用户名: 密码: 验证码:
紫花苜蓿种带细菌及其致病性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫花苜蓿(Medicago sativa)是我国最主要的豆科栽培牧草,健康的种子是优质高产的保证。本研究以美国、加拿大和中国甘肃等收获的53个紫花苜蓿种样为材料,研究了其种带细菌的多样性及其作用;明确紫花苜蓿芽期细菌性病害种类和病原;探讨了这些致病细菌的环境适应力,测定了病原菌的寄主范围以及侵染循环途径,旨在为紫花苜蓿种传病害的防治提供基础资料。所获主要结果如下:
     1、紫花苜蓿种带细菌多样性。从供试种样中分离得到382株细菌分离物,其中19种细菌分离物为优势种群。结合常规表型特征、Biolog和16S rDNA鉴定方法,确定了该19种优势菌株分属于9个属18种细菌,其中革兰氏阴性菌5属10种,革兰氏阳性菌4属8种。其中11种为国际首次报道,分别为东方假单胞菌(Pseudomonas oriental is)2Ap1、简单芽孢杆菌(Bacillus simplex) ARI、萎蔫芽孢杆菌(Bacillus atrophaeus) BF、桃色欧文氏菌(Erwinia persicind)1Cp2、多粘类芽孢杆菌(Paenibacillus polymyxd)3Cp1、玫瑰色考克氏菌(Kocuria rosed)1fF6、中间苍白杆菌(Ochrobactrum intermedium) Gp1、短小芽孢杆菌(Bacillus pumilus)1gF2、成晶节杆菌(Arthrobacter crystallopoietes)HT7、根际苍白杆菌(Ochrobactrum rhizosphaerae) HT13和阴沟肠杆菌(Enterobacter cloacae) YZ-DS1。18种为国内首次报道,除以上11种外,另有7种分别是成团泛菌(Pantoea agglomerans)1Ap1、成团肠杆菌(Enterobacter agglomerans)1Bp1、荧光假单胞菌生物型I(Pseudomonas fluorescens Biovar Ⅰ)3Bp3、蜡状芽孢杆菌(Bacillus anthracis) Fp、阪崎肠杆菌(Enterobacter sakazakii)1gF3,荧光假单胞菌生物型Ⅳ(Pseudomonas fluorescens Biovar Ⅳ)2Hp1和枯草芽孢杆菌(Bacillus subtilis)HT17。
     2、紫花苜蓿种带细菌的致病性。采用浸种接种法,以阿尔冈金品种的紫花苜蓿为材料,分别接种上述19种优势菌种。发现桃色欧文氏菌1Cp2、成团泛菌1Apl、成团肠杆菌1Bpl、阴沟肠杆菌YZ-DS1、中间苍白杆菌Gp1和根际苍白杆菌HT13等6个菌种有致病作用。与未接种的对照相比,发芽率降低4.61%-28.5%,种子萎蔫和腐烂率为25%-50%等。进一步的研究发现桃色欧文氏菌、成团泛菌和阴沟肠杆菌等三种病原分别引致苜蓿芽细菌性萎蔫病、苜蓿细菌性种子坏死病和苜蓿芽细菌性腐烂病。研究还发现多粘类芽孢杆菌3Cp1和枯草芽孢杆菌HT17对苜蓿生长有促进。
     3、桃色欧文氏菌的生物学特性。研究发现,该菌的的生长温度为5~40℃,最适生长温度为28℃;在培养基中PEG6000含量0g/l~500g/l的范围内,其生长量随PEG6000的添加量而降低,但能耐受PEG6000含量400g/l的较低水势;桃色欧文氏菌在12h光暗交替条件下生长量最高(OD600=1.753),全日照条件下生长量次之(OD600=1.543),而全黑暗条件下生长最差(OD600=1.223).该菌耐受pH范围为4~10,pH7.0时生长量最高。0.5%NaCl有利其的生长,最高能耐受3%NaCl含量,不能在4%NaCl含量下生长。麦芽糖、葡萄糖、蔗糖、甘油和果糖等5种碳源可作为选择性培养基的碳源。大豆蛋白胨为的选择性培养基的氮源。而醋酸铵和磺胺分别是不利碳源和氮源。
     4、桃色欧文氏菌的传播。本研究国际首次证实了在盆栽条件下桃色欧文氏菌能引起成株紫花苜蓿致病,发病率为100%。其可能通过水源、土壤和种子传播。通过悬浮液浸种或浇芽及喷雾接种,证实其可以通过自然孔口入侵紫花苜蓿,引起茎干、叶片、花朵和豆荚坏死以及种子呈现水渍状病变。一旦病原菌进入植株体内,其可运动到植株的根际、茎干、叶围、花朵最后至种子上得以保存。待条件合适将再次随播种种子侵染。
     5、桃色欧文氏菌的寄主范围。人工接种条件下,该菌可侵染11种豆类作物和12种豆科牧草,包括紫花苜蓿、豌豆(Pisum sativum)、菜豆(Phaseolus vulgari)、大豆(Glycine max)、红豆(Vigna angularis),豇豆(V. unguiculata)、绿豆(V. radiate)、蚕豆(Vicia faba)、扁豆(Dolichos lablab)、小扁豆(Lens culinaris)、花生(Arachis hypogaea)、棉豆(Phaseolus lunatus)、红豆草(Onobrychis viciaefolia)、沙打旺(Astragalus adsurgens)、白三叶(Trifolium repens)、红三叶(T.pretense)、箭筈豌豆(Vicia sativa)、野豌豆(V. sepiuni)、歪头菜(V. unijuga)、胡枝子(Lespedeza bicolor)、百脉根(Lotus cornioulatus)、白花草木樨(Melilotus albus)和黄花草木樨(M.officinalis)。除前四种外,其余均为国际首次报道。
Lucerne(Medicago sativa) is the main cultivated forage legume in China and high-quality seeds guarantee its high yield. In this study,53seed samples from the United States, Canada, and Gansu province of China were collected as research materials. The objectives of this dissertation were (i) to understand the diversity of lucerne seed-borne bacteria and their functions,(ii) to investigate the patterns and pathogen of bacterial diseases of lucerne, and (iii) to probe the environmental adaptability of pathogenic microbes and to identify some specific pathogen and their hosts, as well as the infection way of the pathogen, so that we can provide basic information and theoretical evidence for controlling bacterial diseases of lucerne.
     1. Diversity of lucerne seed-borne bacteria. From the tested lucerne seeds,382bacterial strains were isolated and among which19strains were the predominant bacterial populations. These19bacterial strains were identified to be9genera and18species using the methods of phenotype characteristics, Biolog and16S rDNA In these trains,10species of five genera were Gram negative bacteria, and eight species of four genera were Gram positive bacteria. Eleven species of bacteria were reported worldwide for the first time and they were Pseudomonas orientalis2Ap1, Bacillus simplex ARI, Bacillus atrophaeus BF, Erwinia persicina1Cp2, Paenibacillus polymyxa3Cp1, Kocuria rosea fF6, Ochrobactrum intermedium Gp1, Bacillus pumilus1gF2, Arthrobacter crystallopoietes HT7, Ochrobactrum rhizosphaerae HT13, and Enterobacter cloacae YZ-DS1. Seven species of bacteria first reported in China were Pantoea agglomerans1Ap1, Enterobacter agglomerans1Bp1, Pseudomonas fluorescens Biovar Ⅰ3Bp3, Bacillus cereus Fp, Enterobacter sakazakii1gF3, Pseudomonas fluorescens Biovar Ⅳ2Hp1, and Bacillus subtilis HT17.
