用户名: 密码: 验证码:
巴西苏木红素对脑缺血再灌注损伤的作用及血管活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑缺血疾病是一种发病率、死亡率高,愈后合并症和后遗症发生普遍的疾病。目前,针对于治疗脑缺血疾病药物的研究进展缓慢,可用于临床的安全、有效的药物种类十分有限。因此,寻找可以用于帮助疾病恢复的潜力化合物,具有很好科研意义和应用价值。巴西苏木红素是来自于中药材苏木的酚类单体化合物,本文对该化合物的活性研究主要围绕巴西苏木红素对脑缺血再灌注损伤的保护作用以及巴西苏木红素的血管调节活性两部分进行。
     论文从体外和体内两个水平对巴西苏木红素对抗缺血损伤的活性进行了评价。体外实验中建立了Neuro-2a细胞的缺糖缺氧模型,采用MTT存活率和乳酸脱氢酶逸漏率两个指标对巴西苏木红素的活性进行了评价。体内实验中选取了暂时性局灶型大鼠中动脉缺血模型,通过对脑组织梗塞体积、神经行为学分数、能荷水平以及MDA水平几个指标对巴西苏木红素的作用进行评价。在机制研究中,采用RT-PCR的方法分析了巴西苏木红素对中动脉暂时性缺血大鼠脑组织以及LPS诱导的BV2小胶质细胞中三种前炎性因子(TNF-α, IL-6, IL-1β)表达的影响,以及对LPS诱导的BV2小胶质细胞和RAW264.7细胞的一氧化氮以及一氧化氮合酶水平的影响。此外,本论文还利用大鼠胸主动脉血管环实验,研究了巴西苏木红素对血管张力的影响。
     研究结果表明:巴西苏木红素对缺糖缺氧损伤的Neuro-2细胞具有一定的保护作用,可以提高细胞的存活率并降低细胞乳酸脱氢酶的逸漏率;巴西苏木红素可以对抗大鼠脑缺血再灌注损伤,表现为脑缺血区域坏死体积的减少和神经行为学功能的恢复,同时巴西苏木红素也可以帮助脑组织能荷的恢复和MDA水平的降低;使用巴西苏木红素治疗后,脑缺血大鼠的脑组织中两种炎性因子即TNF-α和IL-6的mRNA水平出现了明显的降低,在LPS诱导的BV2细胞内,TNF-α和IL-6的mRNA水平也得到了相一致的结果,而且,巴西苏木红素对LPS诱导的一氧化氮合酶的表达和一氧化氮的释放也有抑制作用。以上结果提示对炎症反应的抑制作用可能是巴西苏木红素对抗脑缺血损伤的作用机制之一;在血管活性的研究中发现,巴西苏木红素具有收缩血管的活性,调节细胞外钙离子的内流、提高细胞对钙离子的敏感性、促使血管平滑肌肌球蛋白轻链磷酸化是其作用发挥的可能机制。
Cerebral ischemia is a disease with high morbidity, mortality and is associated with frequent complications and sequela for survivors. Currently, drugs which are effective and safe for the cerebral ischemia disease are far from requirement in clinic. However the drug research and development for cerebral ischemia is still in slow progress. Therefore, it is of great scientific and practical value to find the potential compounds which can help the recovery of the disease. Brazilein is a phenolic compound seperated from the traditional Chinese medicine Caesalpinia sappan L.. In this dissertation, the activities of the compound were investigated, mainly on the content of its protective effect against cerebral ischemia-reperfusion injury and its vasoactivity.
     The activities of brazilein were evaluated both in vitro and in vivo. In vitro, the oxygen-glucose deprived model of neuro-2a cells was established; MTT survival and the lactate dehydrogenase efflux level were determined. In vivo, the rat transient focal cerebral ischemia model was selected and infarction volume, neurological scores, the energy charge level and level of MDA were used for evaluation. For the mechanism studies, the mRNA levels of three pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) were determined by RT-PCR method both in rat middle artery occlusion model and in LPS-induced BV2 microglial cells model. The level of nitric oxide and nitric oxide synthase in LPS-induced BV2 microglial cells and RAW264.7 cells was also analyzed. In addition, the vaso-activities of brazilein were investigated using rat arterial rings in vitro.
