由含氮官能团的演变考察PAN-ACF的改性.炭素,1998,21(1):26-28
    [46]沈渊玮,陆善忠.活性炭在水处理中的应用.工业水处理,2007,27(4):13-16
    [47]Lehtola M J, Miectinen L K. Changes in Content of Microbially Available osorus Assimilable Organic Carbon and Microbial Growth Potential during Drinking Water Treatment Processes. Water Res.,2002,36(15):3681-3690
    [48]Tomaszewska M, Mozia S. Removal of Organic Matter from Water by PAC/UF System. Water Res.,2002,36(16):4137-4143
    [49]Gulnaziya I,Mohamed K A,Nik M S. Continuous adsorption of lead ions in a column packed with palm shell activated carbon. Hazardous Materials, 2008,(155):109-113
    [50]Mustafa I,Oktay T. Removal of copper(Ⅱ) and lead(Ⅱ) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination,2008,(228):108-113
    [51]Mdel M G T, Antonio M G,Angeles M D D, et al. Adsorption of Zn (Ⅱ) in aqueous solution by activated carbons prepared from evergreen oak. Hazardous Materials,2008,(153):28-36
    [52]王勇.活性炭在微污染水源水处理中的应用综述.山西建筑,2008,34(30):201-202
    [53]龙小庆,王占生.活性炭-纳滤膜工艺去除饮用水中总有机碳和Ames致突变物.环境科学,2001,22(1):75-77
    [54]乔俊莲,郑广宏,徐文倩.微波协同活性炭法处理甲基橙废水的研究.水处理技术,2008,34(9):23-25,29
    [55]韩永忠,谌伟艳,陈金龙,等.活性炭微波辅助溶剂再生研究.环境科学与技术,2006,29(8):25-27
    [56]翁元声.活性炭再生及新技术研究.给水排水,2004,30(1):86-91
    [57]Sabio E, Gonzalez E, Gonzalez J F, et al. Thermal regeneration of activated carbon saturated with p-nitroenol. Carbon,2004,2(11):2285-2293
    [58]Toledo L C,Claudia A,Silva B,et al. Application of Fetons reagent to regenerate activated carbon saturated with organochloro compounds. Chemosere,2003,(50): 1049-1054
    [59]Nadjib D,Hacenne M,Nabil M,et al. Utilization of electrodialysis for the regeneration of granular activated carbon packed in beds saturated with H2S. Desalination,2006,200(1-3):629-631
    [60]杜尔登,张玉先,沈亚辉.自来水厂活性炭再生技术与成本分析.净水技术,2008,27(6):54-57
    [61]李惠民,邓兵杰,李晨曦.几种活性炭再生方法的特点.化工技术与开发,2006,(11):21-24
    [62]张正勇,彭金辉,张利波,等.废活性炭微波加热法再生研究进展.化学工业与工程技术,2008,29(1):35-29
    [63]邹宗柏,傅大放,张璐.用微波辐照消除磺基水杨酸污染物.环境污染与防治,2006,28(1):22-24
    [64]卜龙利,王晓昌,陆露.活性炭的微波净化与再生及其吸附性能研究.西安建筑科技大学学报(自然科学版),2008,40(3):413-417
    [65]Xitao L, Xie Q,Longli B, et al. Simultaneous pentachloroenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon,2004,42(2):415-422
    [66]Xitao L, Xie Q, Longli B, et al. Temperature measurement of GAC and decomposition of PCP loaded on GAC and GAC-supported copper catalyst in microwave irradiation. Applied Catalysis A:General,2004,(264):53-58
    [67]孙作达,孙丽欣,欧阳红,等.高频电磁波(微波)再生活性炭方法研究.哈尔滨商业大学学报,2002,18(5):541-543
    [68]刘晓海,马祥元,彭金辉,等.微波加热水蒸气活化再生乙酸乙烯用废活性炭的研究.化学与生物工程,2006,23(1):48-50
    [69]刘晓海,马祥元,彭金辉,等.废活性炭微波再生新工艺的研究.环境污染治理技术与设备,2006,7(8):76-79
    [70]宁平,陈玉保,彭金辉,等.载硫活性炭微波辐照解吸研究.林产化学与工业,2004,24(3):65-68
    [71]陈茂生,王剑虹,宁平,等.微波辐照载甲苯活性炭再生研究.环境污染治理 技术与设备,2006,7(6):77-79
    [72]王宝庆,葛嫒群,郑晓明.载乙醇活性炭在微波场中的升温行为研究.安全与环境学报,2003,3(1):40-43
    [73]王宝庆,陈亚雄,刘玉红.微波解吸载乙醇活性炭的试验研究.环境科学与技术,2002,25(5):10-12
    [74]Kong Y, Cha C Y. Reduction of NOx adsorption on char with microwave energy. Carbon,1996,34(8):1035-1040
