用户名: 密码: 验证码:
超疏水铝合金表面的仿生构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超疏水表面因其独特的性能和潜在的应用前景引起了广泛的研究兴趣,但对金属超疏水表面的制备和性能研究才刚刚起步。本文通过对制备铝合金超疏水材料的常规化学处理液、电解液的科学配方和工艺参数进行了系统研究,并采用普通有机材料对铝合金表面进行修饰改性,探索一种用化学、电化学方法生成微纳米表面与高分子材料覆膜改性相结合的制备方法,构建了具有微米或微纳米结构的铝合金超疏水表面。多层次有序地展开了对超疏水铝合金表面综合性能的研究,旨在开发具有产业化应用前景的制备方法,并获得具有稳定微纳米结构和超疏水性能的铝合金新材料,为实现进一步产业化生产和推广提供理论支持,论文的主要研究内容和创新点如下:
     1.以铝镁合金和铝锰合金为基材,分别采用酸刻蚀法、原电池腐蚀法、硝酸盐法、磷酸-铬酸盐法、硫酸阳极氧化法制备了超疏水铝合金纹理粗糙表面,进行了表面微观结构和化学组分的分析。粗糙表面经硬脂酸(SA)乙醇溶液浸涂后,均实现了超疏水特性,接触角大于150。,滚动角小于10。。表面形成的不规则多孔结构与荷叶表面乳突结构的尺寸类似,孔深约5-25μm,孔径约5-20μm。以经酸刻蚀法、原电池腐蚀法、硫酸阳极氧化法和磷酸-铬酸盐法制备的表面较为光整。
     2.对铝合金超疏水表面的润湿特性和稳定性进行了研究,分析了纹理刻蚀表面的粗糙度对疏水性能的影响,研究发现表面粗糙度的增加可以增强表面的疏水性。分析了覆膜材料和工艺对表面润湿性的影响,亲水性的铝合金刻蚀后具有超亲水性,分别经浸覆聚丙烯、聚苯乙烯、马来酸酐接枝聚丙烯和硅烷-聚丙烯膜,均实现了超疏水性,改性聚丙烯还可增加表面的疏水性能。对超疏水表面的润湿特性和稳定性进行了分析,实验发现超疏水表面在pH为5~11的溶液和浓度小于5%的有机溶剂中能保持良好的疏液特性和稳定性,在相对湿度为30%~70%,温度变化范围为10℃~40℃的环境中,仍能保持长期的疏水稳定性,聚丙烯覆膜表面在100℃下可保持良好的疏水稳定性。相比硬脂酸、聚乙烯、高密度聚乙烯、聚苯乙烯覆膜表面,硬脂酸膜表面具有室温长效稳定性,聚丙烯膜表面具有更好的超疏水性和力学性能。
     3.探寻了不同的酸刻蚀剂组方的刻蚀效果及对表面疏水性能的影响,实验表明相同化学成分的物质因其表面结构不同,显示出不同的润湿特性。对不同的酸溶液浓度及浸泡时间对疏水性的影响进行了分析,得到了0.08mol/L草酸与1mol/L盐酸溶液混合刻蚀15h及1%硬脂酸乙醇溶液浸泡30min的最佳反应条件,并简略分析了这种微细结构的形成机理。通过盐酸,草酸混合刻蚀与低表面能物质硬脂酸修饰相结合的方法成功制备出了铝合金基体上的超疏水表面,并以此方法获得了适用于实际应用的短时间制备方法。
     4.研究了硫酸阳极氧化工艺和覆膜工艺对构建铝合金超疏水表面的影响,获得了最大接触角可达162.0。,最小滚动角为2.0。的铝合金超疏水表面。铝合金经过硫酸阳极氧化后生成了无规多孔的微纳米二级结构,经覆膜处理后表面呈微米球和微米孔复合结构。对比了聚丙烯、聚苯乙烯、马来酸酐接枝聚丙烯和硅烷-聚丙烯膜四种不同覆膜表面对润湿性的影响,硅烷-聚丙烯膜的疏水性能最佳,并且有更好的耐久性。以此方法对某企业现有阳极氧化工艺进行了改进,得到了最佳工艺参数,即:1.803mol/L的硫酸、0.068mol/L的重铬酸钾、0.079mol/L的草酸、2.57mol/L的氯化钠和1.37mol/L的甘油;以铝片为阳极,石墨为阴极;控制电流密度为1.2A/dm2,反应时间均为30min。
     5.通过原电池腐蚀法用廉价的氯化钠为电解质溶液成功构建了由铝表面不规则多孔结构构成的超疏水硬脂酸盐膜表面,接触角值达到154°。表面孔径约15-20μm,孔深约5-10μm,与荷叶表面微细结构尺寸类似。分析了氯化钠溶液中的C1-对表面形成多孔结构的原理以及其对构建铝合金超疏水表面的影响,研究发现微米级多孔结构的尺度大小是构建超疏水表面的关键因素之一,而纳米粒子的聚集有助于提高表面的疏水性。
     6.对铝合金超疏水表面的自清洁性、防冻抑霜性、抑菌性、耐蚀性进行了研究,研究结果表明超疏水铝合金表面具有良好的自清洁性能。在结冰温度下超疏水铝合金表面具有延迟冻结与抑霜功能,从润湿性理论和热力学理论分析了产生这一现象的原因。通过奎因法、贴膜法、振荡烧瓶法测试了超疏水铝合金表面的抑菌性能,研究表明超疏水铝合金样片对大肠杆菌、金黄色葡萄球菌的抑菌率随着接触角的增大而明显提高,当接触角达到164°时抑菌率分别可达到89.7%和91.2%。通过极化曲线的测定及不同pH值溶液下的浸泡实验,发现超疏水铝合金较普通铝合金具有更好的耐盐腐蚀性能,弱酸和弱碱环境中的耐腐蚀性较好,但强酸和强碱环境中的耐腐蚀性能不佳。
     7.对聚丙烯超疏水铝合金表面的结合力与耐久性改进及其机理进行了研究,研究表明硅烷化处理有助于提高铝合金与聚丙烯或马来酸酐接枝聚丙烯涂层的结合力,在铝合金表面形成了一层高分子层聚硅氧烷,并形成了化学键Si-O-Al。马来酸酐接枝聚丙烯提高了涂层的极性,在一定程度上降低了涂层表面的超疏水性能,但加涂一层聚丙烯,表面的超疏水性会得到改善。其疏水性与涂覆溶液浓度有关,添加纳米颗粒,不仅促进了涂层结构的疏水性并使结构更加稳定。
Superhydrophobic surfaces were attracted much attention because of their unique properties and potential applications, but the preparation and performance study of metal superhydrophobic surfaces has just begun. In this dissertation, five kinds of methods were used to fabricate aluminum superhydrophobic surfaces. The structure and properties of the surface were studied systematically. At the same time, the process parameters were also optimized by experiments. In order to obtain a superior superhydrophobic surface, some chemical and electrochemical methods were explored to form micro-nano structures of aluminum superhydrophobic surfaces, and then some polymer materials were coated on the aluminum surface. The performance of superhydrophobic aluminum surfaces was studied sequentially for industrial applications. The main work and innovation of the dissertation are listed as following:
     1. Al-Mg alloy and Al-Mn alloy substrates were etched by some methods such us acid etching method, galvanic corrosion method, nitrate method, phosphoric acid-dichromate method and sulfuric acid anodizing method to form rough texture of surface on aluminum alloy. And then the microstructure and chemical components of the surface were analyzed. When rough surfaces were immersed in stearic acid ethanol solution, a superhydrophobicity was obtained. As a result, the contact angles were larger than150°, and sliding angles were lower than10°. The size of irregular porous on surface was similar to the size of papilla on Lotus leaf surfaces. These holes were about between5to30μm in depth, and5to20μm in width. Surfaces were relative smooth and stable when it was prepared by acid etching, galvanic corrosion method, sulfuric acid anodizing method and phosphoric acid-dichromate method.
     2. The wettability and stability of aluminum alloy superhydrophobic surfaces were studied. On the basis of Wenzel and Cassie models, the relationship between the roughness of the etched surface and superhydrophobicity was also investigated. The results indicated that the roughness on surface greatly enhanced the hydrophobicity of aluminum alloy surfaces. To analyze the relationship between wettability of the surface and coating process, the aluminum alloys were etched before its wettability transformed from hydrophilicity to superhydrophilicity. When they were coated with organic materials such as polypropylene (PP), polystyrene (PS) or maleic anhydride grafted polypropylene (PP-g-MAH), these surfaces were obtained superhydrophobicity. Among these materials, modified PP enhanced the hydrophobicity mostly. The wetting investigation showed that the superhydrophobicity could maintain in a wide pH range, and keep stable when it were immersed in organic solvent (concentration:<5%), and viarous influence factors such us relative humidity (30-70%), temperature range (10-40℃) and environment. In particular, PP film's surface could maintain a good hydrophobicity stability at100℃. Compared with the surfaces such as stearic acid (SA), polyethylene (PE), high-density polyethylene (HDPE), and PS film, and the SA film had long-term stability at room temperature. Obviously, PP film's surface had better superhydrophobicity and mechanical properties than others had.
