用户名: 密码: 验证码:
利用超临界CO_2技术制备γ-辐射PLLA发泡材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸发泡材料由于其优异的机械性能、生物可降解性和生物相容性,在生物医药、食品与医药包装等领域有良好的应用前景。鉴于生产商供应的结晶性的聚L-乳酸(PLLA)原料的熔体强度较低,造成其发泡成型过程中无法维持泡孔的稳定形态,出现大量的泡孔塌陷和合并现象;且传统工艺方法制备的PLLA发泡材料存在微观孔径较大、泡孔分布不均一和有毒有害发泡剂残留等问题。本工作将γ-辐射增黏技术和绿色环保的超临界CO2发泡技术相结合,进行了PLLA发泡材料的研究。主要内容如下:
     (1)60Co-y射线辐射PLLA的增黏研究。利用聚合物熔混技术将多官能团单体三烯丙基异氰脲酸酯(TAIC)和三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)分散到PLLA中,考察了γ-辐射吸收剂量对PLLA的粘均分子量(Mη)、凝胶含量和熔体流动速率(MFR)等方面的影响。结果显示:加入多官能团单体能有效的促进PLLA辐射交联,熔体强度显著提高,且TAIC的交联效果优于TMPTMA,更有利于发泡成型。多官能团单体和y-辐射吸收剂量对PLLA的结晶行为也有所影响。
     (2)超临界流体C02发泡装置的研制与应用。应用常规设计方法,自主研制了超临界流体CO2实验装置,包括成型模腔、超临界流体CO2输送装置、温度测控与压力测量系统等。利用间歇成型法中的快速释压原理控制成型工艺条件,如发泡温度、饱和压力和时间等,以掌握PLLA的超临界流体C02发泡工艺条件对泡孔微观结构与性能的影响。
     (3) PLLA超临界C02发泡成型工艺的研究。探究了发泡成型过程和工艺参数,并分析了PLLA发泡试样的吸水性能和降解性能。由表观密度和泡孔形态分析显示:表观密度随辐射吸收剂量增加呈先减后增的趋势,吸收剂量为10kGy时,发泡材料的表观密度最低,而与发泡温度、饱和压力与时间之间呈现不同的变化规律。随着升高的发泡温度,泡孔直径和孔隙率随之增大,而泡孔密度和表观密度减小,综合力学性能大幅度的降低;饱和压力则呈现相反的趋势,随着饱和压力的增大,泡孔更加细密均匀,相应的力学强度更加优异;随着饱和时间的增大,泡孔合并量随之增多,泡孔壁也随之变薄,造成泡孔直径增大,泡孔密度减小,拉伸强度、压缩强度及冲击强度不断降低。PLLA发泡试样的吸水率,随着吸收剂量的增加呈先增后减的趋势,吸收剂量10kGy时最大,发泡温度越高,其吸水率越大。土埋降解法发现自然环境下PLLA发泡材料的降解过程缓慢,发泡工艺条件、吸收剂量与降解率未呈现规律性的变化。
Poly(L-lactic acid) foam shows great biodegradability, biocompatibility, mechanical property and has wide application in biological medicine, food packaging. However, PLLA belongs to crystalline polymer which has poor melt strength provided by the manufacturer. Therefore, the instability during the foaming process brings about mass cell collapse and mergence as PLLA foam can't withstand the stable cell structure. The traditional foaming processes always lead to the problems such as large cellular size, uneven distribution of cells, foaming agent residues. The goal of this experiment is to prepare uniform distribution cellular poly(L-lactic acid) foam by environmentally friendly supercritical CO2foaming technology combined with simple and reliable irradiation crosslinking technology. The experiment is composed of the following three parts:
     (1)Preparation and Characterization of60Co-y irradiation modification PLLA. Two different irradiation dose PLLA with different content of polyfunctional monomer TAIC and TMPTMA via60Co-y irradiation method were prepared. Viscosity-average molecular weight, melt flow rate, gel content, differential scanning calorimeter analysis indicated that polyfunctional monomer TAIC and TMPTMA enhanced the irradiation crosslinking of PLLA effectively, thus improving the melt strength. In addition, the sensitization effect of TAIC was better than that of TMPTMA, PLLA with TAIC was more conducive to foaming process. Different polyfunctional monomer and irradiation dose did influence the crystallization behavior of PLLA.