    [75]Tai H S, Jou G Chih-Ju. Applycation of granulated activated carbon pacede-bed reactor in microwave radiation field to treat phenol. Chemosere,1999,38(11): 2667-2680
    [76]Jou G C J, Tai H S. Applycation of granulated activated carbon pacede-bed reaction in microwave radiation field to treat BEX. Chemosere,1998,37(4): 685-698
    [77]Ho T C,Lee Y,Chu H W,et al. Modeling of mercury desorption from activited carbon at elevated temperatures under pluidized/fixed bed operations. Powder Technology,2005,(151):54-60
    [78]Jou G C J. Application of activated carbon in microwave radiation field to treat trichloroethylene. Carbon,1998,36(11):1643-1648
    [79]Xie Q,Xitao L, Longli B, et al. Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation. Water Research,2004,38 (20) 4484-4490
    [80]Ania C O,Menendez J A. Microwave-induced regeneration of activated carbons pollution with enol.A comparision with conventional thermal regeneration. Carbon,2004,42(24):1383-1387
    [81]Jou G C J. Application of activated carbon in amicrowave rediation field to treat trichloroethylene. Carbon,1998,36(4):685-698
    [82]Bathen D. ysical waves in adsorption technology-an overview. Separation and purification technology,2003,33(2):163-177
    [83]Calvo L,Mohedano A F. Treatment of chloroenols-bearing wastewaters through hydrode chlorination using Pd/activated carbon catalysts. Carbon,2004,42(7): 1377-1381
    [84]蒋文举,江霞,朱晓帆,等.微波处理对活性炭孔隙结构的影响.林产化学与 工业,2004,24(1):21-24
    [85]Menendez J A,Menendez E M,Iglesias M J,et al. Modification of the surface chemistry of active carbons by means of microwave-induced treatments. Carbon, 1999,(37):1115-1121
    [86]Yin C Y, Aroua M K, Ashri W M, et al. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Separation and Purification Technology,2007,(52):403-415
    [87]Villacanas F,Pereira M,Qfao J,et al. Adsorption of simple aromatic compounds on activated carbons. Journal of Colloid and Interface Science,2006, (293):128-136
    [88]Tamai H,Nasova H,Shiono T. Adsorption of methyl mercaptan on surface modified activated carbon. Journal of Colloid and Interface Science,2006,300(2): 814-817
    [89]韩严和,全燮,薛大明,等.活性炭改性研究进展.环境污染治理技术与设备,2003,4(1):33-37
    [90]孙伟,孙宗贵.表面化学改性活性炭在水处理中的应用.水科学与工程技术,2008,31(1):35-37
    [91]彭怡,谷昌红,傅敏.活性炭改性的研究进展.重庆工商大学学报(自然科学版),2007,24(6):577-580
    [92]刘成,高乃云,黄廷林.活性炭的表面化学改性研究进展.净水技术,2005,24(5):50-52
    [93]曹晓强,黄学敏,刘胜荣,等.2种改性活性炭对甲苯吸附性能的对比研究.环境科学,2008,29(10):2868-2873
    [94]Park S J,Jin S Y. Effect of ozone treatment on ammonia removal of activated carbons. Journal of Colloid and Interface Science,2005,286(1):417-419
    [95]Paul C, Shunnian W. Acid/base reated activated carbon:characterization of functional groups and metal adsorptive properties. Langmui,200.4,(20): 2033-2242
    [96]Krisztina L.Adsorption from aqueous phenol and aniline solutions on activated carbons with different surface chemistry.Colloids and surfaces A:ysicochem Engineering Aspects,2005,(256):32-39