     2. Pathogenicity of lucerne seed-borne bacteria. Algonquin lucerne seeds were soaked in a dominant bacterial suspension and several varieties such as E. persicina1Cp2, P. agglomerans1Ap1, E. agglomerans1Bp1, E. cloacae YZ-DS1, O. intermedium GPl and O. rhizosphaerae HT13were found to be pathogenic to lucerne by hindering the plant growth and affecting the yield. In fact, only three bacterial diseases of lucerne were found in previous germination trials and they were bacterial sprout wilt caused by E. persicina, bacterial sprout decay caused by E. cloacae, and bacterial seed necrosis caused by P. agglomerans. In the study, two beneficial bacteria, P. polymyxa3Cp1and B. subtil is HT17, were identified.
     3. Biological characteristics of Erwinia persicina. The growth temperature for E. persicina was5~40℃and the optimal temperature was28℃. The growth rate of E. persicina was reduced as water content decreased in the culture media, but E. persicina could tolerate low water content. The best light treatment condition for E. persicina growth was the12h light/dark photoperiod. E. persicina showed the lowest growth rate when incubated in complete darkness and a medium growth rate under full light conditions. Although E. persicina could tolerate pH values between4and10, the highest growth rate was observed at pH7. Salt concentration at0.5%NaCl was beneficial to the growth of E. persicina. The bacteria could tolerate3%NaCl; however, they could not grow in4%NaCl. The results showed that maltose, glucose, sucrose, glycerol and fucose could be used as carbon sources, soy peptone as the nitrogen source, and ammonium acetate and sulfanilamide as the adverse carbon and nitrogen source, respectively, in selective media for E. persicina
     4. Transmission of Erwinia persicina. It was verified that E. persicina could infect mature lucerne and the incidence rate was100%. The transmission might be achieved through water source, soil and seeds. Using the above inoculation method, we found that E. persicina could invade the tested lucerne through natural openings, which could result in the necrosis of stems, leaves, flowers and bean pods as well as the water-soaked lesion of seeds. Once E. persicina enter lucerne, they could move with the help of flagella to rhizosphere, stems, leaves, flowers and subsequently to seeds for preservation. Once the environment is suitable for the growth of E. persicina, they would infect new plants.
     5. Hosts of Erwinia persicina. It was proved that E. persicina could infect23species in15genera of legumes and all organs in each plant including stems, leaves, flowers, bean pods and seeds. Among11leguminous crops and12leguminous forages used in this experiment, it was known that lucerne, pea, kidney bean and soybean could be infected by E. persicina, while the other species were newly identified hosts, which include grain legumes such as Vigna angularis, V. unguiculata, V. radiate, Vicia faba, Dolichos lablab, Lens culinaris, Arachis hypogaea, and Phaseolus lunatus, as well as forage legumes such as Onobrychis viciaefolia, Astragalus adsurgens, Trifolium repens, T. pretense, Vicia sativa, V. sepium, V. unijuga, Lespedeza bicolor, Lotus cornioulatus, Melilotus albus, and M. officinalis.
引文
1. 曹明慧.防治十传烟草黑胫病微生物有机肥的研制与生物效应研究.[硕十学位论文].南京:南京农业大学,2010.
    2. 陈海英,林健荣,廖富蘋,林碧敏.多粘类芽孢杆菌CP7对荔枝霜疫霉菌的抗菌活性及其作用机制.园艺学报,2010,37(7):1047-1056.
    3. 陈秀蓉,南志标.细菌多样性及其在农业生态系统中的作用.草业科学,2002,19(9):34-38.
    4. 陈秀蓉.陇东典型草原草地退化与微生物相关性及其优势菌系统发育分析与鉴定.[博士学位论文].甘肃:甘肃农业大学,2003.
    5. 陈雪丽,王光华,金剑,吕宝林.多粘类芽孢杆菌BRF-1和枯草芽孢杆菌BRF-2对黄瓜和番茄枯萎病的防治效果.中国生态农业学报,2008,16(2):446-450.
    6. 崔汝强,胡学难,廖金玲,钟国强,郭权,王卫芳,冯黎霞,赵立荣,吴海荣,胡佳.进境澳大利亚豌豆细菌性萎蔫病病原菌的分离鉴定.植物病理学报,2009,39(3):238-242.
    7. 丁国春,付鹏,李红梅,郭坚华.枯草芽孢杆菌AR11菌株对南方根结线虫的生物防治.南京农业大学学报,2005,28(2):46-49.
    8. 东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001.
    9. 方中达,任欣正.中国植物病原细菌名录.南京农业大学学报,1992,15(4):1-6.
    10.方中达.植病研究法,第三版.北京:中国农业出版社,1998,pp:156-231.
    11.耿华珠.中国苜蓿.北京:中国农业出版社,1995,pp:209.
    12.郭斌,吴晓磊,钱易.提高微生物可培养性的方法和措施.微生物学报,2006,46(3):504-507.
    13.国家质量监督检验检疫总局.中华人民共和国进境植物检疫性有害生物名录.农业部公告第862号,2007,pp:1-16.
    14.郭玉霞,南志标,李春杰,高崇岳,Bellotti W D,陈文.黄土高原苜蓿与小麦轮作系统根部入侵真菌研究.生态学报,2004,24(3):486-494.
    15.郭玉霞,南志标,王成章,李春杰,沈禹颖,严学兵.苜蓿根部入侵真菌研究进展.草业学报,2009,18(5):243-249.
    16.洪永聪.成团泛菌的致病性和拮抗泛菌的筛选研究.[硕士学位论文].福州:福建农林大学,2001.
    17.侯天爵,Huang H C, Fraser J两种轮枝菌对15种豆科牧草的致病性。植物病理学报,1995,25(2):189-192.
    18.胡宜刚.东祁连山高寒草地士壤微生物区系特征、优势细菌的16S rDNA鉴定及其在草 地中的作用.[硕士学位论文].兰州:甘肃农业大学,2007.
    19.黄华,彭常军,李彬,徐传彬,高国全,陆淼泉.人苍白杆菌分离株部分生物学性状的研究.中华检验医学杂志,2005,28(10):1022-1024.
    20.李春杰,南志标.苜蓿种带真菌及其致病性测定.草业学报,2000,9(1):27-36.
    21.李春杰,南志标.新疆苜蓿和苏丹草病害及其防治,见:南志标,李春杰主编.中国草类作物病理学研究.北京:海洋出版社,2003,pp:101-110.