     According to the results, we conclude that: brazilein can protect the neuron-2a cells against oxygen-glucose deprived injury for the higher MTT survival and the lower lactate dehydrogenase efflux level; brazilein can protect rats against cerebral ischemia reperfusion injury in terms of reduction of infarction volume, improvement in neurological scores, recovery of energy charge and decrease of MDA level; the mRNA level of two pro-inflammatory cytokinses, TNF-αand IL-6 showed significant reduction both in the ischemic brain of rats and in LPS-induced BV2 cells when treated with brazilein; both the release of nitric oxide and the expression of the inducible nitric oxide synthase was suppressed in LPS-induced BV2 microglial model by brazilein,these results indicated that the anti-inflammatory effect of brazilein should be one of the contributive mechanisms of its neuroprotective function; in the vaso-avtivity researches, we found brazilein can induce contraction of rat aorta and increasing extracellular Ca~(2+) influx, stimulating cellular Ca~(2+) sensitivity and promoting the phosphorylation of myosin light chain of smooth muscle cells were believed to be the possible mechanisms for the contractile processes.
引文
[1]脑血管病.家庭医学?新健康. 2006, 12:63-64.
    [2]李忠.缺血性脑血管疾病.北京:北京科学技术出版社. 2002.
    [3] Charles W, Cathie S, Peter S, et al. Stroke. Lancet. 2003, 362:1211-1224.
    [4]星野晴彦.脑卒中的分类.日本医学介绍. 2006, 27(10):433-435.
    [5] Sarti C, Rastenyte D, Tuomilehto J, et al. International trends in mortality from stroke, 1968 to 1994. Stroke. 2000, 31:1588-1601.
    [6] World Health Organization. Preventing chronic diseases: a vital investment. Geneva: WHO. 2000.
    [7] World Health Organization. The World Health Report 2003: shaping the future. Geneva: WHO. 2003.
    [8] Valery L F, Carlene M M L, Craig S A, et al. Stroke epidemiology: a review of populationbased studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003, 2:43-53.
    [9] Paul S L, Srikanth V K, Thrift A G. The large and growing burden of stroke. Curr Drug Targets. 2007, 8(7):786-793.
    [10] Caro J, Huybrechts K F, Duchesne I. Management patterns and costs of acute ischemic stroke: an international study. Stroke. 2000, 31:582-590.
    [11] Krista A P, Krista F H, Wendy S K, et al. Long term cost of illness in stroke. Pharmacoeconomics. 2002, 20(12):813-825.
    [12] Zhang L F,Yang J, Wu Y F,et al. Proportion of Different Subtypes of Stroke in China. Stroke. 2003, 34:2091-2096.
    [13] Ming L, Bo W, Wen Z W, Li M L, et al. Stroke in China: epidemiology, prevention, and management strategies. Lancet Neurol. 2007, 6: 456-64.
    [14]姚崇华,刘淑倩,左惠娟.我国心血管病的流行概况.心肺血管病杂志. 1999, 18(4):241-244.
    [15]王文志.脑血管病的流行病学及预防.中国乡村医药. 2001, 8(5):6-7.
    [16]吴丽华.脑卒中的流行病学调查.辽宁医学杂志. 2005, 19(4):212-213.
    [17]梁颖茵,陈松林,张成.脑血管病的遗传学.国外医学脑血管疾病分册. 2004, 12(6):466-469.
    [18]代亚美.缺血性脑血管病的遗传学研究.神经疾病与精神卫生. 2002, 2(6):371.
    [19]余宗颐.卒中的危险因素.世界急危重病医学杂志. 2005, 2(1):484.
    [20]王斌,廖中荣,刘尖尖.卒中危险因素及病因学的研究进展.中国脑血管病杂志. 2005,2(7):330-335.
    [21] Yannick B, Isabelle B, Olivier R, et al. Epidemiology of stroke in Europe: Geographic and environmental differences. J Neurol Sci. 2007, 262:85-88.
    [22] Jacques J, Toby B C, Allan J M. Diversity of risk factors for stroke: The putative roles and mechanisms of depression and air pollution. 2007,262:71-76.
    [23] Tharwani H M, Yerramsetty P, Mannelli P, et al. Recent advances in poststroke depression. 2007, 9(3):225-231.
    [24]杨伟民,张强,刘合玉.脑梗死后痴呆的影响因素分析.中国老年学杂志. 2005,25(8):894-895.
    [25]高尾昌.脑血管性痴呆.日本医学介绍. 2005, 26 (3):113-117.
    [26]钱采韵.脑血管疾病与认知功能障碍.中国神经精神疾病杂志.2005, 31(5):附4-附5.
    [27]任军,杨勇超.卒中后抑郁临床研究.临床心身疾病杂志. 2006, 12(5):348-349.
    [28]江秋虹,周兰兰.卒中后抑郁神经生物学机制研究进展.安徽医药. 2006, 10(8):561-564
    [29]曹曦,李维祖,明亮.卒中后抑郁的相关影响因素及机制研究进展.安徽医药. 2005,9(12): 940-942.