    [97]Mohamed F S,Khater W A,Mostafa M R.Characterization and phenols sorptive properties of carbons activated by suluric acid.Chemical engineering journal, 2006,(116):47-52
    [98]Manuel F R, Pereira, Samants F S, et al.Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon,2003,41(4):811-821
    [99]刘桂芳,马军,关春雨,等.改性活性炭对水溶液中双酚-A的吸附研究.环境科学,2008,29(2):349-355
    [100]Jun M, Ikuo A. Enhancement effect of an adsorbed organic acid on oxygen reduction at various types of activated carbon loaded with platinum. Journal of Power Sources,2005, (148):1-8
    [101]Nakagawa Y, Molina-Sabio M, Rodr G R F. Modification of the porous structure along the preparation of activated carbon modified with H3PO4 and ZnCl2-Microporous and Mesoporous Materials,2007,103:29-34
    [102]Hirata M,Kwasaaki N,Nakamura T,et al. Adsorption of dyes onto carbon fiber meterials produced from coffee ground by microwave treatment. Journal of Colloid and Interface Science,2002,254(1):17-22
    [103]蒋文举,江霞,朱晓帆,等.微波加热对活性炭表面基团及吸附性能的影响.林产化学与工业,2003,23(1):39-42
    [104]金燕,蒋文举,江霞,等.微波加热对活性炭表面基团及其对SO2吸附性能的影响.环境污染治理技术与设备,2003,(4):35-38
    [105]江霞,蒋文举,朱晓帆,等.微波改性活性炭的吸附性能.环境污染治理技术与设备,2004,5(1):43-46
    [106]曹晓强,黄学敏,刘胜荣,等.微波改性活性炭对甲苯吸附性能的实验研究.西安建筑科技大学学报(自然科学版),2008,40(2):249-264
    [107]Carrott P J M, Nabais J M V,Carrott M M L R,et al. Thermal treatments of activated carbon fibres using a microwave furnace. Micoporous and Mesoporous Materials,2001,47(2-3):243-252
    [108]Valente Nabais J M,Carrott P J M,Ribeiro Carrott M M L,et al. Preparation and modification of activated carbon fibres by microwave heating. Carbon,2004, 42(7):1315-1320
    [109]Boudou J P, Martinez-Alonzo A, Tascon J M D,Eet al. Introduction of acidic groups at the surface of activated carbon by microwave-induced oxygen plasma at low pressure. Carbon,2000,38(7):1021-1029
    [110]王鹏.环境微波化学技术.北京:化学工业出版社.2003,51-53
    [111]Jones D A, Lelyveld T P, Mavrofidis S D, et al. Microwave heating application in environment engineering-a review. Resources, conservation and recycling,2002, (34):75-90
    [112]金钦汉,戴树珊,黄卡玛.微波化学.北京:科学出版社,2001
    [113]Haque K E. Microwave energy for mineral treatment processes-a brief review. International Journal of Mineral processing,1999,57(1):1-24
    [114]谌伟艳,韩永忠,丁太文,等.微波热修复污染土壤技术研究进展.微波学报,2006,22(4):66-70
    [115]马海云,韩永忠,李茂,等.污染土壤的微波辐照技术研究进展.环境污染与防治,2007,29(3):221-225
    [116]Abramovitch R A, Capracotta M. Remediation of waters contaminated with pentachloroenol. Chemosere,2003,50(9):955-957
    [117]Abramovitch R A, Zhou H B, Davis M, et al. Decomposition of PCB's and other polychlorinated aromatics in soil using microwave energy. Chemosere,1998,37(8): 1427-1436
    [118]Abramovitch R A, Zhou H B, Abramovitch D A, et al. In situ decomposition of PCB's in soil using microwave energy. Chemosere,1999,38(10):2227-2236
    [119]Abramovitch R A, Zhou H B, Abramovitch D A, et al. In situ decomposition of PAHs in soil and desorption of organic solvents using microwave energy. Chemosere,1999,39(1):81-87