     3. The influence factors of the different acid etchant were studied in the preparation of superhydrophobic aluminum alloy surface, and the relationship between it and superhydrophobicity was also researched. The results showed that the different surface structures had the different wetting characteristics on the same chemical composition substances. Process were analyzed such as the concentration of acid solution and the immersion time, the best reaction conditions was expressed as follows:0.08mol/L oxalic acid and1mol/L hydrochloric acid solution at etching15hours and1%stearic acid ethanol solution at immersing30minutes. At the same time, the formation mechanism of this microstructure was analyzed.
     4. The anodizing process by using sulfuric acid method and film-covered was studied. The water contact angle and sliding angle of superhydrophobic aluminum alloy surface were162°and2°, respectively. The composite structure surface was formed by coating with organic materials on micro-nano alloy substrates which were prepared by anodic oxidation method. Micro spheres and micropores presented these composite surfaces. Among of PP, PS, PP-g-MAH and the silane-PP films, the hydrophobic properties of the PP films pretreated by silane angent was the best one with a superior durability. Finally, the optimal process parmeter is:1.803mol/L sulfuric acid,0.068mol/L potassium dichromate,0.079mol/L oxalic acid,0.257mol/L sodium chloride and1.37mol/L glycerin; aluminum plate was designed as a anode and graphite was a cathode; current density was controlled as1.2A/dm2, and reaction time was30min.
     5. Galvanic corrosion method was successfully used to prepare irregular porous structures on aluminum surfaces, sodium chloride solution was electrolyte solution and surfaces were coated stearic acid, the contact angle was154°. These holes were about between5to20μm in depth, and15to20μm in width, the size of the holes was similar to the size of the Lotus leaf surfaces'. The chloride ion played an important role in sodium chloride solution, the composition principle of surface porous structure. The relationship between the concentration of chloride ion in solution cell and superhydrophobicity were studied, the studies indicated that the size of the micron porous structure was a key factor which formed a superhydrophobic surface, and the accumulation of the nanoparticles could help to improve the hydrophobicity of the surfaces.
     6. The properties of aluminum alloy superhydrophobic surfaces were studied, such as self-cleaning, anti-freezing, bacteriostasis and anti-corrosion. The research results showed that the superhydrophobic aluminum surface had good self-cleaning properties, and it can anti-freezing and anti-frosting under the freezing point. This phenomenon was analyzed with wettability theory and thermodynamics theory. The bacteriostasis properties of superhydrophobic aluminum surface were tested by quine method, sticking membrane method and shake flask test. The studies showed that the bacteriostasis properties of superhydrophobic aluminum samples was enhanced with the increase of the contact angle, the bacteriostasis rate was89.7%and91.2%when the contact angle was164°. The results indicated that superhydrophobic aluminum alloys had better anti-corrosion to salt than that of ordinary aluminums by polarization curve measurement and corrosion weight loss tests of different PH solutions. The studies were also showed that anti-corrosion of superhydrophobic aluminum alloys is well in weak acid and weak alkali environments, while it deteriorated in strong acid and strong alkali environments.
     7. The binding force and the mechanism of durability of PP superhydrophobic aluminum alloy surface were studied. The studies showed that the binding force of aluminum alloy and PP (or PP-g-MAH coating) could be improved by silanization. A polysiloxane layer was formed in aluminum alloy surface with the Si-O-Al chemical bond. However, the superhydrophobic properties of the surface coating were decreased to some extent because the polarity of the coated film could be improved with PP-g-MAH. The superhydrophobic properties of the surface could be improved when PP was coated. The concentration of the PP solution has an important effect on the hydrophobicity. Furthermore, the addition of nanoparticles can not only improve the hydrophobicity of the coating structure, but also increase the stability of the structure.
引文
[1]Abbott N L, Folkers J P, Whitesides G M. Manipulation of the Wettability of Surfaces on the 0.1-to 1-Micrometer Scale Through Micromachining and Molecular Self-Assembly.Science,1992,257 (5075):1380-1382.
    [2]Herminghaus S. Roughness-induced non-wetting. EuroPHys Lett,2000,52 (2): 165-170.
    [3]Gau H, Herminghaus S, Lenz P, et alLipowsky R. Liquid MorpHologies on Structured Surfaces:From Microchannels to Microchips. Science,1999,283 (5398):46-49.
    [4]Wang R, Hashimoto K, Fujishima A, et al. Light-induced ampHipHilic surfaces. Nature,1997,388 (6641):431-432.
    [5]Blossey R. Self-cleaning surfaces-virtual realities. Nature Materials,2003,2 (5): 301-306.
    [6]Gao X F, Jiang L. Water-repellent legs of water striders. Nature,2004,432 (7013): 36-39.
    [7]Lafuma A, Quere D. SuperhydropHobic states. Nature Materials,2003,2 (22): 457-460.
    [8]Ichimura K, Oh S, Nakagawa M. Light-driven motion ofliquids on a pHotoresponsive surface. Science,2000,288 (5471):1624-1626.
    [9]Russell T P. Surface-responsive materials. Science,2002,297 (5583):964-967.
    [10]Crevoisier D, Fabre P, Corpart J, et al. Leibler L. Switchable Tackiness and Wettability of a Liquid Crystalline Polymer. Science,1999,285 (5431): 1246-1249.
    [11]Guo Z G, Liu W M. Progress in Biomimicing of Super-HydropHobic Surface Progress in Chemistry,2006,18 (06):721-726.
    [12]Zhang X, Shi F, Niu J, et al. SuperhydropHobic surfaces:from structural control to functional application. Chem.2008,18 (6):621-633.
    [13]Gao L C, McCarthy T J, Zhang X. Wetting and superhydropHobicity. Langmuir, 2009,25 (24):14100-14104.
    [14]Roach P, Shirtcliffe N J, Newton M I. Progess in superhydropHobic surface development. Soft Matter,2008,4 (2):224-240.
    [15]Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot,1997,79 (6):667-677.
    [16]Onda T, Shibuichi S, Satoh N, et al. Super-water-repellent fractal surfaces. Langmuir,1996,12 (9):2125-2127.
    [17]Liu M X, Wu Z P, Yang C D, et al. Studies ussell. Surface-Responsive Materials. Science,2002,297 (5583):964-967.
    [18]Nakajima A, Hashimoto K, Watanabe T. Recent studies on superhydropHobic films. Monatsh Chem,2001,132 (1):31-34.
    [19]Erbil H Y, Demirel A L, Avci Y, et al. Mert O. Transformation of a Simple Plastic into a SuperhydropHobic Surface. Science,2003,299 (5611):1377-1380.
    [20]Li H, Wang X, Song Y, et al. Discovery of Super-AmpHipHobic Properties of Aligned Carbon Nanotube Films. Angew Chem Int Ed,2001,40:1743-1746.
    [21]Sun T, Wang G, Liu H, et al. Control over the Wettability of an Aligned Carbon Nanotube Film. J Am Chem Soc,2003,125 (49):14996-14997.
    [22]Wu Y, Sugimura H, Inoue Y, et al. Takai O. Thin Films with Nanotextures for Transparent and Ultra Water-Repellent Coatings Produced from Trimethylmethoxysilane by Microwave Plasma CVD. Chem Vapor Deposition, 2002,8:47-50.
    [23]Shirtcliffe N J, McHale G, Newton M I, et al. Perry C C. Intrinsically SuperhydropHobic Organosilica Sol-Gel Foams. Langmuir,2003,19 (14): 5626-5631.
    [24]Guo C, Feng L, Zhai J, et al. Large-Area Fabrication of a Nanostructure-Induced HydropHobic Surface from a HydropHilic Polymer. ChemPHysChem,2004,5 (5):750-753.
    [25]Lee W, Jin M K, Yoo W C, et al. Lee J K. Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale TopograpHy and Tailored Surface Wettability. Langmuir,2004,20 (18):7665-7669.
    [26]Ma M L, Hill R M. SuperhydropHobic surfaces. Curr Opin Colloid Interface Sci, 2006,11(4):193-202.
    [27]Sun T L, Feng L, Gao X F, et al. Jiang L. Bioinspired surfaces with special wettability. Acc Chem Res,2005,38:644-652.
    [28]Chen W, Fadeev A Y, Hsieh M C, et al. Oner D, Youngblood J, McCarthy T J. UltrahydropHobic and UltralyopHobic Surfaces:Some Comments and Examples. Langmuir,1999,15 (10):3395-3399.
    [29]Callies M, Quere D. On water repellency. Soft Matter,2005,1 (1):55-61.
    [30]Quere D. Non-sticking drops. Rep Prog PHys,2005,68 (11):2495-2532.
    [31]Wenzel R N. Resistance of solid surfaces to wetting by water. Ind Eng Chem, 1936,28 (8):988-994.
    [32]Barthlott W, Neinhuis C. Purty of the sacred lotus, or escape from contamination in biological surfaces. Planta,1997,202 (1):1-8.
    [33]Han J T, Xu X R, Cho K W. Diverse access to artificial superhydropHobic surfaces using block copolymers. Langmuir,2005,21 (15):6662-6665.
    [34]Guo Z G, Fang J, Hao J C, et al. Y M Liang, W M Liu. A Novel Approach to Stable SuperhydropHobic Surfaces. ChemPHysChem,2006,7(8):1674-1677.