     (2)Study of batch foaming apparatus via supercritical CO2. The lab apparatus for batch foaming was developed by conventional design method, including the design of moulding chamber, supercritical CO2delivery mechanism, temperature controlling monitor system, pressure measurement system, et al. To achieve the goal of studying foamig process conditions effect on the cellular microstructure, the technological parameters e.g. foaming temperature, saturation pressure, saturation time through rapid depressurization method was discussed and analyzed.
     (3)Study of PLLA foaming technological parameters via supercritical CO2process. Foaming process and technological parameters such as foaming temperature, saturation pressure, saturation time together with water absorption capability and degradation performance of PLLA foam were studied and analyzed. The apparent density revealed the trend first decreased then increased with the increased irradiation dose, and reached the minimum when irradiation dose was10kGy. The apparent density showed different variation with foaming temperature, saturation pressure, saturation time. The technological parameters have great impact on the cellular microstructure of PLLA foam. The cellular size and porosity increased and cell density and apparent density decreased with the increased foaming temperature. The comprehensive mechanics performance decreased sharply. However, the saturation pressure showed the reversed trend, and the cell distribution was more uniform with fine mechanics properties. As the saturation time increasing, the cellular mergence phenomenon occupied the most and cellular wall became thinner, which cause the increased cellular size and decreased cell density with the tensile strength, compressive strength and impact strength keep decreasing. The water absorption of PLLA foam first increased then decreased with the increased irradiation dose, and the higher the foaming temperature, the greater the water absorption. The buried degradation method indicated that the degradation process of PLLA foam was rather slow under the natural environment. The technological condition and irradiation dose did't showed any regular variation with the degradation ratio.
引文
[1]刘浩,韩常玉,董丽松.闭孔泡沫塑料结构与性能研究进展[J].高分子通报,2008,3:29~42
    [2]KOOPMANS R, DEN DOELDER J, PAQUET A. Modeling foam growth in thermoplastics[J]. Advanced Materials,2000,12(23):1873-1880
    [3]刘军军,何春霞.淀粉基可降解泡沫塑料的发泡成型研究进展[J].工程塑料应用,2008,36(7): 80~82
    [4]SHARMA C, DINDA A K, MISHRA N C. Fabrication and characterization of natural origin chitosan-gelatin-alginate composite scaffold by foaming method without using surfactant[J]. Journal of Applied Polymer Science,2013,127(4):3228-3241
    [5]DARDER M, ARANDA P, FERRER M L, et al. Progress in bionanocomposite and bioinspired foams[J]. Advanced Materials,2011,23(44):5262~5267
    [6]甄光明.生物降解塑料聚乳酸及其工业应用[J].新材料产业,2009, (8):36-41
    [7]杨斌.绿色塑料聚乳酸[M].中国北京:化学工业出版社,2007
    [8]JAMSHIDIAN M, TEHRANY E A, IMRAN M, et al. Poly-Lactic acid:production, applications, nanocomposites, and release Studies[J]. Comprehensive Reviews in Food Science and Food Safety,2010,9(5):552-571
    [9]KOO G H, JANG J. Preparation of melting-free poly (lactic acid) by amorphous and crystal crosslinking under UV irradiation[J]. Journal of Applied Polymer Science,2013,127(6): 4515-4523
    [10]王玉,陈立成,陈美玉.环境友好聚乳酸复合发泡材料的研究进展[J].化工新型材料,2010,38(11):12~14
    [11]刘智勇,袁华,任杰.发泡聚乳酸流变性能及泡孔结构的研究[J].中国塑料,2007,21(6):56~61
    [12]FUJIMOTO Y, RAY S S, OKAMOTO M, et al. Well-controlled biodegradable nanocomposite foams:from microcellular to nanocellular[J]. Macromolecular Rapid Communications,2003,24(7):457-461
    [13]YU L, LIU H, DEAN K. Thermal behaviour of poly (lactic acid) in contact with compressed carbon dioxide[J]. Polymer International,2009,58(4):368-372
    [14]LIU H, ZHANG J. Research progress in toughening modification of poly (lactic acid)[J]. Journal of Polymer Science Part B:Polymer Physics,2011,49(15):1051-1083.
