用户名: 密码: 验证码:
湍流场中柔性结构的气动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大跨度新桥型在桥梁工程领域的不断应用,桥梁抗风问题成为设计时需要重点考虑的因素。激发结构风振的气动力包括自激气动力和强迫气动力以及由此引发的桥梁颤振和抖振是桥梁风振研究的重点。桥梁结构大多具有钝体截面,而钝体桥梁断面附近的流场又比较复杂,很难找到一种合适的气动力解析表达式,所以直接的风洞试验成为现代桥梁风振研究最有效的方法。然而,风洞试验室很难完整地表现实际桥梁附近的流场情况,并且人们通过数据的对比发现:对于同样的模型,同样的试验条件,有些时候桥梁气动参数测试的结果不尽相同,因此单纯依靠试验方法进行桥梁风振研究存在一定的局限性。
     计算机运算能力的发展使得计算流体动力学方法(CFD)在桥梁风振研究领域得到一定的应用。但是CFD方法对于桥梁风效应的气动弹性问题研究存在一定的难点,例如桥梁周围的流动通常是高雷诺数非定常分离流动,桥梁和周围空气的气固耦合效应不可忽略。同时由于计算能力和计算方法的限制,目前大部分桥梁风振问题的CFD研究还仅限于二维范畴,并且对湍流问题的认识和描述还远未完善。
     有鉴于此,本博士学位论文在CFD理论框架下将分块迭代耦合方法,任意拉格朗日-欧拉算法等流体力学领域的计算方法引入到大跨桥梁风致振动的研究之中,并且选用了高雷诺数,引入了湍流模型,采用了多重网格算法,进行湍流场中大跨桥梁的三维气固耦合分析。分析过程立足于不同结构的气动参数计算和其周围流场特点的分析,从二维模型发展至三维模型,从流线型结构过渡至钝体结构,建立了可以进行高雷诺数下湍流场中各种不同结构的气固耦合效应分析的有效的三维CFD方法。全文的主要研究内容如下:
     1.基于分块迭代耦合方法和任意拉格朗日-欧拉算法的CFD方法
     基于分块迭代耦合算法、任意拉格朗日-欧拉算法提出一种新型的CFD方法,从流固耦合分析的角度研究结构的气弹性问题。流场分析和结构分析通过任意拉格朗日-欧拉流动坐标方法加以耦合。分析过程将采用大连理工大学自主研发的软件包DDJ-W结合商用软件CFX求解器共同进行。
     2.建立可用于复杂湍流特征分析的高性能并行计算软硬件体系
     提出了一种可被广泛应用于复杂湍流特征分析的低成本高性能并行计算体系。引入了并行计算性能优越的Centos开源操作系统和企鹅龙并行架构,基于PVM并行算法,采用桌面计算机硬件,建立了灵活、高效的高性能并行计算集群,为湍流场中大跨桥梁的三维气固耦合分析提供了必要的硬件基础。
     3.流线型结构气动特性的二维CFD数值分析
     选取翼型NACA0012结构作为流线型结构的代表验证本文CFD方法在二维范畴内的准确性。利用新型网格算法建立了NACA0012翼型的流场-结构网格模型并选定K-ωSST为湍流模型。首先,计算了初始固定不动、弦方向与来流方向平行的翼型结构的气动力系数与颤振导数,并分别与试验值或者理论值进行比较,以及通过计算机图形化方法对其流场特点进行分析。随后,通过改变初始条件,包括选取不同的初始攻角、不同的强迫振动振幅、不同的初始Re数,分别进行了翼型的气动参数计算以及气动特性分析。
     4.利用三维CFD方法进行湍流场中大跨度桥梁的气固耦合分析
     利用基于分块迭代耦合的三维CFD方法结合国际上最新的DES湍流模型进行湍流场中大跨度桥梁的气固耦合分析,计算了典型断面和特殊断面两类五种大跨桥梁的气动力系数和颤振导数,并且通过计算机图形化的方法分析各种不同桥梁断面的气动特性。将得到的气动参数的计算结果与目前国际上比较著名的离散涡方法(Discrete Vortex Method, DVM)以及风洞试验值进行对比以说明本文三维CFD方法的有效性。
     5.结合风洞试验的倒U形梁的三维气动特性分析
     设计并完成了一种气动稳定性非常差的钝体结构——倒U形梁的风洞试验,测量了其气动参数。然后利用二维和三维的CFD方法分别进行了其气动特性的数值模拟,并将计算值与试验值进行对比,验证本文三维CFD方法对于气动稳定性较差结构数值分析的有效性,从方法学角度完成湍流场中各种不同类型结构的气固耦合分析。
     6.利用CFD方法结合虚拟激励法进行不同类型柔性结构的风振响应分析
     利用CFD方法结合随机振动高效算法-虚拟激励法进行结构的风振响应计算。选取NACA0012机翼和青马大桥主梁断面作为研究对象。计算中用CFD方法取代理论方法或风洞试验方法获取结构的气动参数,并且采用虚拟激励法将结构随机响应的功率谱密度函数的计算转化为确定性外载作用下的动力响应分析,显著提高了计算准确度和计算速度。
Wind-resistant analysis of bridges has now become an important problem because of the rapid developments and increasing applications of long-span bridges. The wind-induced aerodynamic forces on structures including self-excited aerodynamic forces and forced aerodynamic forces, the resulting flutter and buffet are some focal points to be investigated. The cross sections of long-span bridges are usually classified to blunt bodies, around which the flow distributions are very complicated. As analytical expressions of aerodynamic forces are not available, therefore the wind tunnel test is the most effective way to investigate wind-induced vibrations of long-span bridges. Unfortunately, since the actual flow distribution conditions around the bridges can hardly be expressed comprehensively in a wind-tunnel laboratory, and it has been found by comparisons that the wind tunnel test results are quite divergent even for identical models and testing conditions. Clearly, it is not sufficient to investigate wind-induced vibrations of long-span bridges only by means of wind tunnel tests.