    [35]Lau K K, Bico J, Teo K B K, et al. M Chhowalla, Amaratung G A J, Milne W I, McKinley G H, Gleason K K. SuperhydropHobic Carbon Nanotube Forests. Nano Lett,2003,3 (12):1701-1705.
    [36]Yuan Z Q, Chen H, Zhang J D. Facile method to prepare lotus-leaf-like super-hydropHobic poly(vinyl chloride) film. Appl Surf Sci,2008,254 (6): 1593-1598.
    [37]Li G X, Liu Y, Wang B, et al. Song X M, Li E, Yan H. Preparation of transparent BN films with superhydropHobic surface. Appl Surf Sci,2008,254 (17): 5299-5303.
    [38]Wong H Y K, Wong M H, Wong Y W, et al. Wong K H. SuperhydropHobicity of polytetrafluoroethylene thin film fabricated by pulsed laser deposition. Appl Surf Sci,2007,253(22):8841-8845
    [39]Guo Z G, Zhou F, Liu W M. Preparation of Biomimetic SuperhydropHobic Silica Film by Sol-gel Technique. Acta Chim Sinica,2006,64 (8):761-766.
    [40]Shirtcliffe N J, McHale G, Newton M I, et al. Perry C C, P Roach. Porous materials show superhydropHobic to superhydropHilic switching. Chem Commun,2005,25:3135-3137.
    [41]Shang H M, Wang Y, Limmer S J, et al. Chou T P, Takahashi K, Cao G Z. Optically transparent superhydropHobic silica-based films. Thin Solid Films, 2005,472 (1-2):37-43.
    [42]Wu X, Zheng L, Wu D. Fabrication of SuperhydropHobic Surfaces from Microstructured ZnO-Based Surfaces via a Wet-Chemical Route. Langmuir, 2005,21 (7):2665-2667.
    [43]Huang Z B, Zhu Y, Zhang J H, Yin G F. Stable biomimetic superhydropHobicity and magnetization film with Cu-ferrite nanorods. J. PHys. Chem. C,2007,111 (18):6821-6825.
    [44]Li Y, Huang X J, Heo S H, et al. Li C C, Choi Y K, Cai W P, Cho S O. SuperhydropHobic Bionic Surfaces with Hierarchical MicrospHere/SWCNT Composite Arrays. Langmuir,2007,23 (4):2169-2174
    [45]Zhang L B, Chen H, Sun J Q, et al. Shen J C. Layer-by-layer deposition of poly(diallyldimethylammonium chloride) and sodium silicate multilayers on silica-spHere-coated substrate-facile method to prepare a SuperhydropHobic surface. Chem. Mater,2007,19 (4):948-953.
    [46]Furstner R, Barthlott W, Neinhuis C, et al. Walzel P. Wetting and Self-Cleaning Properties of Artificial SuperhydropHobic Surfaces. Langmuir,2005,21 (3): 956-961.
    [47]Callies M, Chen Y, Marty F, et al. Pepin A, Quere D. Microfabricated textured surfaces for super-hydropHobicity investigations. Microelectron. Eng,2005, 78-79:100-105.
    [48]Li Y, Jia W Z, Song Y Y, et al. Xia X H. SuperhydropHobicity of 3D Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic Template. Chem. Mater,2007,19 (23):5758-5764
    [49]Zhu Y, Zhang J C, Zheng Y M, et al. Huang Z B, Feng L, Jiang L. Stable, superhydropHobic, and conductive polyaniline/polystyrene films for corrosive environments. Adv. Funct. Mater,16 (4):568-574.
    [50]Jin M H, Feng X J, Feng L, et al. Sun T L, Zhai J, Li T J, Jiang L. SuperhydropHobic aligned polystyrene nanotube films with high adhesive force. Adv. Mater,2005,17:1977-1979.
    [51]Cheng Y T, Rodak D E, Angelopoulos A, et al. Gacek T. Microscopic observations of condensation of water on lotus leaves. Appl. PHys. Lett.,2005, 87:194112-194114.
    [52]Sun R D, Nakajima A, Fujishima A, et al. Watanabe T, Hashimoto K. PHotoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films. J. PHys. Chem. B,2001,105 (10):1984-1990.
    [53]Shirtcliffe N J, McHale G, Newton N I, et al. Perry C C, Pyatt F B. Plastron properties of a superhydropHobic surface. Appl. PHys. Lett,2006,89 (10): 104106-104108.
    [54]Shi F, Niu J, Liu Z, et al. Wang Z Q, Smet M, Dehaen W, Qiu Y, Zhang X. To Adjust Wetting Properties of Organic Surface by In Situ PHotoreaction of Aromatic Azide. Langmuir,2007,23 (3):1253-1257
    [55]Nishino T, Meguo M, Nakamae K, et al. The lowest surface free energy based On-CF3 alignment.Langmuir,1999,15 (13):4321-4323.
    [56]Solga A, Cerman Z, Striffler B F, et al. Spaeth M, Barthlott W. The dream of staying clean:Lotus and biomimetic surfaces. Bioinsp. Biomim,2007,2 (4): S126-S134.
    [57]Parker A R, Lawrence C R. Water capture by a desert beetle. Nature,2001,414: 33-34.
    [58]Herminghaus S. Roughness-induced non-wetting. EuropHys Lett,2000,52 (2): 165-170.
    [59]Ball P. Shark skin and other solutions. Nature,1999,400 (6744):507-509.
    [60]Neinhuis C, Barthlott W. Characterization and distribution of waterrepellent, self-cleaning plant surfaces. Annals of Botany,1997,79 (6):667-677.
    [61]Otten A, Herminghaus S. How plants keep dry:A PHysieist's point of view. Langmuir,2004,20 (6):2405-2408.
    [62]Higgins A M, Jones R A L. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. Nature,2000,404 (6777):476-478.
    [63]Shirteliffe N J, Pyatt F B, Newton M L, et al. A lichen Protected by a super-hydropHobic and breathable structure. Journal of Plant PHysiology,2006, 163 (11):1193-1197.
    [64]Gu Z Z, Wei H M, Zhang R Q, et al. Artificial silver ragwort surface. Appl PHys Lett,2005,86 (20):201915-201918.
    [65]Guo Z, Liu W. Biomimic from the superhydropHobic plant leaves in nature: binary structure and unitary structure. Plant Seience,2007,172 (6):1103-1112.
    [66]Feng L, Li S, Li Y, et al. Super-hydropHobic surfaces:from natural to artificial. Adv Mater,2002,14 (24):1857-1860.
    [67]Feng X, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater,2006,18:3063-3078
    [68]Burto Z, Bhushan B. Surface characterization and adhesion and friction properties of hydropHobic leaf surfaces. Ultrammicroscopy,2006,106 (8-9):709-719.
    [69]Young T. An essay on the cohesion of fluids. PHilos Trans R Soc. London,1805, 95:65-87
    [70]Adamson A W. PHysical chemistry of surfaces. New York:John wiley & Sons, 1990.
    [71]Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on-CF3 alignment. Langmuir,1999,15 (13):4321-4323.
    [72]Cassie A B D, Baxter S. Wettability of porous surfaces. Trans Faraday Soc,1944, 40:546-551.
    [73]Adamson A W. Gast A P PHysical Chemistry of Surfaces, New York:John Wiley &Sons,1997.358.
    [74]Nosonovsky M, Bhushan B. Patterned Non-Adhesive Surfaces: SuperhydropHobicity and Wetting Regime Transitions. Langmuir,2008,24: 1525-1533.
    [75]Nosonovsky M, Bhushan B. Multiscale Dissipative Mechanisms and Hierarchical Surfaces:Friction, SuperhydropHobicity, and Biomimetics. Springer-Verlag, Heidelberg, Germany,2008.
    [76]Noonovsky M, Bhushan B. SuperhydropHobic Surfaces and Emerging Applications:Non-Adhesion, Energy, Green Engineering. Curr. Opin. Colloid Interface Sci,2009,14:270-280.
    [77]Israelachvili J N, Gee M L. Contact angles on Chemically Heterogeneous Surfaces. Langmuir,1989,5:288-289.
    [78]Chen W, Fadeev A Y, Hsieh M C, et al. UltrahydropHobic and ultralyopHobic examples. Langmuir,1999,15 (10):3395-3399.
    [79]Brandon S, Marmur A. Simulation of contact angle hysteresis on chemically heterogeneous surfaces. J Colloid Interf Sci,1996,183 (2):351-355.
    [80]Extrand C W. A thermodynamic model for contact angle hysteresis. J Colloid Interf Sci,1998,207(1):11-19.
    [81]Wolansky G, Marmur A. The actual contact angle on a heterogeneous rough surface in three dimensions.1998,14 (18):5292-5297.
    [82]Derjaguin B V, Churaev N V. Structural Component of Disjoining Pressure. J. Colloid Interface Sci.,1974,49:249-255.
    [83]Boruvka L, Neumann A W. Generalization of the Classical Theory of Capillarity. J. Chem. PHys.,1977,66:5464-5476.
    [84]Gao L, McCarthy T J. How Wenzel and Cassie Were Wrong. Langmuir,2007,23: 3762-3765
    [85]Extrand C W. Contact Angle Hysteresis on Surfaces with Chemically Heterogeneous Islands. Langmuir,2003,19:3793-3796.
    [86]Nosonovsky M. On the Range of Applicability of the Wenzel and Cassie Equations, Langmuir,2007,23:9919-9920.