    [15]苏思玲,赵吉洁,柏大伟.提高聚乳酸熔体强度的研究进展[J].中国塑料,2007,21(8):7-12
    [16]张久礼,戚嵘嵘.高粘度聚乳酸的研制[J].工程塑料应用,2009, (8):13~15
    [17]WANG B, WANG M, XING Z, et al. Preparation of radiation crosslinked foams from low-density polyethylene/ethylene-vinyl acetate (LDPE/EVA) copolymer blend with a supercritical carbon dioxide approach[J]. Journal of Applied Polymer Science,2013,127(2): 912~918
    [18]NU EZ K, ROSALES C, PERERA R, et al. Poly (lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite[J]. Polymer Engineering& Science,2012, 52(5):988-1004
    [19]CHEN C, BORTNER M, QUIGLEY J P, et al. Using supercritical carbon dioxide in preparing carbon nanotube nanocomposite:improved dispersion and mechanical properties[J]. Polymer Composites,2012,33(6):1033~1043
    [20]陈金周,于伟东,田青亮.γ-辐射左旋聚乳酸的力学稳定性[J].工程塑料应用,2008,36(11):23~27
    [21]刘晓玉,田孟超,陈金周.γ-辐照对PLLA分子量及结晶形态的影响[J].高分子通报,2010,(1):81~84
    [22]陈金周,郭凯,何海霞.γ-辐照对聚L-乳酸的熔体流变行为的影响[J].包装工程,2010,31(17):36~39
    [23]张玉霞,刘学,刘本刚.可生物降解聚合物的发泡技术研究进展[J].中国塑料,2012,(4):4-15
    [24]张润,邓政兴,李立华.用超临界CO2法制备聚乳酸三维多孔支架材料[J].材料研究学报,2004,17(6):665~672
    [25]陈大凯,李菁,任杰.聚乳酸材料成型加工方法的研究进展[J].塑料,2011,40(1):46~48
    [26]曹晓苗,杭祖圣,应三九.微孔发泡聚合物泡孔形貌控制的研究进展[J].材料导报,2012,26(11):69~74
    [27]WANG K, WU F, ZHAI W, et al. Effect of polytetrafluoroethylene on the foaming behaviors of linear polypropylene in continuous extrusion[J]. Journal of Applied Polymer Science,2013:1-8
    [28]杨秀英,王晓波,李智华.挤出热历程对聚乳酸流变性能和热性能影响[J].齐齐哈尔大学学报:自然科学版,2009,25(3):1-4
    [29]钟桂龙.新型生物降解材料聚乳酸的微孔发泡技术研究进展[J].塑料制造,2009,(1):100~102
    [30]ISHIKAWA T, TAKI K, OHSHIMA M. Visual observation and numerical studies of N2 vs. CO2 foaming behavior in core-back foam injection molding[J]. Polymer Engineering& Science,2012,52(4):875-883
    [31]G MEZ-G MEZ J, ARENC N D, S NCHEZ-SOTO M, et al. Influence of the injection-molding parameters on the cellular structure and thermo-mechanical properties of ethylene-propylene block copolymer foams[J]. Advances in Polymer Technology,2013, 32(1):692-704
    [32]RODEHEAVER B A, COLTON J. Open-celled microcellular thermoplastic foam[J]. Polymer Engineering& Science,2004,41(3):380~400
    [33]LIU B, JIANG L, ZHANG J. Extrusion Foaming of poly (lactic acid)/soy protein concentrate Blends[J]. Macromolecular Materials and Engineering,2011,296(9):835-842
    [34]刘玮桥,王孝平,杜娟.PLA发泡—使用熔体强度增强剂通过化学发泡剂生产低密度泡沫材料[J].橡胶参考资料,2012, (6):33~35
    [35]DI Y, IANNACE S, DI MAIO E, et al. Reactively modified poly (lactic acid):Properties and foam processing[J]. Macromolecular Materials and Engineering,2005,290(11):1083~1090
    [36]PILLA S, KIM S G, AUER G K, et al. Microcellular extrusion-foaming of polylactide with chain-extender[J]. Polymer Engineering& Science,2009,49(8):1653-1660
    [37]CORRE Y-M, MAAZOUZ A, DUCHET J, et al. Batch foaming of chain extended PLA with supercritical CO2:Influence of the rheological properties and the process parameters on the cellular structur[J]. The Journal of Supercritical Fluids,2011,58(1):177~188