     Due to the development of computers, much computational work with computational fluid dynamic method (CFD) has been undertaken in the investigations of wind-induced vibrations of long-span bridges. But the research of aeroelastic problems of wind effect on bridges with CFD has its own difficulties, such as the flows around bridges are unsteady separated flows with high Reynolds numbers and the wind-structure interaction effects between winds and bridges cannot be neglected. Also due to the limitation of computational ability and methods, most investigations on wind-induced bridge vibration are two dimensional, and the knowledge about the turbulent flow is still quite limited.
     In view of this, this doctoral dissertation uses the CFD method combined with the block-iterative coupling method and arbitrary Lagrangian-Eulerian mesh control method to investigate the wind-induced vibrations on long-span bridges. In order to analyse the wind-structure interaction problems of long-span bridges in turbulence flow, high Reynolds numbers are chosen, turbulence models are introduced and multi-grid method is adopted. The analysis processes are based on the computations of aerodynamic parameter values and the investigations of the flow characteristics around different structures, from two dimensional models to three dimensional models, and from streamlined bodies to blunt bodies. An effective CFD method to study wind-structure interaction effects on different structures in turbulent flows is established. The main research contents of the full paper are as follows:
     1. CFD method based on the block-iterative coupling method and arbitrary Lagrangian-Eulerian method
     To study aeroelastic problems according to fluid-structure interaction analysis, a novel CFD method based on the block-iterative coupling method and arbitrary Lagrangian-Eulerian method is proposed. The flow analysis and structure analysis are coupled through arbitrary Lagrangian-Eulerian current coordinate method. The analysis process uses self-developed program system DDJ-W and a solver of the commercially available CFD code ANSYS-CFX.
     2. Construction of high performance parallel computing software and hardware systems to analyse complicated turbulent flow characteristics.
     A high performance computing system with low cost is proposed, which can be widely applied to the analyses of complicated turbulent flow characteristics. An open source operating system named Centos which has excellent parallel computing performance and DRB1parallel structure are introduced. This computing system is based on the PVM algorithm and the use of desktop hardware. This effective and flexible high performance computing system is the necessary hardware foundation of three dimensional wind-structure interaction analysis of long-span bridges in turbulent flows.
     3. Numerical analysis of a streamlined structure with the two dimensional CFD method
     NACA0012airfoil is chosen as a representation of streamlined structures to verify the present CFD method for two dimensional numerical simulations. A new mesh control method is used to model the flow-structure meshes of NACA0012airfoil and the k-ω SST turbulence model is adopted. Firstly, numerical wind-structure investigation of an airfoil structure, which is fixed initially and has the same chord direction as that of the flow velocity, is performed. Its aerodynamic force coefficients and flutter derivatives are computed and compared with the wind tunnel test results or theoretical values. The flow characteristics is analysed through computer pictorial visualizations. Then, extended simulations of the airfoil are performed for different initial conditions such as the angle of attack, forced vibration amplitude and Reynolds number. The aerodynamic parameters of the airfoil are computed and the aerodynamic characteristics are analysed.
     4. Three dimensional CFD numerical analysis of wind-structure interaction problems of long-span bridges in turbulence flow
     A three dimensional CFD method based on the block-iterative coupling method with the newest DES turbulence model is used to analyse the wind-structure interaction of long-span bridges in turbulence flow. The aerodynamic coefficients and flutter derivatives of the typical and special sections of five long-span bridges were computed and visualized. The computed aerodynamic parameter values are compared with the wind tunnel test results and those based on the Discrete Vortex Method (DVM) in order to show the validity of the present three dimensional CFD method.