    [87]M Nosonovsky, B Bhushan. Roughness-induced superhydropHobicity:a way to design non-adhesive surfaces. J. PHys.:Condens. Matter,2008,20: 225001-225009
    [88]Jung Y C, Bhushan B. Dynamic Effects of Bouncing Water Droplets on SuperhydropHobic Surfaces. Langmuir,2008,24:6262-6269.
    [89]Bahadur V, Garimella S V. Electrowetting-Based Control of Static Droplet States on Rough Surfaces. Langmuir,2007,23:4918-4924.
    [90]Feng X J, Feng L, Jin M H, et al. Zhai J, Jiang L, Zhu D B. Reversible SuperhydropHobicity to Super-hydropHilicity Transition of Aligned ZnO Nanorod Films. J. Am. Chem. Soc.,2004,126:62-63.
    [91]Bormashenko E, Pogreb R, Whyman G, et al. Erlich M. Cassie-Wenzel Wetting Transition in Vibrated Drops Deposited on the Rough Surfaces:Is Dynamic Cassie-Wenzel Transition 2D or 1D Affair?. Langmuir,2007,23:6501-6503.
    [92]Lafuma A, Quere D. SuperhydropHobic states. Nature Materials,2003,2: 457-460.
    [93]钱柏太.金属基底上超疏水表面的制备研究:[博士学位论文].大连:大连理工大学,2005.
    [94]Lafuma A, QuereD. SuperhydropHobic states. Nature Mater,2003,2(7) 457-460.
    [95]Quire D. Rough ideas on wetting. PHysica A,2002,313 (1-2):32-46.
    [96]Okumura K, Chevy F, Richard D, et al. Water spring:a model for bouncing drops. EuropHys Lett,2003,62 (2):237-243
    [97]Quere D, Lafuma A, Bico J. Slippy and sticky microtextured solids. Nanotechnology,2003,14 (10):1109-1112.
    [98]Bico J, Thiele U, Quere D. Wetting of textured surface. Colloid Surf A: PHysicochem. Eng. Aspects,2002,206 (1-3):41-46.
    [99]Bico J, Tordeux C, Quere D. Rough wetting. EuropHys Lett,2001,55 (2): 214-220.
    [100]Richard D, Quere D. Viscous rolling on a titled non-wettable solid.EuropHys Lett,1999,48 (3):286-291.
    [101]Bico J, Marzolin C, Quere D. Pearl drops. EuropHys Lett,1999,47(2): 220-226.
    [102]Aussillous P, QuereD. Liquid marbles. Nature,2001,411 (6840):924-927.
    [103]Ishino C, Okumura K, Quere D. Wetting transitions on rough surfaces. EuropHys Lett,2004,68 (3):419-425.
    [104]Ichard R D, Clanet C, Quere D. Surface pHenomena:contact time of a bouncing drop. Nature,2002,417 (6891):811-812.
    [105]Bhushan B, Jung Y C. Wetting study of patterned surfaces for superhydropHobicity. Ultramicroscopy,2007,107:1033-1041.
    [106]Bhushan B, Jung Y C. Wetting, Adhesion and Friction of SuperhydropHobic and HydropHilic Leaves and Fabricated Micro/nanopatterned Surfaces. J PHys: Condens Matter,2008,20:225010-225033.
    [107]Jung Y C, Bhushan B. Wetting transition of water droplets on superhydropHobic patterned surfaces. Scripta Mater.,2007,57:1057-1060.
    [108]Jung Y C, Bhushan B. Wetting Behavior During Evaporation and Condensation of Water Microdroplets on SuperhydropHobic Patterned Surfaces. J Micros, 2008,229:127-140.
    [109]Bhushan B, Nosonovsky M, Y C Jung. Towards Optimization of Patterned SuperhydropHobic Surfaces. J Royal Soc Interface,2007,4:643-648.
    [110]Barbieri L, Wagner E, P Hoffmann. Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstavles. Langmuir,2007,23:1723-1734.
    [111]Furmidge C G L. Studies at pHase interfaces. I.The sliding of liquid drops on solid surfaces and a theory for spray retention. J Colloid Sci,1962,17 (4): 309-324.
    [112]Buzagh A, Wolfram E. Kolloid Z,1956,149:125.
    [113]Wolfram E, Faust R. Wetting, Spreading and Adhesion. Padday J F Ed London: Academic Press,1978. Chanter 10.
    [114]Murase H. Proceedings of the Fifth Interface Meeting of the Science Council of Japan. Tokyo,1998.
    [115]Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding angles of water droplets on superhydropHobic surfaces. Langmuir,2000, 16 (13):5754-5760.
    [116]Sun M H, Luo C X, L P Xu, et al. Artificial Lotus Leaf by Nanocasting. Langmuir,2005,21 (19):8978-8981.
    [117]Lee S M, Kwon T H. Effects of intrinsic hydropHobicity on wettability of polymer replicas of a superhydropHobic lotus leaf. J Micromech Microeng,2007, 17 (4):687-692.
    [118]Yuan Z Q, Chen H, Tang J X, et al. Gong H F, Liu Y J, Wang Z X, Shi P, Zhang J D, Chen X. J PHys D:Appl PHys,2007,40:3485-3489.
    [119]Yuan Z Q, Chen H, Zhang J. Facile method to prepare lotus-leaf-like super-hydropHobic poly (vinyl chloride) film. Applied Surface Science,2008, 254:1593-1598.
    [120]Fiirstner R, Barthlott W. Wetting and self-cleaning properties of artificial superhydropHobic surfaces. Langmuir,2005,21:956-961.
    [121]Ogawa T, Ding B, Sone Y J, et al. Shiratori S. Super-hydropHobic surfaces of layer-by-layer structured films coated electrospun. Nanotechnology,2007,18 (16):165607-165610.
    [122]Ma M L, Gupta M, Li Z, et al. Decorated Electrospun Fibers Exhibiting SuperhydropHobicity. Adv Mater,2007,19 (2):255-259.
    [123]Zhu L, Feng Y, Ye X, et al. Tuning wettability and getting superhydropHobic surface by controlling roughness with well-designed microstructures. Sensor Actuat A-PHys,2006,130-131:595-600.
    [124]Guo S S, Sun M H, Shi J, et al. Patterning of hydropHilic micro arrays with superhydropHobic surrounding zones. Microelectron Eng,2007,84 (5-8): 1673-1676.
    [125]Wang Z, Koratkar N, Ci L, et al. Combined micro-nanoscale surface roughness for enhanced hydropHobic stability in carbon nanotube arrays. Appl PHys Lett, 2007,90 (14):143117-143119.
    [126]Ruiz A, Valsesia A, Ceccone G, et al. Fabrication and characterization of plasma processed surfaces with tuned wettability. Langmuir,2007,23:12984-12989.
    [127]Tserepi A D, Vlachopoulou M E, Gogolides E. Nanotexttaing of poly (dimethylsiloxane) in plasmas for creating robust super-hydropHobie surfaces. Nanotechnology,2006,17 (15):3977-3983.
    [128]Safaee A, Sarkar D K, Farzaneh M. SuperhydropHobic properties of silver-coated films on copper surface by galvanic exchange reaction. Appl Surf Sci,2008,254 (8):2493-2498.
    [129]Chen C, Cai Q, Tsai C, et al. Dropwise condensation on superhydropHobic surfaces with two-tier roughness. Appl PHys Lett,2007,90 (17): 1731081-1731083.
    [130]Zhu Y, Zhang J, Zheng Y, et al. Stable, superhydropHobic, and conductive polyaniline/polystyrene films for corrosive environments. Adv Funct Mater, 2006,16 (4):568-574.
    [131]Mim L J, Yi G R, Moon J H, et al. SuperhydropHobic films of electrospun fibers with multiple-scale surface morpHology. Langmuir,2007,23 (15): 7981-7989.
    [132]Zhu Y, Feng L, Xia F, et al. Chemical dual-responsive wettability of superhydropHobic PANI-PAN coaxial nanofibers. Macromol Rapid Commun, 2007,28 (10):11351141.
    [133]Ogawa T, Ding B, Sone Y, et al. Super-hydropHobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes. Nanotechnology, 2007,18 (16):165607-165614.
    [134]Garcia N, Benito E, Guzman J, et al. Tiemblo P. Use of p-Toluenesulfonic Acid for the Controlled Grafting of Alkoxysilanes onto Silanol Containing Surfaces:□ Preparation of Tunable HydropHilic, HydropHobic, and Super-HydropHobic Silica. J Am Chem Soc,2007,129 (16):5052-5060.
    [135]Zhong W B, Wang Y X, Yan Y, et al. Fabrication of Shape-Controllable Polyaniline Micro/Nanostructures on Organic Polymer Surfaces:□ Obtaining SpHerical Particles, Wires, and Ribbons. J PHys Chem B,2007,111 (15): 3918-3926.
    [136]Cho W K, Park S, Jon S Y, et al. Choil I S. Water-repellent coating:formation of polymeric self-assembled monolayers on nanostructured surfaces. Nanotechnology,2007,18 (39):395602-395605.
    [137]Li Y, Xia W Z, Song Y Y, et al. Xia X H. SuperhydropHobicity of 3D Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic Template. Chem Mater,2007,19 (23):5758-5764.