    [38]YU L, TOIKKA G, DEAN K, et al. Foaming behaviour and cell structure of poly (lactic acid) after various modifications[J]. Polymer International,2013,62:759~765
    [39]LARSEN A, NELDIN C. Physical extruder foaming of poly (lactic acid)-processing and foam properties[J]. Polymer Engineering& Science,2012,1~9
    [40]MIHAI M, HUNEAULT M A, FAVIS B D. Crystallinity development in cellular poly (lactic acid) in the presence of supercritical carbon dioxide[J]. Journal of Applied Polymer Science,2009,113(5):2920-2932
    [41]LI D-C, LIU T, ZHAO L, et al. Foaming of poly (lactic acid) based on its nonisothermal crystallization behavior under compressed carbon dioxide[J]. Industrial and Engineering Chemistry Research,2011,50(4):1997-2002
    [42]DI Y, IANNACE S, MAIO E D, et al. Poly (lactic acid)/organoclay nanocomposites:thermal, rheological properties and foam processing[J]. Journal of Polymer Science Part B:Polymer Physics,2005,43(6):689~698
    [43]姜姗姗.聚乳酸/OMMT纳米复合材料的制备与发泡研究[D].中国广州:华南理工大学,2011
    [44]LIAO X, NAWABY A V, NAGUIB H E. Porous poly (lactic acid) and PLA-nanocomposite structures [J]. Journal of Applied Polymer Science,2012,124(1):585-594
    [45]EMA Y, IKEYA M, OKAMOTO M. Foam processing and cellular structure of polylactide-based nanocomposites[J]. Polymer,2006,47(15):5350~5359
    [46]TENG X, REN J, GU S. Preparation and characterization of porous PDLLA/HA composite foams by supercritical carbon dioxide technology[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2006,81(1):185~193
    [47]高震.PLLA/SA共混材料的制备及性能表征[D].中国郑州:郑州大学,2010
    [48]YUAN H, LIU Z, REN J. Preparation, characterization, and foaming behavior of poly (lactic acid)/poly (butylene adipate-co-butylene terephthalate) blend[J]. Polymer Engineering& Science,2009,49(5):1004~1012
    [49]PILLA S, KIM S G, AUER G K, et al. Microcellular extrusion foaming of poly (lactide)/poly (butylene adipate-co-terephthalate) blends[J]. Materials Science and Engineering:C,2010,30(2):255~262
    [50]HAO A, GENG Y, XU Q, et al. Study of different effects on foaming process of biodegradable PLA/starch composites in supercritical/compressed carbon dioxide[J]. Journal of Applied Polymer Science,2008,109(4):2679~2686
    [51]MIHAI M, HUNEAULT M A, FAVIS B D, et al. Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends[J]. Macromolecular Bioscience,2007,7(7): 907~920
    [52]KOHLHOFF D, OHSHIMA M. Open cell microcellular foams of polylactic acid (PLA)-based blends with semi-interpenetrating polymer networks[J]. Macromolecular Materials and Engineering,2011,296(8):770~777
    [53]KANG D J, XU D, ZHANG Z X, et al. Well-controlled microcellular biodegradable PLA/silk composite foams using supercritical CO2[J]. Macromolecular Materials and Engineering,2009,294(9):620~634
    [54]魏杰,信春玲,李庆春.微孔发泡制备聚乳酸开孔材料[J].塑料,2009, (6):20~22
    [55]祁冰,许志美,刘涛.超临界二氧化碳发泡制备可控形貌的聚乳酸微孔材料[J].高分子材料科学与工程,2010,26(3):138~141