    [30] Mayer S A, Fink M E, Homma S, et al. Cardiac injury associated with neurogenic pulmonary edema following subarachnoid hemorrhage. Neurology. 1994, 44:815-820.
    [31] Friedman J A, PichelmannM A, PiepgrasD G, et al. Pulmonary complications of aneurysmal subarachnoid hemorrhage. Neurosurgy. 2003, 52:1025-1032.
    [32] Sunshine J L. CT, MR imaging, and MR angiography in the evaluation of patients with acute stroke. J Vasc Interv Radiol. 2004, 15:S47-S55.
    [33] Keir S L, Wardlaw J M, Bastin M E, et al. In which patients is diffusion weighted magnetic resonance imaging most useful in routine stroke care? J Neuroimaging. 2004, 14:118-122.
    [34] Hackney DB. Does MR imaging improve precision in stroke thrombolysis trials? Radiology. 2007, 244(2): 323-324.
    [35] Hjort N, Butcher K, Davis S M, et al. Magnetic resonance imaging criteria for thrombolysis in acute cerebral infarct. Stroke. 2005, 36:388-397.
    [36] Adams H P, Adams R J, Brott T, et al. Guidelines for the early management of patients with ischemic stroke: a scientific statement from the Stroke Council of the American Stroke Association. Stroke. 2003, 34:1056-1083.
    [37] HackW, Kaste M, Bogousslavsky J, et al. European Stroke Initiative Recommendations for Stroke Management update 2003. Cerebrovasc Dis. 2003, 16:311-337.
    [38] Tomandl B F, Klotz E, Handschu R, et al. Comprehensive imaging of ischemic stroke with multisection CT. Radiographics. 2003, 23:565-592.
    [39] Miles K A and Griffiths M R. Perfusion CT: a worthwhile enhancement? Br J Radiol. 2003,76:220-231.
    [40] Josephson S A, Bryant S O, Mak H K, et al. Evaluation of carotid stenosis using CT angiography in the initial evaluation of stroke and TIA. Neurology. 2004, 63:457-460.
    [41] Herholz K and HeissW D. Positron emission tomography in clinical neurology. Mol Imaging Biol. 2004, 6:239-269.
    [42] Tan JC, Dillon WP, Liu S, et al. Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. 2007, 61(6): 533-543.
    [43] Keith W M, Alastair B, Rudiger V K, et al. Imaging of acute stroke. Lancet Neurol. 2006, 5:755-768.
    [44] Markus H S. Cerebral perfusion and stroke. J Neurol Neurosurg Psychiatry. 2004, 75:353-361.
    [45] Ulrich D, Costantino I, Michael A M. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999, 22(9):391-397.
    [46] Mitsios N, Gaffney J, Kumar P, et al. Pathophysiology of acute ischaemic stroke: an analysis of common signalling mechanisms and identification of new molecular targets. Pathobiology. 2006, 73(4):159-175.
    [47] Saeed S A, Shad K F, Saleem T, et al. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res. 2007, 182:1-10.
    [48] Zauner A, Daugherty W P, Bullock M R, et al. Brain oxygenation and energy metabolism: part I-biological function and pathophysiology. Neurosurgery. 2002, 51(2):289-301.
    [49] Martin R L, Lloyd H G, Cowan A I. The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci. 1994, 17(6): 251-257.
    [50] Hara MR, Snyder SH . Cell signaling and neuronal death. Annu Rev Pharmacol Toxicol. 2007, 47:117-141.
    [51] David S W, Hua X S, and Ines BH. Oxidants, antioxidants and the ischemic brain. J Exp Biol. 2004, 207:3221-3231.
    [52] Russel L R. Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB. 1995, 9:526-533.
    [53] Judy H, Urvashi M U, Rafael J T. Inflammation in stroke and focal cerebral ischemia. Surg Neurol. 2006, 6:232-245.
    [54] Vishal C M, Vinod S R, Jeffrey R B. Inflammatory mechanisms in vascular disease. Drug Disvovery Today. 2005, 2(1):77-84.
    [55] Muir KW, Tyrrell P, Sattar N, et al. Inflammation and ischaemic stroke. Curr Opin Neurol 2007, 20(3): 334-342.
    [56] Connolly Jr E S, Winfree C J, Springer T A, et al. Cerebral protection in homozygous nullICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest. 1996, 97:209-216.
    [57] Loddick S A and Rothwell N J. Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat. J Cereb Blood Flow Metab. 1996,16:932-940.