    [138]Han W, Wu D, Ming W, et al. Direct catalytic route to superhydropHobic polyethylene films. Langmuir,2006,22 (19):7956-7959.
    [139]Wang M F, Raghunathan N, Ziaie B. A NonlithograpHic Top-Down Electrochemical Approach for Creating Hierarchical (Micro-Nano) SuperhydropHobic Silicon Surfaces. Langmuir,2007,23 (5):2300-2303.
    [140]Ming W, Wu D, Benthem R, et al. SuperhydropHobic films from raspberry-like particles. Nano Lett,2005,5 (11):2298-2301.
    [141]Tadanaga K, Kitamuro K, Matsuda A, et al. Formation of superhydropHobic alumina coating films with high transparency on polymer substrates by the sol-gel method. J Sol-Gel Sci Techn,2003,26 (1-3):705-708.
    [142]Wang J X, Wen Y Q, Hu J P, et al. Song Y L, Jiang L. Fine control of the wettability transition temperature of colloidal-crystal films:from superhydropHilic to superhydropHobic. Adv Funct Mater,2007,17:219-225.
    [143]Hoefnagels H F, Wu D, With G, et al. Ming W. Biomimetic SuperhydropHobic and Highly OleopHobic Cotton Textiles. Langmuir,2007,23 (26):13158-13163.
    [144]Autumn K, Hansen W. UltrahydropHobicity indicates a non-adhesive default state in gecko setae. J Comp PHysiol A,2006,192 (11):1205-1212.
    [145]Zhu Y, Hu D, Wang M X, et al. Conducting and SuperhydropHobic Rambutan-like Hollow SpHeres of Polyaniline. Adv Mater,2007,19 (16): 2092-2096.
    [146]Liu Y Y, Tang J, Wang R H, et al. Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydropHobic textiles. J. Mater. Chem.,2007,17 (11):1071-1078.
    [147]Ofir Y, Samanta B, Arumugam P, et al. Controlled Fluorination of FePt Nanoparticles:HydropHobic to SuperhydropHobic Surfaces. Adv Mater,2007, 19 (22):4075-4079.
    [148]Li Y, Lee E J, Cho S O. SuperhydropHobic Coatings on Curved Surfaces Featuring Remarkable Supporting Force. J PHys Chem C,2007,111 (40): 14813-14817.
    [149]Sun C, Ge L Q, Gu Z Z. Fabrication of super-hydropHobic film with dual-size roughness by silica spHere assembly. Thin Solid Films,2007,515 (11): 4686-4690.
    [150]Zhang L B, Chen H, Sun J Q, et al. Layer-by-layer deposition of poly (diallyldimethylammonium chloride) and sodium silicate multilayers on silica-spHere-coated substrate-facile method to prepare a superhydropHobic surface. Chem Mater,2007,19:948-953.
    [151]Wang S T, Song Y L, Jiang L. Microscale and nanoscale hierarchical structured mesh films with super-hydropHobic and superoleopHilic properties induced by long-chain fatty acids. Nanotechnology,2007,18 (1):015103-015108.
    [152]Guo Z, Zhou F, Hao J, et al. Stable biomimetic super-hydropHobic engineering materials. J Am Chem Soc,2005,127:15670-15671.
    [153]Cao M, Song X, Zhai J, et al. Fabrication of highly antireflective silicon surfaces with superhydropHobicity. J PHys Chem B,2006,110:13072-13075.
    [154]Qu M, Zhang B, Song S, et al. Fabrication of superhydropHobic surfaces on engineering materials by a solution-immersion process. Adv Funct Mater,2007, 17:593-596.
    [155]Chen X H, Kong L H, Dong D, et al. Synthesis and characterization of superhydropHobic functionalized Cu(OH)2 nanotube arrays on copper foil. Appl Sur Sci,2009,255:4015-4019.
    [156]Chen X H, Kong L H, Dong D, et al. Fabrication of functionalized copper compound hierarchical structure with bionic superhydropHobic properties. J PHys Chem C,2009,113 (14):5369-5401.
    [157]Wang S, Feng L, Jiang L. One-step solution-immersion process for the fabrication of stable bionic superhydropHobic surfaces. Adv Mater,2006,18: 767-770.
    [158]Qu M N, Zhang B W, Song S Y, et al. Fabrication of superhydropHobic surfaces on engineering materials by a solution-immersion process. Adv Funct Mater, 2007,17 (4):593-596.
    [159]Li M, Xu J H, Lu Q H. Creating superhydropHobic surfaces with flowery structures on nickel substrates through a wet-chemical-process. J Mater Chem, 2007,17:4772-4776.
    [160]Guo Z Q Liu W M, Su B L. A stable lotus-leaf-like water-repellent copper. Appl PHys Lett,2008,92 (6):063104-063106.
    [161]Guo Z. SuperhydropHobic surfaces:From natural to biomimetic to functional. Journal of Colloid and Interface Science,2011,353 (2):335-355
    [162]Pan Q M, Jin H Z, Wang H B. Fabrication of superhydropHobic surfaces on interconnected Cu(OH)2 nanowires via solution-immersion. Nanotechnology, 2007,18 (35):355605.
    [163]Liang J, Guo Z G, Fang J, et al. Fabrication of superhydropHobic surface on magnesium alloy. Chem Lett,2007,36 (3):416-417.
    [164]Wang M F, Raghunathan N, Ziaie B. A NonlithograpHic Top-down Electrochemical approach for creating hierarchical (micro-nano) superhydropHobic silicon surfaces. Langmuir,2007,23 (5):2300-2303.
    [165]Chen S, Hu C H, Chen L, et al. Facile fabrication of superhydropHobic surface from micro/nanostructure metal alkanethiolate based films. Chem Commun, 2007, (19):1919-1921.
    [166]Lee T C, Wang W J, Han T Y. Preparation of a SuperhydropHobic ZnO Film on ITO Glass via Electrodeposition Followed by Oxidation. Effect of the Deposition Time. J Adhesion Sci Technol,2009,23 (13-14):1799-1810.
    [167]Wang D A, Guo Z G, Chen Y M, et al. In Situ Hydrothermal Synthesis of Nanolamellate CaTiO3 with Controllable Structures and Wettability. Inorg Chem, 2007,46 (19):7707-7709.
    [168]Zou L, Xiang X, Fan J, et al. Single-Source Precursor to Complex Metal Oxide Monoliths with Tunable Microstructures and Properties:The Case of Mg-Containing Materials. Chem Mater,2007,19 (26):6518-6527.
    [169]Guo Z G, Liu W M. SuperhydropHobic spiral Co3O4 nanorod arrays. Appl PHys Lett,2007,90 (19):193108-193111.
    [170]Hou X, Zhou F, Yu B, et al. SuperhydropHobic zinc oxide surface by differential etching and hydropHobic modification. Materials Science and Engineering A,2007,452-453:732-736.
    [171]Wu X, Zheng L, Wu D. Fabrication of superhydropHobic surfaces from microstructured ZnO-based surfaces via a vvet-chemical route. Langmuir,2005, 21 (7):2665-2667.
    [172]Shi F, Chen X, Wang L,et al. Roselike microstructures formed by direct in situ hydrothermal synthesis:from superhydropHilicity to superhydropHobicity. Chem Mater,2005,17 (24):6177-6180.
    [173]Zhu Y, Li J M, Wan M X, et al. SuperhydropHobic 3D microstructures assembled from 1D nanofibers of polyaniline. Macromol Rapid Commun,2008, 29 (3):239-243.
    [174]Srinivasan S, Praveen V K, PHilip R, et al. Bioinspired superhydropHobic coatings of carbon nanotubes and linear π systems based on the "bottom-up" self-assembly approach. Angew Chem Int Ed,2008,47:5750-5754.
    [175]Larmour I A, Bell S E J, Saunders G C. Sheets of Large SuperhydropHobic Metal Particles Self Assembled on Water by the Cheerios Effect. Angew Chem Int Ed,2007,46 (27):5043-5045.
    [176]Wang S, Song Y, Jiang L. Microscale and nanoscale hierarchical structured mesh films with superhydropHobic and superoleopHilic properties induced by long-chain fatty acids. Nanotechnology,2007,18 (1):15103-15107.
    [176]Tadanaga T, Morinaga J, Matsuda A, et al. SuperhydropHobic-superhydropHilic micropatterning on flowerlike alumina coating film by the Sol-Gel method. Chem M 2000,12 (3):590-592.
    [178]Li Y, Duan G T, Cai W P. Controllable superhydropHobic and lipopHobic properties of ordered pore indium oxide array films. J. Colloid Interface Sci., 2007,314 (2):615-620.
    [179]Huang Z, Zhu Y, Zhang J, et al. Stable biomimetic superhydropHobicity and magnetization film with Cu-Ferrite nanorods. J PHys Chem C,2007,111 (18): 6821-6825.
    [180]Shirtcliffe N J, McHale G, Newton M I, et al. Wetting and wetting transitions on copper-based super-hydropHobic surfaces. Langmuir,2005,21 (3):937-943.
    [181]Krupenkin T N, Taylor J A, Schneider T M, et al. From Rolling Ball to Complete Wetting:□ The Dynamic Tuning of Liquids on Nanostructured Surfaces. Langmuir,2004,20 (10):3824-3827.