    22.李敏权.苜蓿根和根颈腐烂病病原致病性及品种抗病性研究.中国草地,2003,25(1):39-43.
    23.李香香,杨焊,王志伟,苏建亚.褐飞虱肠道细菌多样性分析.江苏农业科学,2011,1:126-129。
    24.李颖Ochrobacterum intermedium DN2烟碱降解酶的分离纯化及酶产量的优化研究.[硕士学位论文].南京:南京农业大学,2007.
    25.李元广,魏鸿刚,罗远婵,沈国敏,李淑兰,李晓军,陈智旺.防治植物土传病害的新型微生物肥料系列产品--多粘类芽孢杆菌细粒剂和可湿性粉剂的创制及其应用.南宁:第二届环保肥料新技术、新产品应用暨生物肥料研讨会论文集,2010,36-40.
    26.林淑洁.小麦细菌条斑病的研究Ⅰ.病原鉴定.甘肃农大学报,1987,1:49-54.
    27.刘若.苜蓿细菌性凋萎病.国外畜牧学.草原,1981,1:3-6.
    28.刘若.草原保护学(第三分册),牧草病理学(第二版).北京:中国农业出版社,1998,pp:69-256.
    29.马桂珍,王淑芳,暴增海,吴少杰,夏振强,李世东.多粘类芽孢杆菌L1-9菌株对番茄早疫病的抑菌防病作用.中国蔬菜,2010,12:55-59.
    30.毛文星,苏效良.以“振兴奶业苜蓿发展行动”为引领发展农区的草地畜牧业.中国草食动物科学,2012,32(6):63-65.
    31.南志标.锈病对紫花苜蓿营养成分的影响.中国草原与牧草,1985,2(3):33-36.
    32.南志标,员宝华.新疆阿勒泰地区苜蓿病害.草业科学,1994,11(4):14-18.
    33.南志标.建立中国的牧草病害可持续管理体系.草业学报,2000,9(2):1-9.
    34.南志标.我国的苜蓿病害及其综合防治体系.北京:首届中国苜蓿发展大会论文集,2001,18(4):1-4.
    35.漆艳香,朱水芳,谢艺贤,肖启明.苜蓿细菌性萎蔫病菌16S rDNA片段的克隆及序列分析(简报).草业学报,2006,15(3):123-127.
    36.任欣正.植物病原细菌的分类和鉴定.北京:中国农业出版社,1994.
    37. Lansing M. Prescott, John P. Harley, Donald A. Klein.沈萍和彭珍荣译.微生物学.2003,高等教育出版社,北京,pp:68-81.
    38.宿燕明,彭霞薇,吕欣,张玲,白志辉.多粘类芽孢杆菌对油菜中硝酸盐含量的影响.中 国农学通报,2011,27(12):144-148.
    39.孙福在,王叶君.新疆发生细菌性小麦黑颖病.植物保护,1983,2:21.
    40.孙福在,何礼远.小麦品种抗黑颖病鉴定方法研究.植物保护学报,1986,13(2):109-114.
    41.唐然,袁梦龙,吴菁,陈明,张维,林敏.一株耐辐射考克氏菌的分离与鉴定.核农学报,2010,24(2):276-280.
    42.陶天中,杨瑞馥,东秀珠.原核生物系统学.北京:化学工业出版社,2007.
    43.童蕴慧,郭桂萍,徐敬友,季兆林,陈夕军.拮抗细菌对番茄植株抗灰霉病的诱导.中国生物防治,2004,20(3):187-189.
    44.王保军,刘缨,姜嘉彤,刘斌,刘双江,张佳月.蝎子肠道内微生物多样性研究.微生物学通报,2007,47(5):888-893.
    45.王慧敏,Arild Sletten,裘维蕃.黑麦草和梯牧草的细菌性萎蔫病.植物病理学报,1995,26:54.
    46.王慧敏,裘维蕃.欧洲牧草细菌性萎蔫病的发生危害与防治研究.植物保护,1996,22(5):37-39.
    47.王磊Ochrobactrum L-3的L-肉碱脱氢酶研究.[硕士学位论文].杭州:浙江大学,2008.
    48.王雾,王海仁,徐誉泰,赵立冬.麦胚凝集素与引起小麦病害的某些病原菌之间关系的初探.山东大学学报(自然科学版),1982,1:92-99.
    49.王书侠,张家明,施建丰,杨国勇,葛高霞.人苍白杆菌引起泌尿系统感染及耐药性分析.医学研究生学报,2012,25(8):893-894.
    50.王政选.苜蓿细菌性叶斑病.微生物学杂志,2002,22(3):64.
    51.王致萍,周文涛.紫花苜蓿牧草型饲料产业链的效益分析—基于甘肃省定西市安定区紫花苜蓿产业链的典型调查.甘肃农业大学学报,2010,45(3):156-160.
    52.谢关林,朱国念,任小平.浙江水稻稻种病原细菌多样性研究.植物病理学报,2002,32(2):114-121.
    53.谢文娟,林爱军,杨晓进,王凤花,SHIM Hojae.一株降解芘的苍白杆菌的分离、鉴定及性能表征.北京化工大学学报(自然科学版),2011,38(3):76-80.
    54.徐建国,阚飙,张建中,万康林.现场细菌学.北京:科学出版社,2011.
    55.徐玲,王伟,魏鸿刚,沈国敏,李民广.多粘类芽孢杆菌HY96-2对番茄青枯病的防治作用.中国生物防治,2006,22(3):216-220.
    56.闫孟红,蔡正求,韩继刚,孙磊,宋未.植物内生细菌在防治植物病害中应用的研究.生物技术通报,2004,3:9-12.
    57.严玉宁.香蕉叶鞘腐败病病原鉴定及其接抗菌的筛选.[硕士学位论文].湛江:广东海洋大学,2010.
    58.阎章才,东秀珠.微生物多样性及应用前景.微生物通报,2001,28(1):96-102.
    59.杨成德,陈秀蓉,薛莉,南志标.牧草根际狗牙根平脐蠕孢菌的研究.草业学报,2008,17(3):86-92.
    60.杨少波,刘训理.多粘类芽孢杆菌农用活性研究进展.微生物学通报,2008,35(10):1621-1625.
    61.叶姜瑜,罗固源.微生物可培养性低的生态学释因与对策.微生物学报,2005,45(3):478-482.
    62.叶明,陈九山,姚晓庆.一株草甘膦降解菌分离鉴定及其降解特性研究.环境科学与技术,2009,32(3):39-41.
    63.袁飞,徐宝梁,任发政,陈颖,赵贵明.奶粉中阪崎肠杆菌的风险评估.食品科学,2005,26(11):261-265.
    64.俞大绂,方中达.中国植物病原细菌的初步名录.农业学报,1956,7(3):359-363.
    65.袁庆华.我国苜蓿病害研究进展.植物保护,2007,33(1):6-10.
    66.湛多仁,丁爱云.小麦黑颖病的研究.植物保护学报,1981,8(4):249-255.
    67.张春杨,彭振兴.萘降解菌NAP_A的分离、降解性能和分子系统学研究.生态环境,2008,17(1):109-112.