    [58] Iadecola C, Salkowski C A, Zhang F Y, et al. The transcription factor interferon regulatory factor 1 is expressed after cerebral ischemia and contributes to ischemic brain injury. J Exp Med. 1999, 189:719-727.
    [59] Herrmann M, Pieter V, Michael T. et al. Release of glial tissue-specific proteins after acute stroke: A comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000, 31:2670-2677.
    [60] Bornstein N M, Aronovich B, Korczyn, AD et al. Antibodies to brain antigens following stroke. Neurology. 2001, 56: 529-530.
    [61] Qureshi A I, Suri M F, Ling G S, et al. Absence of early proinflammatory cytokine expression in experimental intracerebral hemorrhage. Neurosurgery. 2001, 49:416-420.
    [62] Dinarello C A. Interleukin-1 and interleukin-1 antagonism. Blood. 1991, 77:1627-1652.
    [63] Dripps D J, Brandhuber B J, Thompson R C, et al. Interleukin-1 (IL-1) receptor antagonist binds to the 80-kDa IL-1 receptor but does not initiate IL-1 signal transduction. J Biol Chem. 1991, 266:10331-10336.
    [64] Koga S, Ogawa S, Kuwabara K, et al. Synthesis and release of interleukin-1 by reoxygenated human mononuclear phagocytes. J Clin Invest Cell. 1992, 90:1007-1015.
    [65] Lao C J, Lin J G, Kuo J S. Microglia, apoptosis and interleukin-1 beta expression in the effect of sophora japonica on cerebral infarct induced by ischemia-reperfusion in rats. Am J Chin Med. 2005, 33(3): 425-438.
    [66] Dunn S L, Young E A, Hall M D, et al. Activation of astrocyte intracellular signaling pathways by interleukin-1 in rat premary striatal cultures. Glia. 2002, 37(1):31-42.
    [67] Wang X, Yue T L, Young P R, et al. Expression of interleukin-6, c-fos and zif268 mRNA in rat inchemic cortox. J Cereb Blood Flow Metab. 1995, 15(1):166-171.
    [68] Yamagami H, Kitagawa K, Nagai Y, et al. Higher levels of interleukin-6 are associated with lower echogenicity of carotid artery plaques. Stroke. 2004, 35(3):677-681.
    [69] Laskowitz DT, Grocott H, Hsia A, et al. Serum markers of cerebral ischemia. Stroke Cerebrovasc. Dis. 1998, 7(4): 234-241.
    [70] Relton J K, Martin R C, Russell D A. Peripheral administration of interleukin-1 receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat. Exp Neurol. 1996, 138:206-213.
    [71] Barone F C, Arvin B, White R F, et al. Tumor necrosis factor-alpha. A mediator of focalischemic brain injury. Stroke. 1997, 28(6):1233-1244.
    [72] Feuerstein G Z, Liu T, Barone F C. Cytokines, inflammation, and brain injury: role of tumor necrosis factor–alpha. Cerebrovasc. Brain Metab Rev. 1994, 6:341-360.
    [73] Nawroth P P and Stern D M. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med. 1986, 163:740-745.
    [74] Letterio J J. Murine models define the role of TGF-beta as a master regulator of immune cell function. Cytokine Growth Factor Rev. 2000, 11:81-87.
    [75] Saeed SA, Shad KF, Saleem T, et al. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res. 2007, 182(1): 1-10.
    [76] Costantino I. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 1997, 20(3):132-139.
    [77] Matthias E, Ulrich L, James K L, et al. Targeting eNOS for stroke protection. Trends Neurosci. 2004, 27(5):283-289.
    [78] Zhang J H. Cell death and neurovascular units in cerebral vascular diseases. Neurol Res. 2004, 26:825-826.
    [79] Zhang F, Yin W, Chen J. Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms. Neurol Res. 2004, 26:835-845.
    [80] Aejaz S S, Vohra H, Gup T, et al. Apoptosis: molecularma chinery. Curr Sci. 2001, 80:349 -360.
    [81] Taku S, Miki F, Pak H C, et al. Neuronal Death/Survival Signaling Pathways in Cerebral Ischemia. The Journal of the American Society for Experimental Neuro Therapeutics. 2004, 1:17-25.
    [82] Masataka T and Macdonald R L. Vascular aspects of neuroprotection. Neurol Res. 2004, 26: 862-869.
    [83] Ljiljana K B, Marc R M, Damir J. The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology. Neurol Res. 2004, 26:846-853.
    [84] Richard G A and Ashfaq S. Therapeutic strategies for the treatment of stroke. Drug Discovery Today. 2006, 11(15/16):681-693.