    [56]晏梦雪,周南桥.发泡工艺对超临界CO2/PLA微孔发泡泡孔形态的影响[J].塑料工业,2010, (11):41~44
    [57]MATUANA L M, DIAZ C A. Study of cell nucleation in microcellular poly (lactic acid) foamed with supercritical CO2 through a continuous-extrusion process[J]. Industrial& Engineering Chemistry Research,2010,49(5):2186-2193
    [58]FLOREN M, SPILIMBERGO S, MOTTA A, et al. Porous poly (D, L-lactic acid) foams with tunable structure and mechanical anisotropy prepared by supercritical carbon dioxide[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2011,99(2): 338~349
    [59]MILLER D, KUMAR V. Microcellular extrusion of PLA utilizing solid-state nucleation in the gas-saturated pellet extrusion process[J]. Journal of Applied Polymer Science,2013, 127(3):1967~1973
    [60]LIAO X, NAWABY A V, WHITFIELD P S. Carbon dioxide-induced crystallization in poly (L-lactic acid) and its effect on foam morphologies[J]. Polymer International,2010,59(12): 1709~1718
    [61]LIAO X, NAWABY A V. Solvent free generation of open and skinless foam in poly (l-lactic acid)/poly (d, l-lactic acid) blends using carbon dioxide[J]. Industrial& Engineering Chemistry Research,2012,51(19):6722~6730
    [62]LIAO X, NAWABY A V, WHITFIELD P, et al. Layered open pore poly (L-lactic acid) nanomorphology[J]. Biomacromolecules,2006,7(11):2937~2941
    [63]WANG J, ZHAI W, LING J, et al. Ultrasonic irradiation enhanced cell nucleation in microcellular poly (lactic Acid):A novel approach to reduce cell size distribution and increase foam expansion[J]. Industrial& Engineering Chemistry Research,2011,50(24): 13840-13870
    [64]FAN Y-B, LI P, ZENG L, et al. Effects of mechanical load on the degradation of poly (D, L-lactic acid) foam[J]. Polymer Degradation and Stability,2008,93(3):677~683
    [65]张薇,张丽叶.辐照诱导长支链聚乳酸的流变性能[J].中国塑料,2009,22(8):36--40
    [66]邢云杰.新型生物降解材料—含氢键聚乳酸的制备[J].上海氯碱化工,2006, (5):6-10
    [67]汪永斌,张丽叶.辐照改性制备长支链型高熔体强度聚丙烯流变性能(Ⅱ)拉伸流变[J].化工学报,2007,58(2):481~489
    [68]熊茂林,张丽叶.60Co-γ辐照改性法制备高熔体强度聚丙烯[J].中国塑料,2002,16(1):19~22
    [69]REIGNIER J, TATIBOU T J, GENDRON R. Effect of dissolved carbon dioxide on the glass transition and crystallization of poly (lactic acid) as probed by ultrasonic measurements[J]. Journal of Applied Polymer Science,2009,112(3):1345~1355
    [70]缪培凯,徐国亮,赵春娥.电子束辐照聚乳酸的热性能与结晶行为[J].高分子材料科学与工程,2009,25(5):93~95
    [71]何海霞,牛明军,陈金周.辐照L-型聚乳酸的结构与性能研究[J].包装工程,2007,28(8):25~27
    [72]YU L, LIU H, DEAN K, et al. Cold crystallization and postmelting crystallization of PLA plasticized by compressed carbon dioxide[J]. Journal of Polymer Science Part B:Polymer Physics,2008,46(23):2630-2636
    [73]李静莉,罗世凯,沙艳松.超临界流体微孔发泡塑料的研究进展[J].工程塑料应用,2012,40(3):109~113
    [74]程博,齐暑华,吴波.超临界C02发泡微孔塑料的研究进展[J].中国塑料,2010,24(12):14-20
    [75]孙晓辉,蔡永洪,聂小春.超临界C02微孔发泡影响因素研究进展[J].塑料科技,2012,40(9): 103~107
    [76]余坚,何嘉松.超临界C02技术制备微孔聚合物中的基本问题[J].中国科学:B辑,2010,(1): 1~15
    [77]洪浩群,何慧,贾德民.超临界C02微孔发泡塑料的研究进展[J].合成树脂及塑料,2011,28(3):73~77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700