    68.张振粉,杨成德,陈秀蓉,屈星,张俊忠.甘肃省番茄早疫病菌致病力测定及品种田间抗病性鉴定.甘肃农业大学,2010,45(6):114-117.
    69.张振粉.牧草内生枯草芽孢杆菌的功能多样性及其16S rDNA鉴定.[硕士学位论文].兰州:甘肃农业大学,2010.
    70.张志东,茆军,王玮,唐琦勇,石玉瑚.一株耐辐射菌的分离与初步鉴定.辐射研究与辐射工艺学报,2008,26(1):43-46.
    71. Agriculture and Agri-Food Canada. Alfalfa Market:China. International Markets Bureau: Market Analysis Report,2010, pp:1-9.
    72. Aguilar E, Villalobos W, Moreira L, et al. First report of Xylella fastidiosa infecting citrus in Costa Rica. Plant Disease,2005,89 (6):687.
    73. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology Reviews,1995,59:143-169.
    74. American Phytopathological Society. Common names of plant diseases. APSnet,2010. http://www.apsnet.org/publications/commonnames/Pages/default.aspx
    75. Ash C, Priest F G, Collins M D. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collin) using a PCR probe test proposal for the creation of a new genus Paenibacillus. Antonie Leeuwenhoek,1993,64:253-260.
    76. Ash C, Priest F G, Collins M D. In Validation of the publication of new names and new combinations previously published outside the IJSB. List no.51. International Journal of Systematic Bacteriology,1994,44:852.
    77. Ash C, Priest F G, Collins M D. In Validation of the publication of new names and new combinations previously published outside the IJSB. List no.52. International Journal of Systematic Bacteriology,1995,45:197-198.
    78. Balestra G M, Mazzaglia A, Rossetti A. Outbreak of bacterial blossom blight caused by Pseudomonas viridiflava on Actinidia chinensis kiwifruit plants in Italy. Plant Disease,2008, 92(12):1707.
    79. Bangera M G and Thomashow L S. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. Journal of Bacteriology,1999,181:3155-3163.
    80. Barak, J D, Schroeder, B K. Interrelationships of food safety and plant pathology:The life cycle of human pathogens on plants. Annual Review of Phytopathology,2012,50: 12.1-12.26.
    81. Barnard E L, Ash E C, Hopkins D L, et al. Distribution of Xylella fastidiosa in oaks in Florida and its association with growth decline in Quercus laevis. Plant Disease,1998,82 (5): 569-572.
    82. Beck H C, Hansen A M, Lauritsen F R. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa. FEMS Microbiology Letters,2003,220:67-73.
    83. Beji A, Mergaert J, Gavini F, Izard D, Kersters K, Leclerc H, De Ley J. Subjective synonymy of Erwinia herbicola, Erwinia milletiae, and Enterobacter agglomerans and redefinition of the taxon by genotypic and phenotypic data. International Journal of Systemic Bacteriology, 1988,38:77-88.
    84. Bobev S G, Baeyen S, Vaerenbergh J V, et al. First record of bacterial blight caused by Pseudomonas syringae pv. syringae on Pyracantha coccinea and an Amelanchier sp. in Bulgaria. Plant Disease,2008,92 (8):1251.
    85. Bourgault A M, Lamothe F. Evaluation of the KOH test and the antibiotic disk test in routine clinical anaerobic bacteriology. Journal of Clinical Microbiology,1988,26:2144-2146.
    86. Brenner D J, Fanning G R, Leete Knutson J K, Steigerwalt A G, Krichevsky M I. Attempts to classify Herbicola group-Enterobacter agglomerans strains by deoxyribonucleic hybridization and phenotypic tests. International Journal of Systemic Bacteriology,1984,34: 45-55.
    87. Brenner D J, Neto, J R, Steigerwalt, A G, Robbs, C F. "Erwinia nulandii" is a subjective synonym of Erwinia persicinus. International Journal of Systematic Bacteriology,1994,44: 282-284.
    88. Brenner D J, Krieg N R, Staley J T. Bergey's Manual of Systematic Bacteriology (Second Edition, Volum 2 Part B, C). New York:Springer Publication,2005.
    89. Brown N A. Some bacterial diseases of lettuce. Journal of Agricultural Research,1918,13: 367-388.
    90. Bushe B C, Armstrong J W, Zee F T. Association of Enterobacter cloacae with rhizome rot of edible ginger in Hawaii. Plant Disease,2004,88,1318.
    91. Busse H J, Denner E B M, Lubitz W. Classification and identification of bacteria:current approaches to an old problem. Overview of methods used in bacterial systematics. Journal of Biotechnology,1996,47:3-38.
    92. Cating R A, Hong J C, Palmateer A J, et al. First report of bacterial soft rot on Vanda Orchids caused by Dickeya chrysanthemi(Erwinia chrysanthemi) in the United States. Plant Disease, 2008,92 (6):977.
    93. CDC (USA). Enterobacter sakazakii infections associated with the use of powdered infant formula Tennessee,2001. JAMA,2002,287 (17):2204-2205.
    94. Ceri H, Olson M E, Stremick C, Read R R, Morck D, et al. The Calgary Biofilm Device:new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of Clinical Microbiology,1999,37:1771-1776.
    95. Cerny G. Method for distinction of the Gram-negative from Gram-positive bacteria. European Journal of Applied Microbiology,1976,3:223-225.
    96. Chen W, Shen Y Y, Robertson M J, et al. Simulation analysis of lucerne-wheat crop rotation on the Loess Plateau of Northern China. Field Crops Research,2008,108:179-187.
    97. Couture L, Dhont C, Chalifour F P, et al. Fusarium root and crown rot in alfalfa subjected to autumn harvests. Canadian Journal Plant Science,2002,82:621-624.
    98. Cowan S T, Steel K J. Comparison of differentiating criteria for staphylococci and micrococci. Journal of Bacteriology,1964,88:804.
    99. Como-Sabetti K, Reagan S, Allaire S, Parrott K, Simonds C M, et al. Outbreaks of Escherichia coli O157:H7 infection associated with eating alfalfa sprouts:Michigan and Virginia, June-July 1997. Morbidity Mortality Weekly Report,1997,46:741-744.
    100. Dabboussi F, Hamze M, Elomari M, et al. Taxonomic study of bacteria isolated from Lebanese spring waters:proposal for Pseudomonas cedrella sp. nov. and P. orientalis sp. nov. Research in Microbiology,1999,150:303-316.
    101. David R. Boone, Richard W. Castenholz. Bergey's Manual of Systematic Bacteriology (Second Edition, Volum 1). New York:Springer Publication,2001.
    102. Davies D. Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery,2003,2:114-122.
    103. Davis M J, Gillaspie A G Jr., Vida ver A K, Harris R W. Clavibacter:A new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov. and Clavibacter xyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and Bermudagrass stunting disease. International Journal of Systematic Bacteriology,1984,34:107-117.