    [85] NINDS rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. New Engl J Med. 1995, 333:1581-1587.
    [86] Brinker G, et al. Brain hemorrhages after rt-PA treatment of embolic stroke in spontaneously hypertensive rats. Neuroreport. 1999, 10:1943-1946.
    [87] Wardlaw J M, et al. Systematic review of evidence on thrombolytic therapy for acute ischaemic stroke. Lancet. 1997, 350:607-614.
    [88] Blakeley JO, Llinas RH. Thrombolytic therapy for acute ischemic stroke. J Neurol Sci. 2007, 261(1-2): 55-62.
    [89] Hommel M, Boissel J P, Cornu C, et al. MAST Study Group. Termination of trial of streptokinase in severe acute ischaemic stroke. Lancet. 1995, 345:57.
    [90] The Multicenter Acute Stroke Trial–Europe Study Group. Thrombolytic therapy with streptokinase in acute ischemic stroke. N Eng J Med. 1996, 335:145-150.
    [91] Louis R C. Anticoagulants to Prevent Stroke Occurrence and Worsening. Israel Med Assoc J. 2006, 8:773-778.
    [92] Haroon A. Anticoagulation therapy for stroke. Drug Discovery Today. 2005, 10(16):1077.
    [93] Chakrabarti R, Das SK. Advances in antithrombotic agents. Cardiovasc Hematol Agents Med Chem. 2007, 5(3):175-185.
    [94] Tam S H,et al. Abciximab (ReoPro, chimeric 7E3 Fab) demonstrates equivalent affinity and functional blockade of glycoprotein IIb/IIIa and avb3 integrins. Circulation. 1998, 98:1085-1091.
    [95] Gelmers H J, Gorter K, De W C J, et al. A controlled trial of nimodipine in acute ischemic stroke. N Engl J Med. 1988, 318:203-207.
    [96] Horn J and Limburg M. Calcium Antagonists for Ischemic Stroke: A Systematic Review. Stroke. 2001, 32:570-576.
    [97] Kemp J A and McKernan R M. NMDA receptor pathways as drug targets. Nat Neurosci. 2002, 5 Suppl: 1039-1042.
    [98] Muir K W and Lees K R. Excitatory amino acid antagonists for acute stroke. Cochrane database of systematic reviews. 2003, 3:CD001244.
    [99] Aneesh B S. A review of oxygen therapy in ischemic stroke. Neurol Res. 2007, 29: 173-183.
    [100] Wang C X, Shuaib A. Neuroprotective effects of free radical scavengers in stroke. Drugs Aging. 2007, 24(7):537-546.
    [101] Den H H, Van W B, Van G M, et al. Therapeutic hypothermia in acute ischemic stroke. Expert Rev Neurother. 2007, 7(2):155-164.
    [102]唐瑜.葛根素对脑缺血再灌注损伤神经元L-型钙通道的影响.中西医结合心脑血管病杂志.2007, 5(1):38-40.
    [103]张俭华.葛根素治疗急性缺血性脑梗塞32例疗效观察.浙江中西医结合杂志.2002, 12(12):731-732.
    [104]孙建华.脑梗死患者脑循环动力学改变和川芎嗪对急性缺血性脑损伤的保护作用.中国中西医结合急救杂志. 2005, 12(4):248-250.
    [105]邱芬,刘勇,肖新莉,等.川芎嗪对成年大鼠局灶性脑缺血后海马齿状回细胞增殖的作用.南方医科大学学报. 2006, 26(10):1400-1403.
    [106]张敏华.红花注射液治疗急性缺血性脑梗死的临床观察.浙江中西医结合杂志.2001, 11(12):760-761.
    [107]王德伟,朱红,高尔.银杏黄酮德药理作用和临床应用.食品与药品.2006, 8(6):7-9
    [108]闻立斗,董传久,徐武平.银杏黄酮治疗脑梗死伴发中枢性眩晕30例.医药导报.2000,19(3):232.
    [109]葛勤,田华,刘同华,等.中药治疗缺血性脑血管疾病.医药导报.2004, 23(2):111-112.
    [110]樊淑彦,赵兴茹,张云,等.中药治疗缺血性脑卒中的研究进展.脑与神经疾病杂志.2006, 14(4):318-319
    [111]邬洪波,杨洪军,黄璐琦,等.清开灵、复方丹参、黄芪3种注射液抗大鼠脑缺血的比较研究. 2005, 12(5):27-28.
    [112] Eklof B and Siesjo B K. The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain. Acta Physiol Scand. 1972, 86:155-165.