     5. Three dimensional aerodynamic analysis of a U-shape beam with wind tunnel test and CFD method
     The wind tunnel test of a U-shape beam which has poor aerodynamic stability was designed and made to measure its aerodynamic parameter values. Then both two dimensional and three dimensional CFD methods were used to investigate its aerodynamic characteristics. The CFD-based results were compared with the wind tunnel test-based results to validate the effectiveness of the present three dimensional CFD method for structures with poor aerodynamic stability. This work verified the completeness of the present analysis method of wind-structure interaction of different structures in turbulent flow in view of methodology.
     6. Wind-induced random vibration analysis of different structures with pseudo excitation method and CFD
     The wind-induced random vibration analyses of a composite wing and the Tsing Ma bridge girder sections in Turbulent flow were performed using a highly efficient method for random vibration analysis-PEM (pseudo excitation method) and CFD technique. In order to obtain unsteady aerodynamic parameters of the structure accurately, the present CFD method is used to replace the wind tunnel test. The PEM converts the computations of power spectral density functions of the structure stochastic responses to the analysis of the dynamic responses under deterministic loads and so improves the computational efficiency considerably.
引文
[1]项海帆.进入21世纪的桥梁风工程研究[J].同济大学学报,2002,35(5):529.
    [2]Xiang H F. Wind-resistant study on long-span bridges in China [C]. International Conference on "Bridges into 21 Century", Hongkong,1995.
    [3]项海帆,陈艾荣.特大跨度桥梁抗风研究的新进展[J].土木工程学报,2003,36(4):1-8.
    [4]项海帆,葛耀君,朱乐东等.现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005.
    [5]顾明.土木结构抗风研究进展及基础科学问题[R].国家自然科学基金委员会建筑、环境与土木工程学科发展战略研究报告,北京:科学出版社,2006:382-403.
    [6]Sarkar P P, Caracoglia L, Haan Jr F L, et al.. Comparative and sensitivity study of flutter derivatives of selected bridge deck sections: Partl. Analysis of inter-laboratory experimental data [J]. Engineering Structures,2009,31:158-169.
    [7]Matthies H G, Steindorf J. Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction [J]. Computers and Structures,2002,80:1991-1999.
    [8]Codina R, Cervera M. Block-iterative Algorithms for Nonlinear Coupled Problems [C]. CIMME, Barcelona, Spain,1996.
    [9]Sun D K, Owen J S, Wright N G, et al.. Fluid-structure interaction of prismatic line-like structures using LES and block-iterative coupling [J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96:840-858.
    [10]Hirt C W, Amsden A A, Cook J L. An arbitrary Lagrangian Eulerian computing method for all flow speeds [J]. Journal of Computational Physics,1974,14:227-253; 1997,135(2):203-216.
    [11]Anderson J D. Fundamentals of Aerodynamics [M]. New York: McGraw-Hill,2001.
    [12]Andersen J D计算流体力学基础及其应用[M].吴颂平,刘赵淼译.北京:机械工业出版社,2005.
    [13]钱翼稷.空气动力学[M].北京:北京航空航天大学出版社,2004.
    [14]冯佰威、刘祖源、詹成胜等.船舶CAD/CFD一体化设计过程集成技术研究[J].武汉理工大学学报(交通科学与工程版),2010,34(4):689-694.
    [15]郭雪岩.CFD方法在固定床反应器传热研究中的应用[J].化工学报,2008,59(8):1914-1921.
    [16]蔡荣泉,陈凤鸣,冯雪梅.使用Fluent软件的螺旋桨敞水性能计算分析[J].船舶力学,2006,10[5]:41-48.
    [17]刘钥,陈政清,张志田.箱粱断面静风力系数的CFD数值模拟[J].振动与冲击,2010,29(1):133-137.
    [18]贾云飞,张涛,邢娟.基于FLUENT对涡街流量传感器流场仿真及特性研究[J].系统仿真学报,2007,19(12):2683-2689.
    [19]王智勇.基于FLUENT软件的水力空化数值模拟[J].大连:大连理工大学,2006.
    [20]Smith G D. Numerical solution of partial differential equations:Finite difference methods [M]. Oxford:Clarendon Press,1985.
    [21]Zienkiewicz O C, Taylor R L. The finite element method-Vol.2:Solid and fluid mechanics [M]. New York:McGraw-Hill,1991.
    [22]Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics-The finite volume method [M]. London:Longman Group,1995.
    [23]孙东科.长跨桥梁三维风振分析[D].大连:大连理工大学,1999.
    [24]H W伏欣.气动弹性力学原理[M].上海:上海科学技术文献出版社,1982.
    [25]Frazer R A, Duncan W J. The Flutter of Airplane Wings [R]. United Kingdom: Reports and Memoranda 1155,1928.
    [26]Theodorsen T. Theory of wing sections of arbitrary shape [R]. USA:NACA Technical Report 411, 1933.
    [27]Kussener H G. Zusammenfassender Bericht iiber den Instationaren Auftrich von Fliigeln [J]. Luftfahrt-Forschung,1936,13:410-424.