    104. De Leon L, Siverio F, Lopez M M, Rodriguez A. Clavibacter michiganensis subsp. michiganensis a seedborne tomato pathogen:Healthy seeds are still the gaol. Plant Disease, 2011,95:1328-1339.
    105. De Vos P, Garrity G M, Jones D, et al. Bergey's Manual of Systematic Bacteriology (Second Edition, Volum 3) Volume Three. New York:Springer print,2009.
    106. Dianez F, Santos M, Font I, De Cara M, Tello J C. New hosts for the enterobacterial phytopathogen Erwinia persicina. In:Mendez-Vilas, A (Editor).2007. Current Research Topics in Applied Microbiology and Microbial Biotechnology. World Scientific Press, Ltd., Singapore,2007, pp:78-82.
    107. Druggan P, Iversen C. Culture media for the isolation of Cronobacte spp. International Journal of Food Microbiology,2009,136 (2):169-178.
    108. Edens D G, Gitaitis R D, Sanders F H, et al. First report of Pantoea agglomerans causing a leaf blight and bulb rot of onions in Georgia. Plant Disease,2006,90:1551.
    109. Egamberdiyeva D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology,2007,36 (2-3):184-189.
    110. Egli T, Goto M, Schmidt D. Bacterial wilt, a new forage grassdisease. Phytopathology,1975, 82:111-121.
    111. Egli T, Schmidt D. Pathogenic variation among the causal agentsof bacterial wilt of forage grasses. Phytopathology,1982,104:138-150.
    112. Euzeby J P. Taxonomic note:necessary correction of specific and subspecific epithets according to Rules 12c and 13b of the International Code of Nomenclature of Bacteria (1990 revision). International Journal of Systematic Bacteriology,1998,48:1073-1075.
    113. Ewing W H and Fife M A. Enterobacter agglomerans (Beijerinck) comb nov. (the Herbicola-Lathyri bacteria). International Journal of Systemic Bacteriology,1972,22:4-11.
    114. Frame J. Advances in forage legume technology. Acta Prataculturae Sinica,2001,10:1-17.
    115. Frederickson D E, Monyo E S, King S B, et al. A disease of pearl millet in Zimbabwe caused by Pantoea agglomerans. Plant Disease,1997,81:959.
    116. Gaby W L and Hadley L. Practical laboratory test for the identification of Pseudomonas aeruginosa. Journal of Bacteriology,1957,74:356.
    117. Gagnon M, Hunting W M. New method for the catalase determination. Analytical chemistry, 1959,31:144.
    118. Garibaldi A, Minuto A, Scortichini M, et al. First report of syringae leaf spot caused by Pseudomonas syringae pv. syringae on tomato in Italy. Plant Disease,2007,91 (11):1518.
    119. Gavini F, Lefebvre B, Leclerc H. Taxonomic study of strains belonging or related to the genus Erwinia, Herbicola group, and the species Enterobacter agglomerans. Systematic and Applied Microbiology,1983,4:218-235.
    120. Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K, De Ley J. Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. International Journal of Systemic Bacteriology,1989,39:337-345.
    121.Geere I W. Enterobacter agglomerans:the clinically important plant pathogen. Canadian Medical Association Journal,1977,116 (5):517-519.
    122. Gehring I, Geider K. Identification of Erwinia species isolated from apples and pears by differential PCR. Jornal of Microbiological Methods,2012,89:57-62.
    123. Gitaitis R, Sumner D, Gay D, et al. Bacterial streak and bulb rot of onion:A diagnostic medium for the semiselective isolation and enumeration of Pseudomonas viridiflava. Plant Disease,1997,81 (8):897-900.
    124. Gonzalez A J, Tello J C, M. de Cara. First report of Erwinia persicina from Phaseolus vulgaris in Spain. Plant Disease,2005,89 (1):109.
    125. Gonzalez A J, Rodicio M R. Pseudomonas viridiflava causing necrotic leaf spots and defoliation on Hebe spp. in Northern Spain. Plant Disease,2006,90 (9):1143-1149.
    126. Gonzalez A J, Tello J C, Rodicio M R. Erwinia persicina causing chlorosis and necrotic spots in leaves and tendrils of Pisum sativum in southeastern Spain. Plant Disease,2007,91 (4): 460.
    127. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. European Journal of Applied Microbiology and Biotechnology,1978,5:123-127.
    128. Gu L K, Bai Z H, Jin B, et al. Production of a newly isolated Paenibacillus polymyxa biocontrol agent using monosodium glutamate wastewater and potato wastewater. Journal of Environmental Sciences,2010,22 (9):1407-1412
    129. Halebian S, Harris B, Finegold M. et al. Rapid method that aids in distinguishing gram-positive from gram-negative anaerobic bacteria. Journal of Clinical Microbiology,1981, 13:444-448.
    130. Hallmann J, Roder guez-kobana R, Kloepper J W. Plant growth-promoting rhizobacteria-present status and future prospects. Sapporo:Nakanishi Printing,1997.
    131. Hall-Stoodley L, Costerton J W, Stoodley P. Bacterial biofilms:from the natural environment to infectious diseases. Nature Reviews Microbiology,2004,2:95-108.
    132. Hao M V, Brenner D J, Steigerwalt A G, Kosako Y, Komagata K. Erwinia persicinus, a new species isolated from plants. International Journal of Systematic Bacteriology,1990,40: 379-383.
    133.Harighi B. Occurrence of alfalfa bacterial stem blight disease in Kurdistan Province, Iran. Journal of Phytopathology,2007,155:593-595.
    134. Hernandez-Martinez R, Pinckard T R, Costa H S, et al. Discovery and characterization of Xylella fastidiosa strains in southern California causing mulberry leaf scorch. Plant Disease, 2006,90(9):1143-1149.
    135. Hernandez-Martinez R, Costa H S, Dumenyo C K, et al. Differentiation of strains of Xylella fastidiosa infecting grape, almonds, and oleander using a multiprimer PCR assay. Plant Disease,2006,90 (11):1382-1388.
    136. Heyrman J, Vanparys B, Logan N A, et al. Study of mural painting isolates, leading to the transfer of 'Bacillus maroccanus'and'Bacillus carotarum'to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to 'Bacillus macroides' and description of Bacillus kuralis sp. nov. International Journal of Systematic and Evolutionary Microbiology,2005,55:111-117.
    137. Holl F B, Chanway C P, Turkington R, et al. Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biology and Biochemistry,1988,20 (1):19-24.
    138. Huang Q, Brlansky R H, Barnes L, et al. First report of oleander leaf scorch caused by Xylella fastidiosa in Texas. Plant Disease,2004,88 (9):1049.
    139. Huber B, Scholz H C, Kampfer P, et al. Ochrobactrum pituitosum sp. nov., isolated from an industrial environment. International Journal of Systematic and Evolutionary Microbiology, 2010,60:321-326.
    140. Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. Journal of Bacteriology,1953,66: 24-26.
    141. Hwang S, Tate Ⅲ R L. Humic acid effects on 2-hydroxypyridine metabolism by starving Arthrobacter crystallopoietes cells. Biology and Fertility of Soil,1997,3:36-40.