    [120]Abramovitch R A,Lin C Q,Hicks E,et al. In situ remediation of soils contaminated with toxic metal ions using microwave energy. Chemosere, 2003,53(9):1077-1085
    [121]Jou G C J. An efficient technology to treat heavy metal-lead-contaminated soil by microwave radiation. Journal of Environmental Management,2006,78(1):1-4
    [122]Tai H S, Chih J G. Immobilization of chromium-contaminated soil by means of microwave energy. Chemosere,1999,B(65):267-275
    [123]田禹,方琳,黄君礼.微波辐射预处理对污泥结构及脱水性能的影响.中国环境科学,2006,26(4):459-463
    [124]乔玮,王伟,黎攀,等.城市污水污泥微波热水解特性研究.环境科学,2008,29(1):152-157
    [125]Menendez J A,Inguanzo M,Pis J J. Microwave-induced pyrolysis sewage sludge. Water Research,2002,36(6):3261-3264
    [126]Dominguez A,Menenndez J A,Inguannzo M,et al. Gas chromatograaic-mass spectrometric study of the oil fractions preduced by microwave-assisted pyrolysis of different sewage sludge. Joural of Chromatogray,2003,1022:193-206
    [127]Dominguez A,Menenndez J A,Inguannzo M,et al. Investigations into the characteristic of oil perduced from microwave pyrolysis of sewage sludge. Fuel Processing Technology,2005,86:1007-1020
    [128]傅大放,蔡明元,华建良,等.污水厂污泥微波处理试验研究.中国给水排水,1999,15(6):56-57
    [129]宁平,刘天成,梁波,等.微波解毒含铬废渣.环境工程,2006,24(1):56-60
    [130]张瑜,郝文辉.微波技术应用.西安:西安电子科技大学出版社,2006:209-220
    [131]Martina D I, Mateescu E, Craciun G, et al. Polymeric flocculants processing by accelerated electron beams and microwave heating. Radiation ysics and Chemistry,2002,(6):423-428
    [132]Marilena T R, Martin D I, Calinescu I, et al. Preparation of polyelectrolytes for wastewater treatment. Journal of Hazardous Materials,2004,106(B):27-37
    [133]Binghui T. Zhaokun L, Mingming L. Low-temperature synthesis of allyl-dimethylamine by selective heating under microwave irradiation used for water treatment. Radiation ysics and Chemistry,2005,(73):328-333
    [134]李万捷,阮路.微波场中PAM合成及其在洗煤废水中的应用.煤炭转化,1999,22(4):87-89
    [135]张利平,刘莉,张月英.聚合硫酸铁的微波合成及净水效果初探.内蒙古石油化工,2006,(27):87-88
    [136]郭玲,武海顺,金志浩,等.微波辐射法合成淀粉—丙烯酰胺接枝物及絮凝剂的研究.环境污染治理技术与设备,2004,5(4):46-49
    [137]Annadurai G,Juang R S,Yen P S, et al. Use of thermally treated waste biological sludge as dye absorbent. Advances in Environmental Research,2003,(7):739-744
    [138]Jiwu L, Lizhong Z,Weijian C, et al. Characteristics of organobentonite prepared by microwave as a sorbent to organic contaminants in water. Colloids and Surfaces A:ysicochem. Eng. Aspects,2006,(281):177-183
    [139]杨丽君,蒋文举.磷酸微波法制污水污泥活性炭的研究.中国资源综合利用,2004,(12):15-18
    [140]杨丽君,蒋文举.微波法污水厂污泥制备活性炭的研究.环境污染治理技术与设备,2006,7(11):92-94
    [141]张利波,刘晓海,彭金辉,等.微波加热核桃壳制取活性炭及孔结构表征.化学工业与工程技术,2006,27(4):18-22
    [142]Xitao L, Yu G, Han W Y. Granular activated carbon adsorption and microwave regeneration for the treatment of 2,4,5-trichlorobienyl in simulated soil-washing solution. J. Hazard.Mater.,2007,147 (3):746-751
    [143]Xie Q, Zhang Y B, Chen S, et al. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances. J.Moll Catal. A,2007,263 (1-2) 216-222