    [182]Dhindsa M S, Smith N R, Heikenfeld J, et al. Reversible Electrowetting of Vertically Aligned SuperhydropHobic Carbon Nanofibers. Langmuir,2006,22 (21):9030-9034.
    [183]王国刚,孙诚,陈良水,等.基于分级结构超疏水表面的防冰冻性能初探[A].中国科学技术协会2008防灾减灾论坛论文集[C].2008.
    [184]Cao L L, Jones A K, Sikka V K, et al. Anti-Icing Super-hydropHobic Coatings. Langmuir,2009,25 (21):12444-12448.
    [185]Kulinich S A, Farzaneh M. How Wetting Hysteresis Influences Ice Adhesion Strength on SuperhydropHobic Surfaces. Langmuir,2009,25 (16):8854-8856.
    [186]Kulinich S A, Farzaneh M. Ice adhesion on super-hydropHobic surfaces. Appl Surf Sci,2009,255 (18):8153-8157.
    [187]Wang J T, Liu Z L, Gou Y J. Deformation of Freezing Water Droplets on a Cold Copper Surface.Science China.2006,49 (5):590-600.
    [188]Wang C F, Chiou S F, Ko F H, et al. Fabrication of biomimetic super-ampHipHobic surfaces through plasma modification of benzoxazine films. Macromol Rapid Commun,2006,27 (5):333-337.
    [189]Tujeta A, Choi W, Mabry J M, et al. Robust omnipHobic surfaces. PNAS,2008, 105 (47):18200-18205.
    [190]Wu W C, Wang X L, Wang D A, et al. Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids. Chem Commun,2009,9:1043-1045.
    [191]Han D, Steckl A J. SuperhydropHobic and OleopHobic Fibers by Coaxial Electrospinning. Langmuir,2009,25 (16):9454-9462.
    [192]Tsuji I, Ohkubo Y, Ogawa K. Study on Super-HydropHobic and OleopHobic Surfaces Prepared by Chemical Adsorption Technique. Jpn J Appl PHys,2009, 48 (4):40205-40207.
    [193]Li H J, Wang X B, Song Y L, et al. Super-"AmpHipHobic"aligned carbon nanotube films. Angew Chem Int Ed,2001,40 (9):1743-1746.
    [194]Xie Q, Xu J, Feng L, et al. Facile creation of a super-ampHipHobic coating surface with bionic microstructure. Adv Mater,2004,16 (4):302-305.
    [195]Lim H S, Kwak D, Lee D Y, et al. UV-driven reversible switching of a roselike vanadium oxide film between superhydropHobicity and superhydropHilicity. J Am Chem Soc,2007,129 (14):4128-4129.
    [196]Zhang X, Jin M, Liu Z, et al. Preparation and pHotocatalytic wettability conversion of TiO2-based superhydropHobic surfaces. Langmuir,2006,22 (23): 9477.9479.
    [197]Luang H, Lau S P, Yang Y H, et al. Stable superhydropHobic surface via carbon coated with a ZnO thin film. J PHys Chem B,2005,109 (16):7746-7748.
    [198]Wang S, Xeng F, Jao Y, et al. Controlling wettability and pHotochromism in a dual-responsive tungsten oxide film. Angew Chem Int Ed,2006,45 (8):1264-1267.
    [199]Xu L, Chen W, Mulchandani A, et al. Reversible conversion of conducting polymer films from superhydropHobic to superhydropHilic. Angew Chem Int Ed, 2005,44 (37):6009-6012.
    [200]Sun T, Wang G, Feng L, et al. Reversible switching between superhydropHilicity and super-hydropHobicity. Angew Chem Int Ed,2004,43 (3):357-360.
    [201]Jiang Y, Wang Z, Yu X, et al. Self-assembled monolayers of dendron thiols for electsodeposition of gold nanostructures:toward fabrication of superhydropHobic/superbydropHilic surfaces and pH-responsive surfaces. Langmuir,2005,21 (5):1986-1990.
    [202]Xia F, Ge H, Hou Y, et al. Multiresponsive surfaces change between superhydropHilicity and superhydropHobicity. Adv. Mater.,2007,19 (18): 2520-2524.
    [203]Yabu H, Shimomura M. Single-step fabrication of transparent superhydropH-obic porous polymer films. Chem Mater,2005,17 (21):5231-5234.
    [204]Bravo J, Zhai L, Wu Z, et al. Transparent superhydropHobic films based on silica nanoparticles. Langmuir,2007,23 (13):7293-7298.
    [205]Vourdas N, Tserepi A, Boudouvis A G, et al. Plasma processing for polymeric microfluidics fabrication and surface modification:Effect of super-hydropHobic walls on electroosmotic flow. Microelectro Eng,2008,85 (5-6):1124-1127.
    [206]Artus G R J, Jung S, Zimmermann J, et al. Silicone nanofilaments and their application as superhydropHobic coatings. Adv Mater,2006,18 (20):2758-2762.
    [207]Sasaki M, Kieda N, Katayama K, et al. Processing and properties of transparent super-hydropHobic polymer film with low surface electric resistance. J Mater Sci,2004,39 (11):3717-3722.
    [208]Richard M, Zahira G, Masoud F. Highly resistant icepHobic coatings on aluminum alloys. Cold Regions Science and Technology,2011,65 (1):65-69.
    [209]Zhang Y F, Wu J, Yu X Q, et al. Low-cost one-step fabrication of superhydropHobic surface on Al alloy. Applied Surface Science,2011,257 (18): 7928-7931.
    [210]Peng W, Ri Q, Dun Z, et al. Aluminum Alloy Super-HydropHobic Surface Fabrication via Electrochemical Etching Method. Advanced Science Letters, 2011,4(3):1240-1243.
    [211]Xie D G, Li W. A novel simple approach to preparation of superhydropHobic surfaces of aluminumalloys. Applied Surface Science,2011,258 (3):1004-1007.
    [212]Cao Z, Cao X Q, Sun L X, et al. Fabrication of SuperhydropHobic Surfaces on Aluminum Alloy by Simple Chemical Etching Method. Advanced Materials Research,2011,239-242:2270-2273.
    [213]Zhang G J, Xu J. Fabrication of Super-HydropHobic Surface on Aluminum Alloy by a Simple Immersion Method. Advanced Materials Research,2011, 160-162:379-383.
    [214]Yin B, Fang L, Hu J, et al. A facile method for fabrication of superhydropHobic coating on aluminum alloy. Surfaces & Interfaces,2012,44 (4):439-444.
    [215]Xi D C, Cai G Q, Wang Z L, et al. Study of Super HydropHobic Films on Pre-Sensitized Plate Aluminium Substrate. Applied Mechanics and Materials, 2012,200:427-429.
    [216]Shi X M, Nguyen T A, Suo Z Y, et al. Electrochemical and mechanical properties of superhydropHobic aluminum substrates modified with nano-silica and fluorosilane. Surface and Coatings Technology,2012,206 (17):3700-3713.
    [217]Jafari R, Farzaneh M. Fabrication of superhydropHobic nanostructured surface on aluminum alloy. Appl PHys A,2011,102:195-199.
    [218]Liu L J, Xu F Y, Yu Z L, et al. Facile fabrication of non-sticking superhydropHobic boehmite film on Al foil. Applied Surface Science,2012258 (22):8928-8933.
    [219]Xu W J, Dou Q L, Wang X Y, et al. Fabrication of SuperhydropHobic Surface on Aluminum Substrate. AIP Conf Proc,2011,1315:1323-1328.
    [220]Song J L, Xu W J, Liu X, et al. Ultrafast fabrication of rough structures required by superhydropHobic surfaces on Al substrates using an immersion method. Chemical Engineering Journal,2012,211-212 (15):143-152.
    [221]Kang C, Lu H F, Yuan S J, et sl. SuperhydropHilicity/superhydropHobicity of nickel micro-arrays fabricated by electroless deposition on an etched porous aluminum template. Chemical Engineering Journal,2012,203:1-8.
    [222]Song J L, Xu W J, Liu X, et al. Electrochemical machining of super-hydropHobic Al surfaces and effect of processing parameters on wettability. Appl PHys A,2012,108:559-568.
    [223]Song J L, Xu W J, Lu Y. One-step electrochemical machining of superhydropHobic surfaces on aluminum substrates. Journal of Materials Sciencec,2012,47 (1):162-168.
    [224]Yin Bo, Fang L, Tang A Q, et al. Novel strategy in increasing stability and corrosion resistance for super-hydropHobic coating on aluminumalloy surfaces. Applied Surface Science,2011,258 (1):580-585.
    [225]Li J, Du F, Liu X L, et al. SuperhydropHobicity of Bionic Alumina Surfaces Fabricated by Hard Anodizing. Journal of Bionic Engineering,2011,8 (4): 369-374.
    [226]Yin B, Fang L, Tang A Q, et al. Bioinspired construction on aluminum alloy surfaces with stable super-hydropHobicity and their resulting wettability. Surfaces & Interfaces,2012,44 (5):584-589.
    [227]Chandra T, Ionescu M, Mantovani D. Preparation of Nanostructured SuperhydropHobic Copper and Aluminum Surfaces. Advanced Materials Research,2012,409:497-501.