    142. Hwang S, Tate Ⅲ R L. Interactions of clay minerals with Arthrobacter crystallopoietes: starvation, survival and 2-hydroxypyridine catabolism. Biology and Fertility of Soil,1997,3: 335-340.
    143. Hymowitz Z. Grain legumes, pp:54-57. In:Janick, J., and Simon, J. E. Advances in new crops. Timber Press, Porland, OR.,1990.
    144. Imran A, Hafeez F Y, Fruhling A, et al. Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. International Journal of Systematic and Evolutionary Microbiology,2010, 60:1548-1553.
    145. Itoh Y, Sugita-Koni S Y, Kasuga F, Iwaki M, Hara-Kudo Y, Saito N, Nogu C Y, Konuma H, Kuma G S. Enterohemorrhagic Escherichia coli O157:H7 present in radish sprouts. Applied and Environment Microbiology,1998,64:1532-1535.
    146. James G. Universal bacterial identification by PCR and DNA sequencing of 16S rRNA gene. PCR for Clinical Microbiology,2010,3:209-214.
    147. Jones F R. A new bacterial disease of alfalfa. Phytopathology,1925,15:243-244.
    148. Julier B, Bournoville R, Landre B, Ecalle C, Carre S. Genetic analysis of lucerne (Medicago sativa L.) seedling resistance to pea aphid (Acyrthosiphon pisum Harris). Euphytica,2004, 138:133-139.
    149. Kajimura Y, Kaneda M. Fusaricidins B, C, and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8:isolation, structure elucidation and biological activity. Journal of Antibiotics,1997,50:220-228.
    150. Kampfer P, Buczolits S, Albrecht A, et al. Towards a standardized format for the description of a novel species (of an established genus):Ochrobactrum gallinifaecis sp. nov. International Journal of Systematic and Evolutionary Microbiology,2004,53:893-896.
    151. Kampfer P, Scholz H C, Huber B, et al. Ochrobactrum haematophilum sp. nov. and Ochrobactrum pseudogrignonense sp. nov., isolated from human clinical specimens. International Journal of Systematic and Evolutionary Microbiology,2007,57:2513-2518.
    152. Kampfer P, Sessitsch A, Schloter M, et al. Ochrobactrum rhizosphaerae sp. nov. and Ochrobactrum thiophenivorans sp. nov., isolated from the environment. International Journal of Systematic and Evolutionary Microbiology,2008,58:1426-1431.
    153. Kampfer P, Huber B, Busse H J, et al. Ochrobactrum pecoris sp. nov., isolated from farm animals. International Journal of Systematic and Evolutionary,2011,61:2278-2283.
    154. Kandhai M C, Reij M W, Van Puyvelde K, et al. A new protocol for the detection of Enterobacter sakazakii applied to environmental samples. Journal of Food Protection,2004, 67(6):1267-1270.
    155. Kaneshiro W S, Burger M, Vine B G, et al. Characterization of Erwinia chrysanthemi from a bacterial heart rot of pineapple outbreak in Hawaii. Plant disease (e-Xtra),2008,92: 1444-1450.
    156. Khan Z, Kim S G, Jeon Y H, et al. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. BioResource technology,2008,99: 3016-3023.
    157. Kiessling P, Senchenkova S N, Ramm M, Knirel Y A. Structural studies on the exopolysaccharide from Erwinia persicina. Carbohydrate Research,2005,340:1761-1765.
    158. Kim J, Hahn J S, Franklin M J, Stewart P S, Yoon J. Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. Journal of Antimicrobial Chemotherapy,2009,63:129-135.
    159. Kovacs N. Identification of Pseudomonas pyocyanae by the oxidase reaction. Nature (London),1956,178:703.
    160. Lai K K. Enterobacter sakazakii infections among neonates, infants, children, and adults. Case reports and a review of the literature. Medicine (Baltimore),2001,80 (2):113-122.
    161. Langston D B, Sanders F H, Brock J H, et al. First report of a field outbreak of a bacterial leaf spot of cantaloupe and squash caused by Pseudomonas syringae pv. syringae in Georgia. Plant Disease,1997,87 (5):600.
    162. Larsen J, Cornejo P, Barea J M. Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus. Soil Biology and Biochemistry, 2009,41:286-292.
    163. Leblond B, Philippe N, Mangin I, et al.16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reaeal inter and intraspeciffic Bifidobacterium phylogeny. International Journal of Systematic Bacteriology,1996,46:102.
    164. Lebuhn M, Heulin T, Hartmann A. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiology Ecology,1997,22:325-334.
    165. Lee H B, Hong J P, Kim S B. First report of leaf blight caused by Pantoea agglomerans on rice in Korea. Plant Disease,2010,94:1372.
    166. Leeman M, van Pelt J A, den Ouden F M, Heinsbroek M, Bakker P A H M, Schippers B. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharide of Pseudomonas fluorescens. Phytopathology,1995,85:1021-1027.
    167. Lelliott R A, Stead D E. Methods for the Diagnosis of Bacterial Diseases of Plants. William Clowes Limited, Beccles and London,1987.
    168. Lenssen A W, Sorensen E L, Posler G L, et al. Forage quality of alfalfa protected by resistance to bacterial leaf spot. Animal Feed Science and Technology,1992,39:61-70.
    169. Leuscher R G K, Baird F, Donald B, et al. A medium for presumptive detection of Enterobacter sakazakii in infant formula. Food Microbiology,2004,21:527-533.
    170.Leyns F, De Cleene M, Van Bogaert G, Van de Wiele A, and De Ley J. Pre-liminary investigations about the mode of transmission and spread of Xanthomonas campestris pv. graminis on forage grasses. Journal of Phytopathology,1988,122:76-88.
    171. Li Y Z, Nan Z B. Nutritional study on Embellisia astragali, a fungal pathogen of milk vetch (Astragalus adsurgens). Antonie van Leeuwenhoek,2009,95:275-284.
    172. Loper J E. Role of flurescent siderophore production in biological control of Phythium ultimum by & Pseudomonas fluorescens strain. Phytopathology,1988,78:166-172.
    173. Manafi M, Kneifel W. Rapid methods for differentiating Gram-positive from Gram-negative aerobic and facultative anaerobic bacteria. Journal of Applied Bacteriology,1990,69: 822-827.
    174. Marcheggiani S, Iaconelli M, Dangelo A, et al. Microbiological and 16S rRNA analysis of sulphite-reducing clostridia from river sediments in central Italy. BMC Microbiology,2008,8: 171.
    175. Martin J E. Siderophore production by marine a-proteobacterium Ochrobactrum sp. SP18. Santa Barbara:University of California,2006.
    176. Martin-Sanz A, Palomo J L, M. Perez de la Vega, et al. First report of bacterial blight caused by Pseudomonas viridiflava on pea in Spain. Plant Disease,2010,94 (1):128.
    177. Matsunaga T, Takeyama H, Nakayama H.16S rRNA-Targeted identification of cyanobacterial genera using oligonucleotide-probes immobilized on bacterial magnetic particles. Journal of Applied Phycology,2001,13:389-394.