    [113] Kameyama M, Suzuki J, Shirane R, et al. A new model of bilateral hemispheric ischemia in the rat three vessel occlusion model. Stroke. 1985, 16:489-493.
    [114] Pulsinelli W A and Brierley J B. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke. 1979, 10:267-272.
    [115] Koizumi J Y, Nakazawa T O, Ooneda G. Experimental studies of ischemic brain edema: a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke. 1986, 8:128.
    [116] Longa E Z, Weinstein P R, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989, 20:84-91.
    [117] Krueger K and Busch E. Protocol of a thromboembolic stroke model in the rat: review of the experimental procedure and comparison of models. Invest Radiol. 2002, 37:600-608.
    [118] Lauer KK, Shen H, Stein E A, et al. Focal cerebral is chemia in rats produced by intracarotid embolization with viscous silicone. Neurol Res. 2002, 24:181-190.
    [119] Guan X, Wu W, Kuang P, et al. Metabolic changes in rats with photochemically induced cerebral infarction and the effects of batroxobin: a study by magnetic resonance imaging, 1H- and 31P- magnetic resonance spectroscopy. J Tradit Chin Med. 2001, 21:59-67.
    [120] Michael S. Neuroprotective effects of drugs letters to the editor: reasons why stroke trials underestimate the neuroprotective effects of drugs. Stroke. 2002, 33:324-325.
    [121] Paul A L and Dalia M A. Development of the nitrone-based spin trap agent NXY-059 to treat acute ischemic stroke. CNS Drug Reviews. 2003, 9(3):253-262.
    [122] Sydserff S G, et al. Effect of NXY-059 on infarct volume after transient or permanent middle cerebral artery occlusion in the rat; studies on dose, plasma concentration andtherapeutic time window. Br J Pharmacol. 2003, 135:103-112.
    [123] Kennedy R L, Justin A Z, Warren W W, et al. NXY-059 for acute ischemic stroke. N Engl J Med. 2006, 354:588-600.
    [124] Jiang Z G, Michael S L, Hossein A G. Neuroprotective Activity of 3-Aminopyridine-2-Carboxaldehyde Thiosemicarbazone (PAN-811), a Cancer Therapeutic Agent. CNS Drug Rev. 2006, 12(1):77-90.
    [125] Takayuki K, Josef A, Ping Z, et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med. 2006, 12(2):225-229.
    [126] Berends A C, Luiten P G M, Nyakas C. A Review of the Neuroprotective Properties of the 5-HT1A Receptor Agonist Repinotan HCl (BAY x 3702) in Ischemic Stroke. CNS Drug Rev. 2005, 11(4):379-402.
    [127] Aarts M, Liu Y, Liu L, Besshoh S, et al. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science. 2002, 298:846-850.
    [128] Schwarze S R and Dowdy S F. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci. 2000, 21:45-48.
    [129] Tang W, Sun X, Fang J S, et al. Flavonoids from Radix Scutellariae as potential stroke therapeutic agents by targeting the second postsynaptic density 95 (PSD-95)/disc large/zonula occludens-1 (PDZ) domain of PSD-95. Phytomedicine. 2004, 11:277-284.
    [130] Wen W, Wang W, Zhang M. Targeting PDZ domain proteins for treating NMDA receptor-mediated excitotoxicity. Curr Top Med Chem. 2006, 6:711-721.
    [131] Kuroda S, Nakai A, Kristian T, et al. The calmodulin antagonist trifluoperazine in transient focal brain ischemia in rats. Anti-ischemic effect and therapeutic window. Stroke. 1997,28: 2539–2544.
    [132] Takagi K, Sato T, Shirasaki Y, et al. Post-ischemic administration of DY-9760e, a novel calmodulin antagonist, reduced infarct volume in the permanent focal ischemia model of spontaneously hypertensive rat. Neurol Res. 2001, 23:662-668.
    [133] Churn S B, Taf W C, Billingsley, M S, et al. Temperature modulation of ischemic neuronal death and inhibition of calcium/calmodulin-dependent protein kinase II in gerbils. Stroke. 1990, 21:1715-1721.
    [134] Shackelford D A, Yeh R Y, Hsu M, et al. Effect of cerebral ischemia on calcium/calmodulin-dependent protein kinase II activity and phosphorylation. J Cereb Blood Flow Metab. 1995, 15:450-461.
    [135] Shieh P B, Hu S C, Bobb K, et al. Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron. 1998, 20:727-740.
    [136] Sun Y, Jin K, Xie L, et al. VEGF induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003, 111(12):1843-1851.