    [28]Garrick I E. On Some Reciprocal Relations in the Theory of Nonstationary Flows [R]. USA: NACA Tech. Report 629,1938.
    [29]Bleich F. Dynamic instability of Truss-Stiffened suspension bridge under wind action [J]. Proc. ASCE,1948,74(8):1269-1314.
    [30]Bleich F. Dynamic instability of Truss-Stiffened suspension bridge under wind action [J]. Proc. ASCE,1949,75(3):413-416.
    [31]Bleich F. Dynamic instability of Truss-Stiffened suspension bridge under wind action [J]. Proc. ASCE,1949,75(6):855-865.
    [32]Farquharson F B. Aerodynamic stability of suspension bridges [M]. University of Washington, Bulletion 16, Parts 1-4,1949-1954.
    [33]Scruton C. Experimental investigation of aerodynamic stability of suspension bridge with special reference to Severn Bridge [C]. Proc.5th Civil Engineering Conference, London,1952, Part 1(2):189-222.
    [34]Scanlan R H, Sabzevari A. Experimental aerodynamic response coefficients in the analytical study of suspension bridge flutter [J]. Journal of Mechanical Engineering Science,1969, 11(3):234-242.
    [35]Scanlan R H, Tomoko J J. Airfoil and bridge deck flutter derivatives [J]. Journal of Engineering Mechanics Division, ASCE,1971,97(6):1717-1737.
    [36]Scanlan R H, Beliveau J G, Budlong K S. Indicial aerodynamic functions for bridge decks [J]. Journal of Engineering Mechanics, ASCE,1974,100:657-672.
    [37]Scanlan R H, Budlong K S. Flutter and Aerodynamic Response Considerations of for Bluff Objects in a Smooth Flow [M]. Flow-Induced Structural Vibrations, E. Naudascher, ed., New York:Springer-Verlag,1974,339-354.
    [38]Scanlan R H. The action of flexible bridges under wind, I:Flutter Theory [J]. Journal of Sound and Vibration,1978,60(2):187-199.
    [39]Lin Y K. Motion of suspension bridge in turbulent winds [J]. Journal of Engineering Mechanics Division, ASCE,1979,105(EM6):921-932.
    [40]Scanlan R.H. On flutter and buffeting mechanism in long-span bridges [J]. Probabilistic Engineering Mechanics,1988,3(1):22-27.
    [41]Scanlan R H, Jones N P. Aeroelastic analysis of cable-stayed bridges [J]. Journal of Structural Engineering, ASCE,1990,116(2):279-297.
    [42]Lin Y K, Li Q C. New stochastic theory for bridge stability in turbulent flow [J]. Journal of Engineering Mechanics, ASCE,1993,119(1):113-127.
    [43]Scanlan R H. Interpreting aeroelastic models of cable-stayed bridges [J]. Journal of Engineering Mechanics,1987,113(4):555-575.
    [44]Scanlan R H. Problematics in formulation of wind-force models for bridge decks [J]. Journal of Engineering Mechanics, ASCE,1993,119(7):1353-1375.
    [45]Scanlan R H. Bridge flutter derivatives at vortex lock-in [J]. Journal of Structural Engineering,1998, 124(4):450-458.
    [46]谢霁明.桥梁颤振理论与斜拉桥颤振特性研究[D].上海:同济大学,1986.
    [47]陈振清.桥梁颤振临界风速值上下限预测与多模态参与效应.结构风工程研究的新进展及应用[M].上海:同济大学出版社,1993.
    [48]张若雪.桥梁结构气动导数识别的理论和试验研究[D].上海:同济大学,1998.
    [49]Tanaka H, Yamamura N and Tatsumi M. Coupled mode flutter analysis using flutter derivatives [J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,41-44:1279-1290.
    [50]Namini A, Albrecht P and Bosch H. Finite element based flutter analysis of cable-suspended bridges [J]. Journal of Structural Engineering, ASCE,1992,120(8):1718-1742.
    [51]Jones N P, Scanlan R H, Li Q C. Discussion on'measuring flutter derivatives for bridge sectional models in water channel' [J]. Journal of Engineering Mechanics, ASCE,1996,389-390.
    [52]Agar T J A. Aerodynamic flutter analysis of suspension bridges by a model technique [J]. Journal of Engineering Structures,1989,11:75-82.
    [53]顾明,张若雪,项海帆.紊流风场中桥梁气动导数的识别[J].同济大学学报,2000,28(2):134-137.
    [54]秦仙蓉,顾明.紊流风场中桥梁结构气动导数识别的随机方法[J].土木工程学报,2005,38(4):73-77.
    [55]陈振清,于向东.大跨桥梁颤振自激力的强迫振动法研究[J].土木工程学报,2002,35(5):34-41.
    [56]Chowdhury A G, Sarkar P P. Identification of eighteen flutter derivatives of an airfoil and a bridge deck [J]. Wind and Structures,2004,7(3):187-202.