    178. Michel B E, Kaufmann M R. The osmotic potential of polyethylene glycol 6000. Plant Physiology,1973,51:914-916.
    179. Michel V V. Interactions between Xanthomonas campestris pv. graminis strains and meadow fescue and Italian rye grass cultivars. Plant Disease,2001,85 (5):538-542.
    180. Millard W A. Crown rot of rhubarb. Bull. Univ. Leeds Yorkshire Council Agric. Ed.134,1-28, 1924.
    181. Mirik M, Aysan Y, Cetinkaya-Yildiz R, et al. Watermelon as a new host of Pseudomonas viridiflava, causal agent of leaf and stem necrosis, discovered in Turkey. Plant Disease,2004, 88 (8):907.
    182. Mitkowski N A, Browning M, Basu C, Jordan K, Jackson N. Pathogenicity of Xanthomonas translucens from annual bluegrass on golf course putting greens. Plant Disease,2005,89: 469-473.
    183. Moffett M L, Irwin J A G. Bacterial leaf and stem spot (Xanthomonas alfalfae) of lucerne in Queensland. Australian Journal of Experimental Agriculture and Animal Husbandry,1975, 15:223-226.
    184. Mohle-Boetani J C, Farrar J A, Werner S B, Minassian D, Bryant R, et al. Escherichia coli O157 and Salmonella infections associated with sprouts in California,1996-1998. Annals Internal Medicine,2001,135:239-247.
    185. Montero-Astua M, Saborio-R G, Chacon-Diaz C, et al. First report of Xylella fastidiosa in avocado in Costa Rica. Plant Disease,2008,92 (1):175.
    186. Morales-Valenzuela G., Silva-Rojas H. V., Ochoa-Martinez D., et al. First report of Pantoea agglomerans causing leaf blight and vascular wilt in maize and sorghum in Mexico.Plant Disease,2007,91:1365.
    187. Moretti C, Fakhrand R, Buonaurio R. Calendula officinalis:A new natural host of Pseudomonas viridiflava in Italy. Plant Disease,2012,96 (2):285.
    188. Muytjens H L, Roelofs W H, Jaspar G H. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. Journal of Clinical Microbiology, 1988,26 (4):743-746.
    189. Myung I S, Lee Y K, Lee S W, et al. A new disease, bacterial leaf spot of rape, caused by atypical Pseudomonas viridiflava in south Korea. Plant Disease,2010,94 (9):1164.
    190. Nan Z B. Fungicide seed treatments of sainfoin control seed-borne and root-invading fungi. New Zealand Journal of Agricultural Research,1995,38(3):413-420.
    191. Neergaard P. Seed Pathology. London:The MacMillan Press, Ltd.,1977, Vol.1, pp.118-146.
    192. Nemeth J, Laszlo E, Emody L. Clavibacter michiganensis ssp. insidiosus in lucerne seeds. EPPO Bulletin,1991,21:713-718.
    193. Nishijima K A, Couey H M, Alvarez A M. Internal yellowing, a bacterial disease of papaya fruits caused by Enterobacter cloacae. Plant Disease,1987,71:1029-1034.
    194. Nishijima K A, Alvarez A M, Hepperly P R, Shintaku M H, Keith L M, Sato D M, Bushe B C, Armstrong J W, Zee F T. Association of Enterobacter cloacae with rhizome rot of edible ginger in Hawaii. Plant Disease,2004,88:1318.
    195. Nishijima K A, Wall M W, Siderhurst M S. Demonstrating pathogenicity of Enterobacter cloacae on macadamia and identifying associated volatiles of gray kernel of macadamia in Hawaii. Plant Disease,2007,91:1221.
    196. Nyvall R F. Field Crop Disease (Third Edition). New York:The Wiley-Black Well Press, Ltd., 1999, pp:3-6.
    197. O'Dowd H, Kim B, Margolis P, et al. Preparation of tetra-Boc-protected polymyxin B nonapeptide. Tetrahedron Letters,2007,48:2003-2005.
    198. OEPP/EPPO. Data sheets on quarantine Pests No.49, Clavibacter michiganensis subsp. insidiosus. Bulletin OEPP/EPPO Bulletin,1992,1-4.
    199. OEPP/EPPO. Clavibacter michiganensis ssp. insidiosus. OEPP/EPPO Bulletin,2010,40: 353-364.
    200. Oh S W, Kang D K. Fluorogenic selective and differential medium for isolation of Enterobacter sakazakii. Applied and Environmental Microbiology,2004,70:5692-5694.
    201. O'Hara C M, Steigerwalt A G, Hill B C, Miller J M, Brenner D J. First report of a human isolate of Erwinia persicinus. Journal of Clinical Microbiology,1998,36:248-250.
    202. Paul V H, Smith I M. Bacterial pathogens of Gramineae:Systematic review and assessment of quarantine status for the EPPO region. EPPO Bulletin,1989,19:33-42.
    203. Pereira M O and Vieira M J. Effects of the interactions between glutaraldehyde and the polymeric matrix on the efficacy of the biocide against Pseudomonas fluorescens biofilms. Biofouling,2001,17:93-101.
    204. Pierce L, McCain A H. Alfalfa sprout rot caused by Erwinia chrysanthemi. Plant Disease, 1987,71:786-788.
    205. Piuri M, Sanchez-Rivas C, Ruzal S M. A novel antimicrobial activity of a Paenibacillns polymyxa strain isolated from regional fermented sausages. Letters in Applied Microbiology, 1998,27:9-13.
    206. Pratt R G, McLaughlin M R, Pederson G A, et al. Pathogenicity of Macrophomina phaseolinato mature plant tissues of alfalfa and white clover. Plant Disease,1998,82 (9): 1033-1038.
    207. Proctor M E, Hamacher M, Tortorello M L, Archer J R, Davis J P. Multistate outbreak of Salmonella serovar Muenchen infections associated with alfalfa sprouts grown from seeds pretreated with calcium hypochlorite. Journal of Clinical Microbiology,2001,39:3461-3465.
    208. Puohiniemi R, Heiskanen T, Siitonen A. Molecular epidemiology of two international sprout-borne Salmonella outbreaks. Journal of Clinical Microbiology,1997,35:2487-2491
    209. Randall J J, French J, Yao S, et al. First report of Xylella fastidiosa in peach in new Mexico. Plant Disease,2011,95 (7):871.
    210. Ren Y Z, Liu Y Q, Ding S L, et al. First report of boll rot of cotton caused by Pantoea agglomerans in China. Plant Disease,2008,92:1364.
    211. Rimhanen-Finne R, Niskanen T, Lienemann T, Johansson T, Sjoman M, et al. A nationwide outbreak of SalmonellaBovismorbificans associated with sprouted alfalfa seeds in Finland, 2009. Zoonoses Public Health,2011,58:589-96
    212. Rodriguez C M, Obando J J, Villalobos W, et al. First report of Xylella fastidiosa infecting coffee in Costa Rica. Plant Disease,2001,85 (9):1027.