    [137] Bellomo M, Adamo E B, Deodato B, et al. Enhancement of expression of vascular endothelial growth factor after adeno-associated virus gene transfer is associated with improvement of brain ischemia injury in the gerbil. Pharmacol Res. 2003, 48(3):309-317.
    [138] Zhang Z G, Zhang L, Tsang W, et al. Correlation of VEGF and angiopoietin expression with disruption of blood brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab. 2002, 22 (4):379-392.
    [139] Lin T N, Wang C K, Cheung W M, et al. Induction of angiopoietin and tie receptor mRNA expression after cerebral ischemia reperfusion. J Cereb Blood Flow Metab. 2000, 20 (2):387-395.
    [140]周永红.复健片对MACO大鼠脑内bFGF、VEGF、PDGF表达的影响.中医药学刊. 2003, 21(1):70-72.
    [141] Horowitz A, Menice C B, Laporte R, et al. Mechanisms of smooth muscle contraction. Physiol Rev. 1996, 76:967-1003.
    [142] Joseph F C and Gail P G. Vascular smooth muscle function: the physiology and pathology of vasoconstriction. Pathophysiol. 2005, 12:35-45.
    [143] Somlyo A P and Somlyo A V. Signal transduction and regulation in smooth muscle. Nature 1994, 372:231-236.
    [144] Orallo F. Regulation of cytosolic calcium levels in vascular smooth muscle. Pharmacol Ther. 1996, 69:153-171.
    [145] Webb R C. Smooth muscle contraction and relaxation. Advan Physiol Educ. 2003,27:201-206.
    [146] Hughes A D. Calcium channels in vascular smooth muscle cells. J Vasc Res. 1995, 32:353-370.
    [147] Leung F P, Yung L M, Yao X, et al. Store-operated calcium entry in vascular smooth muscle. Br J Pharmacol. 2007, 17:1-12.
    [148] Iino M. Calcium release mechanisms in smooth muscle. Jpn J Pharmacol. 1990, 54:345-354.
    [149] Chadwick C C, Saito A, Fleischer S. Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proc Natl Acad Sci. 1990, 87:2132-2136.
    [150] Min W, Zheng C, Yan X, et al. Localized Ca2+ uncaging induces Ca2+ release through IP3R in smooth muscle. Acta Pharmacologica Sinica. 2006, 27 (7): 939–944
    [151] Gonzalez J M, Jost L J, Rouse D, et al. Plasma membrane and sarcoplasmic reticulum Ca-ATPase and smooth muscle. Miner Electrolyte Metab. 1996, 22:345-348.
    [152] Sumida M, Okuda H, Hamada M. Ca2+,Mg2+-ATPase of microsomal membranes from bovine aortic smooth muscle. Identification and characterization of an acid-stable phosphorylated intermediate of the Ca2+, Mg2+-ATPase. J Biochem. 1984, 96:1365-1374.
    [153] Grover A K and Khan I. Calcium pump isoforms: diversity, selectivity and plasticity. Review article. Cell Calcium 1992, 13:9-17.
    [154] Van B C and Chen Q. Laher I. Superficial buffer barrier function of smooth muscle sarcoplasmic reticulum. Trends Pharmacol Sci. 1995, 16:98-105.
    [155] Laporte R and Laher I. Sarcoplasmic reticulum-sarcolemma interactions and vascular smooth muscle tone. J Vasc Res. 1997, 34: 325-343.
    [156] Pozzan T, Rizzuto R, Volpe P, et al. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev. 1994, 74:595-636.
    [157] Somlyo A P and Somlyo A V. Ca2+ sensitivity of smooth muscle and non-muscle myosin II: Modulated by Gp roteins, kinases, and myosin phosphatase. Physiol Rev. 2003, 83: 1325-1358.
    [158] Gabriele P. Regulation of myosin phosphorylation in smooth muscle. J Appl Physiol. 2001, 91:497-503.
    [159] Fukata Y, Amano M, Kaibuchi K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci. 2001, 22:32-39.
    [160] Koyama M, Ito M, Feng J, et al. Phosphorylation of CPI217, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett. 2000, 475:197-200.
    [161] Walsh M P, Horowitz A, Clement C, et al. Protein kinase C mediation of Ca2+-independent contractions of vascular smooth muscle. Biochem Cell Biol. 1996, 74:485-502.
    [162] Morgan K G and Leinweber B D. PKC-dependent signaling mechanisms in differentiated smooth muscle. Acta Physiol Scand. 1998, 164:495-505.
    [163] Parmentier J H, Muthalif M M, Saeed A E, et al. Phospholipase D activation by norepinephrine is mediated by 12(s)-,15(s)-, and 20-hydroxyeicosatetraenoic acids generated by stimulation of cytosolic phospholipase A2. J Biol Chem. 2001, 276:15704-15711.