    [57]丁泉顺,陈艾荣,项海帆.桥梁断面气动导数识别的修正最小二乘法[J].同济大学学报,2001,291:25-29.
    [58]Davenport A G. The spectrum of horizontal gustiness near the ground in high winds [J]. Journal of Royal Meteorol Society,1961,87:194-211.
    [59]Davenport A G. Buffeting of a suspension bridge by storm wind [J]. Journal of Structural Division, Proc. ASCE,1962,88(3):233-268.
    [60]Liepmann H W, Allen E P. Introduction to aerodynamics of a compressible fluid [M]. New York: J. Wiley & Sons Inc,1947.
    [61]Scanlan R H, Gade R H. Motion of suspended bridge spans under gusty wind [J]. Journal of Engineering Mechanics, ASCE,1977,103(ST9):1867-1883.
    [62]Scanlan R H. The action of flexible bridges under wind, II:Buffeting Theory [J]. Journal of Sound and Vibration,1978,60(2):201-211.
    [63]Scanlan R H. Role of indicial functions in buffeting analysis of bridges [J]. Journal of Structural Engineering, ASCE,1984,110(7):1433-1446.
    [64]Scanlan R H, Stroh S L, Raggett J D. Methods of wind response investigation employed for the Kap Shui Mun Bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,54-55:1-11.
    [65]刘春华.大跨度桥梁抖振响应的菲线性时程分析[D].上海:同济大学,1995.
    [66]秦仙蓉,顾明.桥梁结构气动导纳识别的随机子空间方法[J].同济大学学报,2004,32(4):421-425.
    [67]Sun D K, Zhi H, Zhang W S, et al.. Highly efficient and accurate buffeting analysis of complex structures [J]. Communications in Numerical Methods in Engineering,1998,14:559-567.
    [68]Sun D K, Xu Y L, Ko M J, et al.. Fully-coupled buffeting analysis of long-span cable-supported bridges:Formulation [J]. Journal of Sound & Vibration,1999,228(3):569-588.
    [69]Xu Y L, Sun D K, Ko M J, et al.. Fully-coupled buffeting analysis of Tsing Ma Suspension Bridge: Application [J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,85:97-117.
    [70]Xu Y L, Sun D K, Ko M J, et al.. Buffeting analysis of long span bridges: a new algorithm [J]. Computer & Structures,1998,68:303-313.
    [71]Lin J H, Sun D K. Application of Pseudo Excitation Method to 3-D buffeting analysis of the Tsing Ma long-span suspension bridge [J]. Journal of Dalian University of Technology,1999, 39(2):172-179.
    [72]孙东科,林家浩,张亚辉等.复杂结构的风激随机振动分析[J].机械工程学报,2001,37(3):55-61.
    [73]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [74]Lin J H. A fast CQC algorithm of PSD matrices for random seismic responses [J]. Computers & Structures,1992,44(3):683-687.
    [75]Lin J H, Williams F W. Computation and analysis of multi-excitation random seismic responses [J]. Engineering Computations,1992,9(5):561-574.
    [76]Lin J H, Zhang W S, Williams F W. Pseudo-Excitation algorithm for non-stationary random seismic responses [J]. Engineering Structures,1994,16:270-276.
    [77]Lin J H, Zhang W S, Li J J. Structural responses to arbitrarily coherent stationary random excitations [J]. Computers & Structures,1994,50:629-633.
    [78]Lin J H, Fan Y, Bennett P N, et al.. Propagation of stationary random waves along sub-structural Chains [J]. Journal of Sound and Vibration,1995,180(5):757-767.
    [79]Lin J H, Fan Y, Williams F W. Propagation of non-stationary waves along sub-structural chains [J]. Journal of Sound and Vibration,1995,187(4):585-593.
    [80]Lin J H, Sun D K, Sun Y, et al. Structural response to non-uniformly modulated evolutionary random seismic excitations [J]. Communications in Numerical Methods in Engineering,1997,13:605-616.
    [81]Lin J H, Wang X C, Williams F W. Asynchronous parallel computing of structural non-stationary random seismic responses [J]. International Journal of Numerical Method in Engineering,1997, 40:2133-2148.
    [82]Lin J H, Li J J, Zhang W S, et al.. Structural seismic response to inhomogeneous random field [J]. Engineering Computations,1997,14(7):718-734.
    [83]钟万勰.一个高效结构随机响应算法系列-虚拟激励法[J].自然科学进展-国家重点实验室通讯,1996,6(4):394-401.
    [84]蔡树棠,刘宇陆.湍流理论[M].上海:上海交通大学出版社,1993.
    [85]是勋刚.湍流[M].天津:天津大学出版社,1994.
    [86]苏铭德,黄素逸.计算流体动力学基础[M].北京:清华大学出版社,1997.
    [87]朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社,1998.