    213. Saravanakumar K, Sivanesan S, Samuel G, et al. Isolation and partial characteriza-tion of antifungal protein from Bacillus polymyxa strain VLB 16. Process Biochemistry,2005,40: 3236-3243.
    214. Scheck H J, Canfield M L, Pscheidt J W, et al. Rapid evaluation of pathogenicity in Pseudomonas syringae pv. syringae with a lilac tissue culture bioassay and syringomycin DNA probes. Plant Disease,1997,81 (8):905-910.
    215. Schroeder B K, Toit L J D, Schwartz H F. First report of Enterobacter cloacae causing onion bulb rot in the Columbia basin of Washington State. Plant Disease,2009,93:323.
    216. Schmidt D, and Niisch B. Resistance to bacterial wilt(Xanthomonas graminis) increases yield and persistency of Lolium multiflorum. EPPO Bulletin,1980,10:335-339.
    217. Sharma K D, Chen W, Muehlbauer F J. Genetics of chick pea resistance to five races of fusarium wilt and a concise set of race differentials for Fusarium oxysporumf sp. ciceri. Plant Disease,2005,89:385-390.
    218. Smith D L, Dominiak-Olson J, Sharber C D. First report of pierce's disease of grape caused by Xylella fastidiosa in Oklahoma. Plant Disease,2009,93 (7):762.
    219. Stackebrandt E, Koch E, Gvozdiak O, et al. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. International Journal of Systematic Bacteriology,1995,45:682-692.
    220. Stanier R Y, Palleroni N J, Doudoroff M. The aerobic pseudomonds:a taxonomic study. Journal of General Microbiology,1966,43:159-271.
    221. Starr M P, Blau W, Cosens G. The blue pigment of Pseudomonas lemonnieri. Biochemische Zeitschrift,1960,333:328-334.
    222. Stead D E. Grouping of Xanthomonas campestris pathovars of cereals and grasses by fatty acid profiling. Bulletin OEPP/EPPO Bulletin,1989,19:57-68.
    223. Sultan S, Hasnain S. Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresource Technology,2007,98:340-344.
    224. Suslow T V, Schroth M N, Isaka M. Application of a rapid method for Gram-differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology,1982,72: 917-918.
    225. Teyssier C, Marchandin H, Jean-Pierre H, et al. Ochrobactrum pseudintermedium sp. nov., a novel member of the family Brucellaceae, isolated from human clinical samples. International Journal of Systematic and Evolutionary Microbiology,2007,57:1007-1013.
    226. Thirthamallappa, Lohithaswa H C. Genetics of resistance to early blight (Alternaria solani Sorauer) in tomato (Lycopersicon esculentum L.). Euphytica,2000,113:187-193.
    227. Timmusk S, Nicander B, Granhall U, et al. Cytokinin production by Paenibacillus polymyxa. Soil Biology and Biochemistry,1999,31:1847-1852.
    228. Tripathi A K, Verma S C, Chowdhury S P, et al. Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. International Journal of Systematic and Evolutionary Microbiology,2006,56:1677-1680.
    229. Trujillo E M, Willems A, Abril A, et al. Nodulation of Lupinus albus by strains of Ochrobacterum lupine sp. nov. Applied and Environmental Microbiology,2005,71: 1318-1327.
    230. Turnbull P C B, Jackson P J, Hill K K, et al. Longstanding taxonomic enigmas within the 'Bacillus cereus group' are on the average of being resolved by far-reaching molecular developments:Forecast on the possible outcome by an ad hoc team. In Berkeley, Heyndrickx, Logan and De Vos (Editors), Applications and Systematics of Bacillus and Relatives. Blackwell Science, Oxford, pp:23-36.
    231. Van der Velden A W, Baumler A J, Tsolis R M, Heffron F. Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. Infection and Immunity,1998, 66:2803-2808.
    232. Vauterin L, Hoste B, Kersters K, Swings J. Reclassification of Xanthomonas. International Journal of Systematic Bacteriology,1995,45:472-489.
    233. Velazhahan R, Samiyappan R. Relationship between antagonistic activties of Pseudomouas fluoresceus isolates against Rhizoctonia solani and their production of lytic enzymes. Journal of Plant Disease and Protection,1999,106 (3):244-250.
    234. Wang G F, Praphat K, Xie G L, Zhu B, Li B, Liu B, Zhou Q. Bacterial wilt of mulberry (Morus alba) caused by Enterobacter cloacae in China. Plant Disease,2008,92:483.
    235. Waranusantigul P, Lee H, Kruatrachue M, et al. Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing lead accumulation by Eucalyptus camaldulensis. Chemosphere,2011,85:584-590.
    236. Warriner K, Spaniolas S, Dickinson M, Wright C, Waites W M. Internalization of bioluminescent Escherichia coli and Salmonella Montevideo in growing bean sprouts. Journal of Applied Microbiology,2003,95:719-727.
    237. Wichmann F, Asp T, Widmer F, et al. Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance. Theoretical and Applied Genetics,2011,122:567-579.
    238. Wilhelm J, Bean R. U.S. Alfalfa Exports to China Continue Rapid Growth. GAIN Report Number:CH10054,2010, pp:1-17.
    239. Wilson E E, Zeitoun F M, Fredrickson D L. Bacterial phloem canker, a new disease of Persian Walnut trees. Phytopathology,1967,57:518-621.
    240. Winthrop K L, Palumbo M S, Farrar J A, Mohle-Boetani J C, Abbott S, et al. Alfalfa sprouts and Salmonella Kottbus infection:a multistate outbreak following inadequate seed disinfection with heat and chlorine. Journal of Food Protection,2003,66:13-17.
    241.Woese C R, Fox G E. Phylogenetic structure of the prokaryotic domain:the primary kingdoms. Proceedings of National Academy of Sciences of USA,1977,74:5088-5090.
    242. Woo S G, Ten L N, Park J, et al. Ochrobactrum daejeonense sp. nov., a nitrate-reducing bacterium isolated from sludge of a leachate treatment plant. International Journal of Systematic and Evolutionary Microbiology,2011,61:2690-2696.
    243. Xu L H, Xie G L, Li B, et al. First report of pear blossom blast caused by Pseudomonas syringae pv. syringae in China. Plant Disease,2008,92 (5):832.
    244. Yang K Q, Qu W W, Liu X, et al. First Report of Pantoea agglomerans Causing Brown Apical Necrosis of Walnut in China. Plant Disease,2011,95:773.
    245. Yuan Y J, Lu Z X, Wu N, et al. Isolation and preliminary characterization of a novel nicotine-degrading bacterium, Ochrobactrum intermedium DN2. International Biodeterioration and Biodegradation,2005,56:45-50.
    246. Zhao L J, Yang X N, Li X Y, et al. Antifungal, Insecticidal and Herbicidal Properties of Volatile Components from Paenibacillus polymyxa Strain BMP-11. Agricultural Sciences in China,2011,10 (5):728-736.
    247. Zurdo-Pineiro J L, Rivas R, Trujillo M E, et al. Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. International Journal of Systematic and Evolutionary Microbiology,2007,57:784-788.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700