    [164] Nakamura K, Koga Y, Sakai H, et al. cGMP-dependent relaxation of smooth muscle is coupled with the change in the phsophorylation of myosin phosphatase. Circ Res. 2007, 101:712-722.
    [165] Brayden J E. Potassium channels in vascular smooth muscle. Clin Exp Pharmacol Physiol 1996, 23:1069-1076.
    [166] Feletou M and Vanhoutte P M. Endothelium-dependent hyperpolarization of vascular smooth muscle cells. Acta Pharmacol Sin. 2000, 21:1-18.
    [167]永井正博,南云清二,江口郁代,等.苏木中巴西苏木素的生物合成前体苏木查耳酮分离.药学杂志(日). 1984, 104 (9):935-938.
    [168] Masahiro N and Seiji N. Protosappanins E - 1 and E - 2, Stereoisomeric Dibenzoxocinscombined with Brazilin from Sappan Lignum. Chem Pharm Bull. 1990, 38 (6):1490.
    [169] Michio N, Hiroyuki N, Hiroyuki Y, et al. Homoisoflavonoids and related compounds. Isolation and absolute configurations of 3, 4 - Dihydioxyted homoisoflavans and Brazilins from Ceasalpinia Sappan L. Chem Pharm Bull. 1987, 37(7):2761-2733.
    [170] Masahiro N and Seiji N. Protosappanins B, A new dibenzoxocin derivative from Sappan Lignum. Heterocycles.1986, 24(3):601-605.
    [171] Tamotsu S, Shigemi S, Hiroyuki N, et al. 3 -benzylchroman derivatives related to Brazilin from Sappan Lignum.Chem Pharm Bull. 1986, 34(6):2506-2511.
    [172]任连生.苏木水提物抗癌机制的研究.山西医药杂志,2002, 29(13):201-203.
    [173]王三龙,蔡兵,崔承彬,等.中药苏木提取物诱导K562细胞凋亡的研究. Chinese Journal of Cancer. 2001, 20 (12):1376.
    [174]乔丽娟,徐建国,郭文杰.苏木抗癌有效成分抗移植性肝癌H22的实验研究.海南医学. 2001, 12(7):51.
    [175]杨铎,戴关海,沈翔,等.苏木对体外人淋巴细胞增殖的抑制研究.上海免疫学杂志. 1997, 17(4):212.
    [176]侯静波,于波,吕航,等.苏木水提物抗心脏移植急性排斥反应的实验研究.中国急救医学. 2002, 28(3):125.
    [177]周亚滨,李天发,关震中,等.苏木对大鼠同种异位心脏移植急性排斥反应的影响.中医药学报, 2000, 28(1):67.
    [178] Hu C M, Kang J J, Lee C C, et al. Induction of vasorelaxation through activation of nitric oxide synthase in endothelial cells by brazilin. Eur J Pharmacol. 2003,468:37-45.
    [179] Khil L Y, Cheon A J, Chang T S, et al. Effects of calcium on brazilin-induced glucose transport in isolated rat epididymal adipocytes. Biochem Pharmacol 1997, 54:97-101.
    [180] Hwang G S, Kim J Y. Chang T S, et al. Effects of brazilin on the phospholipase A2 activity and changes of intracellular free calcium concentration in rat platelets. Arch Pharm Res. 1998, 21:774-778.
    [181] Bae I K, Min H Y, Han A R, et al. Suppression of lipopolysaccharide- induced expression of inducible nitric oxide synthase by brazilin in RAW 264.7 macrophage cells. Eur J Pharmacol. 2005, 513:237-242.
    [182] Ye M, Xie W D, Lei F, et al. Brazilein, an important immunosuppressive component from Caesalpinia sappan L Int Immunopharmacol. 2006, 6:426-432.
    [183] Zhao Y N, Pan Y, Tao J L, et al. Study on cardioactive effects of Brazilein. Pharmacology. 2006, 76:76-83.
    [184] Longa EZ, Weinstein PR, Cummins R, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke.1989, 20:84-91.
    [185] Belayev L, Alonso OF, Ginsberg MD, et al. Middle cerebral artery occlusion in the rat by intraluminal suture: neurological and pathological evaluation of an improved model. Stroke. 1996, 27:1616-1622.
    [186] Barnes P J and Karin M. Nuclear factor-kappa B: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997, 336:1066–1071.
    [187] Li Q and Verma I M. NF-kappa B regulation in the immune system. Nat Rev Immunol. 2002, 2:725-734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700