    [88]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2005.
    [89]Launder B E, Spalding D B. The numerical computation of turbulent flows [J]. Computer methods in applied mechanics and engineering,1974,3:269-289.
    [90]Lumley J L. Computational modeling of turbulent flows [J]. Advances in Applied Mechanics,1978, 18:123-176.
    [91]Abbott M B, Basco D R. Computational fluid dynamics-An introduction for Engineers [M]. Harlow: Longman Scientific & Technical,1989.
    [92]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].北京:清华大学出版社,2008.
    [93]Spalart P R, Jou W H, Strelets M, et al.. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach [C]. In:Advances in DNS/LES, Greyden Press,1997,137-147.
    [94]Strelets M. Detached-Eddy Simulation of massively separated flows [J]. AIAA journal,2001,879.
    [95]Strelets M. Detached Eddy Simulation of massively separated flows [C]. In: 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV,2001.
    [96]Nozu T, Tamura T. DNS for aerodynamic characteristics of a 3D square cylinder in turbulent boundary layer[C]. In:5th Asia-Pacific Conference on Wind Engineering, Kyoto,2001,325--328.
    [97]Mannini C. Soda A, Schewe G. Unsteady RANS modelling of flow past a rectangular cylinder: Investigation of Reynolds number effects [J]. Computers & Fluids,2010,39(9):1609-1624.
    [98]Nishino T, Roberts G T, Zhang X. Unsteady RANS and detached-eddy simulations of flow around a circular cylinder in ground effect [J]. Journal of Fluids and Structures,2008,24(1):18-33.
    [99]Bouris G, Bergeles G.2D LES of vortex shedding from a square cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,80(1-2):31-46.
    [100]Tamura T, Ono Y. LES analysis on aeroelastic instability of prisms in turbulent flow [J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91,1827-1846.
    [101]Fr6hlich J, Rodi W. LES of the flow around a circular cylinder of finite height [J]. International Journal of Heat and Fluid Flow,2004,25(3):537-548.
    [102]Omori T, Jakirlic S, Tropea C et al.. Shearless and sheared flow past a circular cylinder: Comparative analysis by means of LES [J]. International Journal of Heat and Fluid Flow,2008,29(3):703-720.
    [103]万德成.用水深平均雷诺方程模拟有限长直立圆柱绕流[J].上海大学学报(自然科学版),1995,1(3):260-268.
    [104]程维贤,赖国璋.方柱和双方柱绕流的数值模拟[J].水动力学研究与进展,1990,5(4):76-80.
    [105]谢志刚,许春晓,崔桂香等.方柱绕流大涡模拟[J].计算物理,2007,24(2):171-180.
    [106]Shur M, Spalart P R, Strelets M, et al.. Detached-eddy simulation of an airfoil at high angle of attack [C]. In: 4th International Symposium on Engineering Turbulence Modelling and Experiments. Elesiver, Corsica,1999.
    [107]Travin A, Shur M, Strelets M, et al.. Detached-Eddy Simulation past a circular cylinder [J]. Flow, Turbulence and Combustion,1999,63:93-313.
    [108]Spalart P R, Squires K D. The status of Detached-eddy simulation for bluff bodies [M]. Direct and large eddy simulation V. New York:Springer,2004.
    [109]王刚,叶正寅.运用非定常DES方法数值模拟三角翼大迎角流动[J].西北工业大学学报,2008,26(4):413-418.
    [110]常书平,王永生,庞之洋.用基于SST模型的DES方法数值模拟圆柱绕流[J].船舶科学技术,2009,31(2):30-33.
    [111]Hardy J, De Pazzis O, Pomeau Y. Molecular dynamics of a classical lattice gas:transport properties and time correlation ructions [J]. Physics Review. A,1976,13:1949-1961.
    [112]吴锤结,周菊光.悬浮颗粒运动的格子Boltzmann数值模拟[J].力学学报,2004,36(2):151-162.
    [113]Wu C J, Guan H. Lattice Boltzmann dynamics and dynamical system sub-grid models [J]. Modern Physics Letter B,2009,23(3):349-352.
    [114]刘天成,葛耀军,曹丰产,刘高.基于Lattice Boltzmann方法的方柱绕流模拟[J].同济大学学报(自然科学版),2008,36(8):1028-1033.
    [115]饶勇,倪玉山,刘超峰.并列双方柱绕流的Lattice Boltzmann模拟分析[J].应用力学学报,2008,25:(2):192-197.
    [116]Staples C J, Jones I P. EP 28350 BloodSim D 3.1c:Analysis Software [R].2001.
    [117]Farhat C, Lesoinne M, Maman N. Mixed explicit/implicit time integration of coupled aeroelastic problems:three-field formulation, geometric conservation and distribution solution [J]. International Journal for Numerical Methods in Fluids,1995,21:807-835.