    [228]Wang Y, Liu L D, et al. Preparation and corrosion resistance of superhydropHobic film on aluminum substrate. Electroplating & Finishing,2012, 31 (5):34-36.
    [229]Zhang Y F, Yu X Q, Wu H, et al. Facile fabrication of superhydropHobic nanostructures on aluminum foils with controlled-condensation and delayed-icing effects,2012,258 (20):8253-8257.
    [230]Jeong C Y, Choi C H. Single-Step Direct Fabrication of Pillar-on-Pore Hybrid Nanostructures in Anodizing Aluminum for Superior SuperhydropHobic Efficiency. ACS Appl. Mater. Interfaces,2012,4 (2):842-848.
    [231]Saleema N, Sarkar D K, Gallant D, et al. Chemical Nature of SuperhydropHobic Aluminum Alloy Surfaces Produced via a One-Step Process Using Fluoroalkyl-Silane in a Base Medium. ACS Appl. Mater & Interfaces, 2011,3 (12):4775-4781.
    [232]Qian B. Shen Z. Fabrication of superhydropHobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir,2005,21:9007-9009.
    [233]Li Y F, Ju Y Z, Yu Y F, et al. Fabrication of Super-HydropHobic Surfaces on Aluminum Alloy. Journal of Chemical Engineering of Chinese Universities, 2008,22:6-10.
    [234]Chen H, Zhang F, Fu S, et al. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydropHobic materials. Adv Mater,2006,18 (23):3089-3093.
    [235]Li S M, Zhou S Z, Liu J H. Fabrication and Anti-Corrosion Property of In situ Self-Assembled Super-HydropHobic Films on Aluminum Alloys. Acta PHysico-Chimica Sinica,2009,25 (12):2581-2589.
    [236]Hoehne S, Frenzel R, Blank C, et al. In Metalloberflachen verankerte Polymere zur Herstellung ultrahydropHober Metalloberflachen. Material-wissenschaft and Werkstofftechnik,2008,39 (12):924-927.
    [237]Chandra T, Ionescu M, Mantovani D. A Simple Method to Create SuperhydropHobic Aluminium Surfaces. Materials Science Forum,2012, 706-709:2874-2879.
    [238]Kim D H, Kim Y S, Kang J W, et al. Inclined-wall regular micro-pillar-arrayed surfaces covered entirely with an alumina nanowire forest and their improved superhydropHobicity. Journal of Micromechanics and Microengineering,2011, 21 (7):75024-75028.
    [239]李康宁,余新泉,周荃卉,等.阳极氧化法构建纳米结构制备铝超疏水表面[J].纳米科技,2008,5(5):43-47.
    [240]刘圣,耿兴国,周晓峰.铝及铝合金表面超疏水协和涂层的制备与性能研究[J].中国表面工程,2008,21(3):30-34.
    [241]Liu Y, Chen X, Xin J H. Super-hydropHobic surfaces from a simple coating method:a bionic nanoengineering approach. Nanotechnology,2006; 17 (13): 3259-3263.
    [242]Guo Z, Liang J, Fang J, et al. A novel approach to the robust Ti6A14V-based superhydropHobic surface with craterlike structure. Adv. Eng. Mater,2007,9 (4): 316-320.
    [243]Boinovich L, Emelyanenko A. Principles of design of superhydropHobic coatings by deposition from dispersions. Langmuir,2009,25:2907-2912.
    [244]Gao X, Jiang L. Water-repellent legs of water striders. BiopHysics: Water-repellent legs of water striders. Nature,2004,432 (7013):36-40.
    [245]Feng X, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater,2006,18:3063-3078.
    [246]Ma M, Hill R M. SuperhydropHobic surfaces Current Opinion in Colloid & Interface Science 2006; 11 (4):193-202.
    [247]Huang Z, Zhu Y, Zhang J, et al. Stable biomimetic superhydropHobicity and magnetization film with Cu-Ferrite nanorods. J PHys Chem C,2007,111 (18): 6821-6825.
    [248]Liu T, Yin Y, Chen S, et al. Super-hydropHobic surfaces improve corrosion resistance of copper in seawater. Electrochimica Acta,2007,52 (11):3709-3713.
    [249]Satyaprasad A, Jain V, Nema S K. Deposition of superhydropHobic nanostructured Teflon-like coating using expanding plasma arc. Appl Surf Sci, 2007,253 (12):5462-5466.
    [250]潘立宁,董慧茹,毕鹏禹.SDBS/HC1化学刻蚀法制备具有纳米-微米混合结构的铝基超疏水表面[J].高等学校化学学报,2009,30(7):1371-1374.
    [251]李艳峰,于志家,于跃飞等.铝合金基体上超疏水表面的制备[J].高校化学工程学报,2008,22(1):6-9.
    [252]赵坤,杨保平,张俊彦.铝合金基体超疏水表面的制备及其性能研究[J].材料科学与工程学报,2010,28(3):448-451.
    [253]Wu R M, Liang S Q, Pan A Q, et al. Fabrication of Nano-structured Super-hydropHobic Film on Aluminum by Controllable Immersing Method. Appl. Surfe. Sci.,2012,258:5933-5937.
    [254]Hihara L H, Latanision R M. Galvanic Corrosion of Aluminum-Matrix Composites. Corrosion,1992,48:546-552.
    [255]古海燕,陈刚,胡杰,等.仿生超疏水聚丙烯薄膜的制备与性能,高分子材料科学与工程,2011,27:154-156.
    [256]Yuan Z Q, Chen H, Tang J X, et al. A Stable Porous SuperhydropHobic High-Density Polyethylene Surface Prepared by Adding Ethanol in Humid AtmospHere. Journal of Applied Polymer Science,2009,113:1626-1632.
    [257]袁志庆,陈洪,汤建新.超疏水聚丙烯表面的制备及血液相容性研究.功能材料,2007,38:1359-1362
    [258]Yuan Z Q, Chen H, Tang J X, et al. A novel preparation of polystyrene film with a superhydropHobic surface using a template method. J PHys D:Appl PHys, 2007,40:3485-3489.
    [259]Wu R M, Liang S Q, Yuan Z Q, et al. Fabrication of super-hydropHobic film on aluminum by controllable immersing method to construct nanostructure. Applied Surface Science,2012,258:5933-5937.
    [260]陈明安,张新民,谢玄.PP/PP-g-MAH与铝板粘接界面相的XPS研究[J].物理化学学报,2004,20(8):882-886.
    [261]王雪明.硅烷偶联剂在金属预处理及有机涂层中的应用[D].山东:山东大学,2002.
    [262]钱柏太.金属集体上超疏水表面的制备研究:[博士学位研究].大连:大连理工大学,2005.
    [263]Qu M, Zhang B, Song S, et al. Fabrication of superhydropHobic surfaces on engineering materials by a solution-immersion process. Advanced Functional Materials,2007,17 (4):593-596.
    [264]Shibuichi S, Yamamoto T, Onda T, et al. Super water-and oil-repellent surfaces resulting from fractal structure. J Colloid Interf Sci,1998,208 (1):287-294.
    [265]Nakajima A, Hashimoto K, Watanabe T, et al. Transparent superhydropHobic thin films with self-cleaning properties. Langmuir,2000,16 (17):7044-7047.
    [266]Zimmermann J, Reifler F A, Schrade U, et al, Long term environmental durability of a superhydropHobic silicone nanofilament coating. Colloid Surf A: PHysicochem.Eng. Aspects,2007,302 (1-3):234-240.
    [267]Park H C, Kim Y P, Kim H Y, et al. Membrane formation by water vapor induced pHase inversion. J Membr Sci,1999,156 (2):169-178.
    [268]Wang D M, Wu T T, Lin F C, et al. A novel method for controlling the surface morpHology membranes. J Membr Sci,2000,169 (1):39-51.
    [269]Matsuyama H, Teramoto M, Nakatani R, et al. Membrane formation via pHase separation induced by penetration of nonsolvent form vapor pHase Ⅱ Membrane morpHology. J Appl Polym Sci,1999,74 (1):171-178.
    [270]宋明玉,李继军,吴耀德,等.制备金属铜基底超疏水性表面试验研究[J].长江大学学报,2009,6(1):29-34.
    [271]王燕华,钟莲,刘圆圆,等.镁基体超疏水表面制备及表征[J].腐蚀科学与防护技术,2010,22(4):329-333.
    [272]周艳艳.铝基超疏水表面抗结霜结冰特性研究[D].大连:大连理工大学,2010.
    [273]Zhu Z F. Technology of anodic oxidation and surface treatment on aluminum alloys, Chemical Industry Press, Beijing,2010,20:128-132.
    [274]Lavrenko V A, Talash V N, Podchernyaeva I A, et al. Corrosion behavior of zirconium diboride-based ceramics and electrospark coatings in 3% NaCl solution. Powder Metallurgy and Metal Ceramics,2007,46 (1-2):43-45.
    [275]Tyurin A G. Thermodynamics of chemical and electrochemical stability of aluminum, silicon, and tin bronzes. Protection of Metals,2008,44 (3):292-300.
    [276]Yang D. Texture etching of aluminum alloy, Chemical Industry Press, Beijing, 2006,20:34-40.
    [277]Snyder R G, Strauss H L, Elliger C A. Carbon-hydrogen stretching modes and the structure of n-alkyl chains.1. Long, disordered chains. J PHys Chem,1982, 86 (26):5145-5150.