    [144]Longli B, Xie Q, Chen S, et al. Degradation of p-nitroenol in aqueous solution bymicrowave assisted oxidation process through a granular activated carbon fixed bed[J].Water Res.,2006,40 (16):3061-3068
    [145]Do-hung H,Sang-yeob C,Hae-young Y. Improvement of oxidative decomposition of aqueous enol by microwave irradiation in UV/H2O2 process and kinetic study. Water Research,2004,(38):2782-2790
    [146]Tehlong L, Wenfeng W, Younyuen S, et al. Evaluation of microwave-enhanced catalytic degradation of 4-chloroenol over nickel oxides. Journal of Molecular Catalysis A:Chemical,2007,(273):303-309
    [147]Tehlong L, Chiachan L, Kuenshian W, et al. Microwave-enhanced catalytic degradation of enol over nickel oxide. Applied Catalysis B:Environmental,2006, (68):147-153
    [148]Zhang Y B,Xie Q, Chen S, et al. Microwave assisted catalytic wet air oxidation of H-acid in aqueous solution under the atmoseric pressure using activated carbon as catalyst. J. Hazard Mater.,2006,137 (1):534-540
    [149]卜龙利,全燮,陈硕,等.微波辅助催化氧化高浓度含醛废水应用研究.大连理工大学学报,2006,46(1):25-29
    [150]张国宇,王鹏,姜思朋,等.微波辐射处理脂化废水的工艺技术研究.给水排水,2004,30(8):61-64
    [151]姜思朋,王鹏,张国宇,等.微波诱导氧化法处理BF-BR染料废水.中国给水排水,2004,20(4):13-15
    [152]洪光,王鹏,张国宇,等.改性氧化铝微波诱导氧化处理雅格素蓝BF-BR染料废水的研究.环境科学学报,2005,25(2):254-258
    [153]洪光,王鹏,张国宇,等.改性凹土微波诱导氧化处理染料废水的实验研究.微波学报,2005,21(1):62-65
    [154]张朝红,单亚波,凌洪洁,等.硫酸铁改性活性炭催化微波降解甲基橙的研究.染料与染色,2006,43(1):31-39
    [155]张朝红,单亚波,藏树良,等.硫酸铁改性活性炭催化微波降解对硫磷的研究.中国给水排水,2006,22(11):26-30
    [156]刘宗瑜,彭铁成,孙保平.微波辐射稻草浆蒸煮黑液处理技术的研究.天津理工大学学报,2009,25(4):33-36
    [157]张忠杰,杨绍贵,何忠,等.微波辅助光催化氧化罗丹明B研究.三峡环境与生态,2009,2(5):5-10
    [158]冯建敏,邓宇,李兰青子.微波辐射处理双酚A生产废水.水处理技术,2005,31(12):40-42
    [159]何星存,唐晓琳,黄智,等.焦炭吸附-微波降解处理活性橙X-GN染料废水的研究.工业水处理,2006,26(4):70-73
    [160]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002
    [161]Ana G L. Sorption of antimony onto hydroxyapatite. Environment Science and Technology,2001,35(2):3669-3675
    [162]王红斌,杨敏.活性炭自水溶液吸附苯酚的热力学探讨.云南民族大学学报,2003,12(4):220-222
    [163]王文健、许荔、钱海挺,等.试验数据分析处理与软件应用.电子工业出版社,2008年2月第一次印刷
    [164]程子峰,徐富春.环境数据统计分析基础.化学工业出版社,2006年3月第一版
    [165]Smith J M. Chemical engineering kinetics [M].New York:McGraw Hill,1981,225-263
    [166]Ayben K, Binay B. Thermodynamic and kinetic investigations of uranium adsorption on amber-lite IR-118H resin. Applied radiation and isotopes,2003, 58(5):155-160
    [167]王强,马沛生,胡开堂,等.光谱导数Kalman滤波同时测定苯酚—邻氯苯酚 —2,4二氯苯酚.光谱学与光谱分析,2007,27(3):560-564
    [168]宝鸡有色金属研究所编.粉末冶金多孔材料(下).北京:冶金工业出版社1979
    [169]陈金妹,张建.ASAP比表面积及孔隙分析仪的应用.分析仪器,2009(3):61-64
    [170]刘守新,陈孝云,陈曦.表面酸碱2步改性对活性炭吸附Cr(Ⅵ)的影响.环境化学,2005,26(6):91-93
    [171]刘守新,陈曦,张显权.活性炭孔结构和表面化学性质对吸附硝基苯的影响.环境科学,2008,29(5):1192-1196
    [172]张婷婷.活性炭吸附-生物再生处理高盐高浓度苯胺废水:[大连理工大学硕士学位论文].大连:大连理工大学环境与生命学院环境科学与工程系,2006,35-36
    [173]Barton S S, Evans M J B, Halliop E.Acidic&Basic Site on the Surface of Porous Carbon.Carbon,1997,35 (9):1361-1366。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700