    [118]Nomura T, Hughes T J R. An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body [J]. Computer Methods in Applied Mechanics and Engineering,1992, 95:115-138.
    [119]Walther J H, Larsen A. Two dimensional discrete vortex method for application to bluff body aerodynamics [J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,67-68,183-193.
    [120]Larsen A, Walther J H. Discrete vortex simulation of flow around five generic bridge deck sections [J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,77-78:591-602.
    [121]Taylor I, Vezza M. Calculations of the flow field around a square section cylinder undergoing forced transverse oscillations using a discrete vortex method [J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,82,271-291.
    [122]Paidoussis M P. Fluid-Structure Interactions:Slender Structures and Axial Flow [M]. London: Academic Press, Vol.1,1998.
    [123]Tamura T. Reliability on CFD estimation for wind-structure interaction problems [J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,81,117-143.
    [124]Frandsen, J B. Numerical bridge deck studies using finite elements. Part I:flutter [J]. Journal of Fluids and Structures,2004,19,171-191.
    [125]Sarwar M W, Ishihara T, Shimada K, ct al.. Prediction of aerodynamic characteristics of a box girder bridge section using the LES turbulence model [J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(10-11):1895-1911.
    [126]曹丰产.桥梁气动弹性问题的数值计算[D].上海:同济大学,1999.
    [127]曹丰产,项海帆,陈艾荣.桥梁断面的气动导数和颤振临界风速的数值计算[J].空气动力学学报,2000,18(1):26-33.
    [128]周志勇.离散涡方法用于桥梁气动弹性问题的数值计算[D].上海:同济大学,2001.
    [129]周志勇,陈艾荣,项海帆.涡方法用于桥梁断面气动导数和颤振临界风速的数值计算[J].振动工程学报,2002,15:327-331.
    [130]杨伟.基于RANS的结构风荷载和响应的模拟研究[D].上海:同济大学,2004.
    [131]邓文.桥梁断面二维数值风洞的雷诺时均模拟方法[D].上海:同济大学,2006.
    [132]刘天成.桥梁结构气动弹性数值计算的Lattice Boltzmann方法[D].上海:同济大学,2007.
    [133]索奇峰.二维钝体绕流计算的离散涡奇点分布法[D].四川:西南交通大学,2002.
    [134]祝志文.桥梁风效应的数值方法和应用[D].长沙:中南大学,2002.
    [135]郭力.面向结构状态评估的大跨桥梁有限元模拟及其应用[D].南京:东南大学,2007.
    [136]瞿伟廉,刘琳娜.基于CFD的桥梁三分力系数识别的数值研究[J].武汉理工大学学报,2007,29(7):85-88.
    [137]刘钥,陈政清,张志田.箱梁断面静风力系数的CFD数值模拟[J].振动与冲击,2010,29(1):133-137.
    [138]Sun D K, Owen J S, Wright N G. Application of the k-ω turbulence model for a wind-induced vibration study of 2D bluff bodies [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009,97:77-87.
    [139]张文首,顾元宪,邓可顺等.国产微机软件系统DDJ-W的近期进展[J].计算力学学报,1995,12(3):311-315.
    [140]Donea J, Giuliani S, Halleux J P. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions [J]. Computer Methods in Applied Mechanics and Engineering,1982,33:689-723.
    [141]Hughes T J R, Lin W K, Zimmerman T. Lagrangian-Eulerian Finite Element formulation for incompressible viscous flow [J]. Computer Methods in Applied Mechanics and Engineering,1987, 29:329-349.
    [142]Lin W K, Chang H, Chen J S, et al. Arbitrary Lagrangian Eulerian Petrov-Galerkin Finite Elements for nonlinear continua [J]. Computer Methods in Applied Mechanics and Engineering,68:259-310.
    [143]岳宝增,彭武,王照林.ALE迎风有限元法研究进展[J],力学进展,2005,31(1):21-29.
    [144]Ushijima S. Arbitrary Lagrangian Eulerian numerical prediction for local scour caused by turbulent flows [J]. Journal of Computational Physics,1996,128:71-82.
    [145]Ushijima S. Three dimensional Arbitrary Lagrangian Eulerian numerical prediction for non linear free surface oscillation [J]. International Journal for Numerical Methods in Fluids,1998,26:605-623.
    [146]Rodi W. Comparison of LES and RANS calculations of the flow around bluff bodies [J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,69-71:55-75.
    [147]Rodi W, Ferziger J H, Breuer M, et al.. Status of large-eddy simulation:Results of a work-shop [J]. Journal of Fluids Engineering,1997,119:248-262.
    [148]Launder, B.E. and Spalding, D.B.,1974. The numerical computation of turbulent flows. Computer methods in applied mechanics and engineering,3,269-289.
    [149]Wilcox D C, Traci R M. A complete model of turbulence[J]. AIAA Journal,1976,351.
    [150]Wilcox D C. Reassessment of the scale-determining equation for advanced turbulence models [J]. AIAA Journal,1988,26(11),1299-1310.