    [278]Davis R J, Pemberton J E. Surface Raman Spectroscopy of the Interface of Tris-(8-hydroxyquinoline) Aluminum with Mg. J Am Soc,2009,131 (29): 10009-10014.
    [279]Pan A Q, Zhang J G, Cao G Z, et al. Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries. J Mater Chem, 2011,21 (27):10077-10084.
    [280]Tamor M A, Vassell W C. Raman "fingerprinting" of amorpHous carbon films. J Appl PHys,1994,76 (6):3823-3830.
    [281]Mazhar A A, Arab S T, Noor E A. The role of chloride ions and pH in the corrosion and pitting of Al-Si alloys. J Appl Electrochem,2001,31 (10): 1131-1140.
    [282]Jopp J, Grull H. Yerushalmi-Rozen R. Wetting behavior of water droplets on hydropHobic microtextures of comparable size. Langmuir,2004,20 (23): 10015-10019.
    [283]Johnson R E, Dettre R H. Contact angle hysteresis, In:Contact angle, wettability, and adhesion. Advances in Chemistry Series.1964,43:112-116.
    [284]Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding angles of water droplets on superhydropHobic surfaces. Langmuir,2000, 16:5754-5757.
    [285]Zhang F, Zhao L, Chen H, et al. Corrosion Resistance of SuperhydropHobic Layered Double Hydroxide Films on Aluminum. Angew. Chem. Int. Ed.,2008, 47 (13):2466-2469.
    [286]Liu T, Liu T, Chen S G, et al. Corrosion Resistance Improvement of Aluminum in Seawater by Super-hydropHobic Surfaces. Chinese Journal of Inorganic Chemistry,2008,24:1859-1862.
    [287]Wu R M, Liang S Q, Yuan Z Q, et al. Fabrication of Super-HydropHobic Surface on Aluminum Alloy by a Simple Immersion Method. Adv Mate Research,2010,160-162:379-383.
    [288]王庆军,陈庆民.超疏水表面的制备技术及其应用[J].高分子材料科学与工程,2005,21(2):6-9.
    [289]Furneaux R C, Rigby W R, Davidson A P. The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature,1989,337 (12): 147-149.
    [290]Asoh H, Nishio K, Nakao M, et al. Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al. J. Electrochem. Soc.,2001,148: 152-155.
    [291]周荃卉,余新泉,张友法,等.喷砂-阳极氧化-氟化处理构建铝合金超疏水表面[J].高等学校化学学报,2010,31(3):456-462.
    [292]吕芳.多孔型A1203薄膜阳极氧化的研究[D].哈尔滨:哈尔滨理工大学,2010.
    [293]胡志东.原电池法制备硅纳米线的研究[D].郑州大学,2012.
    [294]Shi F, Song Y Y, Niu J, et al. Facile Method to Fabricate a Large-Scale SuperhydropHobic Surface by Galvanic Cell Reaction. Chem. Mater.,2006,18: 1365-1368.
    [295]刘通.阳极氧化预处理铝基体新型涂层的制备及其海洋防腐防污功能的研究[D].北京:中国海洋大学,2011.
    [296]Wu X F, Shi G Q. Fabrication of a Lotus-like Micro-nanoscale Binary Structured Surface and Wettability Modulation from SuperhydropHilic to SuperhydropHobic. Nanotechnology,2005,16:2056-2060.
    [297]Wang Q, Zhang B, Qu M, et al. Fabrication of SuperhydropHobic Surfaces on Engineering Material Surfaces with Stearic Acid. Appl Surfe Sci,2008,254: 2009-2012.
    [298]Cao Z W, Xiao D B, Kang L T, et al. SuperhydropHobic Pure Silver Surface with Flower-like Structures by a Facile Galvanic Exchange Reaction with [Ag(NH3)2]OH. Chem Commun,2008,23:2692-2694.
    [299]TrainorT P, Brown Jr, Waychunas G E, et al. Structure of the Hydrated α-Al2O3 (0001) Surface. Science,2000,288:1029-1033.
    [300]Nylund A, Olefjord I. Surface Analysis of Oxidized Aluminium-1.Hydration of Al2O3 and Decomposition of Al(OH)3 in a Vacuum as Studied by ESCA. Surf Interface Anal,1994,21:283-289.
    [301]Zhu H Y, Riches J D, Barry J C. γ-Alumina Nanofibers Prepared from Aluminum Hydrate with Poly(ethylene oxide) Surfactant. Chem. Mater.,2002, 14:2086-2093.
    [302]Kim B, Kwon D R, Chakrabarti K, et al. Improvement in Al2O3 Dielectric Behavior by Using Ozone as an Oxidant for the Atomic Layer Deposition Technique. Appl. PHys.,2002,92:6739-6742.
    [303]Fukumoto S, Hookabe T, Tsubakino H. Hydrolysis Behavior of Aluminum Nitride in Various Solutions. J Mater Sci,2000.35:2743-2748.
    [304]Pardo A, Merino M C, Coy AE, et al. Corrosion Behaviour of Magnesium/Aluminium Alloys in 3.5 wt.% NaCl. Corrosion Science,2008,50: 823-834.
    [305]Nakajima A, Fujishima A, Hashimoto K, et al. Preparation of transparent SuperhydropHobic boehmite and silica films by sublimation of aluminum acetylacetonate. Adv Mater,1999,11 (16):1365-1368.
    [306]Nakajima A. Design of transparent hydropHobic coating. J Ceram Soc Jpn, 2004,112 (10):533-540.
    [307]Guo Z G, Zhou F, Hao J C, et al. "Stick and slide" ferrofluidic droplets on SuperhydropHobic surfaces. Appl PHys Lett,2006,89 (8):81911-81915.
    [308]Yanagimachi I, Nashida N, Iwasa K, et al. Enhancement of the sensitivity of electrochemical stripping analysis by evaporative concentration using a super-hydropHobic surface. Sci Technol Adv Mat,2005,6 (6):671-677.
    [309]Ma M, Hill R M. SuperhydropHobic surface. Curr Opin Colloid Interf Sci,2006, 11 (4):193-202.
    [310]Nakajima A, Hashimoto K, Watanabe T. Recent studies on super-hydropHobic film. Monatshefte fiir Chemie,2001,132 (1):31-41.
    [311]Coulson S R, Woodward I, Badyal J P S, et al. Super-repellent composite fluoropolymer surfaces. J PHys Chem B,2000,104 (37):8836-8840.
    [312]Kako T, Nakajima A, Irie H, et al. Adehesion and sliding of wet snow on asuperhydropHobic with hydropHilic channels. J Mater Sci,2004,39 (2): 547-555.
    [313]Akai K, Saito H, Yamauchi G. Proceedings of the composites:design for performance. Lake Louise, Canada,1997.220.
    [314]Yamauchi J, adsorption G, Saito H, et al. Proceedings of the surface characterization of interfacial reactions II. Keauhou-Kona, Hawaii, USA,1998. 121.
    [315]Zhang X, Jin M, Liu Z, et al. Preparation and pHotocatalytic wettability conversion of TiO2-based SuperhydropHobic surfaces. Langmuir,2006,22 (23): 9477.9479.
    [316]Cottin-Bizonne C, Barrat J L, Bocquet L, et al. Low-frietion flows of liquid at nanopattemed interfaces. Nature Mater,2003,2 (4):237-240.
    [317]Cheng Y T, Rodak D E. Is the lotus leaf SuperhydropHobic?. Appl PHys Lett, 2005,86 (14):144101-144105.
    [318]Narhe R D, Beysen D A. Nucleation and growth on a SuperhydropHobic grooved surface. PHys Rev Lett,2004,93 (7):76103-76107.
    [319]Kevin A W, McCarthy T J. Condensation on ultrahydropHobic surfaces and its effect on droplet mobility:ultrahydropHobic surfaces are not always water repellant. Langmuir,2006,22 (6):2433-2436.
    [320]Christian D, Jurgen R. Condensation and wetting transitions on microstructured ultrahydropHobic surfaces. Langmuir,2007,23 (7):3820-3824.
    [321]方月梅,汪瀚,钟松,刘红.含硅多核无机高分子絮凝剂的红外光谱研究[J].化学与生物工程,2007,24(7):73-75.
    [322]徐溢,唐守渊,陈立军.反射吸收红外光谱法研究铝表面硅烷试剂膜的结构与性能[J].分析化学,2002,30(4):464-466.
    [323]Paulsen F G, Shojaie S S, Krantz W B. Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes. Journal of Membrane Science, 1994,91 (3):265-282.
    [324]Broens L, Altena F, Smolders C, et al. Asymmetric membrane structures as a result of pHase separation pHenomena. Desalination,1980,32:33-45.
    [325]Smolders C, Reuvers A, Boom R, et al. Microstructures in pHase-inversion membranes Part 1. Formation of macrovoids. Journal of Membrane Science, 1992,73 (2-3):259-275.
    [326]Stropnik C, Kaiser V. Polymeric membranes preparation by wet pHase separation:mechanisms and elementary processes. Desalination,2002,145 (1-3): 1-10.
    [327]Fontananova E, Jansen J C, Cristiano A, et al. Effect of additives in the casting solution on the formation of PVDF membranes. Desalination,2006,192 (1): 190-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700