    [151]ANSYS Inc. ANSYS FLUENT 11.0 documentation [R]. Pittsburgh:ANSYS Inc.,2009.
    [152]Ghosal S, Moin P. The basic equations for large eddy simulation of turbulent flows in complex geometry [J]. Journal of Computational Physics,1995,118:24-37.
    [153]Smagorinsky J S. General circulation experiments with the primitive equations [J]. Month Weather Review,1963,91(3),99-165.
    [154]ANSYS CFX 11.0 Documents [R]. USA:ANSYS Inc.,2007.
    [155]张尧学,史美林,张高.计算机操作系统教程[M].北京:清华大学出版社,2006.
    [156]Robbins A. UNIX技术手册第三版[M].张龙卿,欧洋,张令军等译.北京:中国电力出版社,2002.
    [157]陈莉君,康华Linux操作系统原理与应用[M].北京,清华大学出版社,2006.
    [158]Yang C T, Chen P I, Chen Y L. Performance evaluation of SLIM and DRBL diskless PC clusters on Fedora Core 3 [C]. Parallel and Distributed Computing, Applications and Technologies (PDCAT 2005). Taibei,2005,479-482.
    [159]陈国良.并行算法的设计与分析(修订版)[M].北京:高等教育出版社,2002.
    [160]邵子立,宋杰.基于消息传递的并行计算环境:MPI与PVM的比较[J].小型微型计算机系统,2000,21(11):1140-1142.
    [161]联想深腾1800技术文档[R].北京:联想集团有限公司,2005.
    [162]Le Maitre O P, Scanlan R H, Knio O M. Estimation of the flutter derivatives of an NACA airfoil by means of Navier-Stokes simulation [J]. Journal of Fluids and Structures,2003,17,1-28.
    [163]Hoaraul Y, Brazal M, Ventikos Y, et al.. Transition to Turbulence and Control in the Incompressible Flow around a NACA0012 Wing [C]. ETMM6, Sardinia,2005:23-25.
    [164]Sheldahl R E, Klimas P C. Aerodynamic characteristics of seven airfoil sections through 180 degrees angle of attack for use in Aerodynamic analysis of vertical axis wind turbines [R]. Sandia National Laboratories, Albuquerque,1981.
    [165]Bisplighoff R L, Ashley H. Principles of Aeroelasticity [M]. New York: Dover,1962.
    [166]Abbott I H, von Doenhoff A E. Theory of Wing Sections [M]. New York: Dover; 1959.
    [167]Iwamoto M, Fujino Y. Identification of flutter derivatives of bridge deck from free vibration data [J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,54-55:55-63.
    [168]Noda M., Utsunomiya H, Nagaoet F, et al.. Effects of oscillation amplitude on aerodynamic derivatives [J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91:101-111.
    [169]Larsen A, Walther J H. Aeroelastic analysis of bridge girder sections based on discrete vortex simulations [J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,67-68:253-265.
    [170]林家浩,张亚辉,孙东科等.受非均匀调制演变随机激励结构响应快速精确算法[J].计算力学学报,1997,14(1):2-8.
    [171]詹浩,钱炜祺.弹性机翼阵风响应数值计算方法[J].计算力学学报,2009,26(2):270-275.
    [172]Kim T U, Hwang I H. Reliability analysis of composite wing subjected to gust loads [J]. Composite Structures,2004,66(1-4):527-531.
    [173]Etkin B大气匕行动力学(Dynamics of Atmospheric Flight) [M]北京:科学出版社,1979.
    [174]Etkin B. Turbulent wind and its effect on flight [J]. Journal of Aircraft,1981,18(5):327-345.
    [175]Wagner H. Uber des Enstehung des dynamischen Auftriebes von Tragflugeln [M]. Zeitschrift furangewandte Mathematik und Mechanik 5,1925,17-35(in German).
    [176]陈佳彬,杨超,邹丛青.气动弹性设计基础(第2版)[M].北京:北京航空航天大学出版社,2010.
    [177]管德,俪正能.飞机结构强度[M].北京:北京航空航天大学出版社,2005.
    [178]脱朝智.机翼气动弹性湍流数值模拟和阵风响应功率谱法[D].大连:大连理工大学,2007.
    [179]复合材料结构随机振动的虚拟激励法及在航空航天领域的应用[D].大连:大连理工大学,2007.
    [180]俞玮.变化风场的建模与大展弦比无人机飞行仿真[D].兰州:西北工业大学,2004.
    [181]刘高,刘波,宋辉.西堠门大桥索塔风致结构内力响应研究[J].公路交通科技,2009,26(6):64-68.
    [182]Liu T T, Xu Y L, Zhang W S, el al.. Buffeting-induced stresses in a long suspension bridge: structural health monitoring oriented stress analysis [J]. Wind and Structres,2009,12(6):479-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700