用户名: 密码: 验证码:
微弧氧化电流脉冲电源及其负载电气特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弧氧化技术是近年来材料表面处理的一个重要研究内容,属于材料工程、电化学和电能变换技术研究的交叉领域,其氧化机理的不确定性和相关基础理论研究的薄弱导致了微弧氧化脉冲电源输出特性与其负载之间的不匹配,降低了电能转换效率和加工效率,从而所引起的高电能损耗限制了该技术的工业化推广应用。明确微弧氧化脉冲电源的负载电气特性、在此基础上设计与负载特性匹配的脉冲电源是降低微弧氧化电能损耗所亟待解决的工艺基础问题。本论文主要针对微弧氧化电流脉冲电源的设计及其负载的电气特性分析以及脉冲电源与其负载间的匹配技术进行了系统的研究。
     运用理论分析、实验研究和数值模拟相结合的方法,对微弧氧化脉冲电源的负载等效电路模型的建立和定量分析进行了深入研究。按照微弧氧化过程中放电原理和特性将完整的工艺过程划分为不同氧化阶段,通过电化学领域使用的电化学阻抗谱(EIS)研究方法,建立了微弧氧化脉冲电源负载在不同氧化阶段的电路模型,得出在脉冲电流作用下,微弧氧化电源负载本质上是容性负载,它在电路中可等效为阻容网络。
     根据微弧氧化工艺要求和脉冲电源的负载特性,提出了并联组合结构的方波电流脉冲电源方案,可实现脉冲宽度、幅值和频率的独立调节。设计了恒流特性BUCK型电路并联单元,通过各恒流单元间的均流并联,解决了输出电流幅值调节、功率控制和冗余的问题,有利于实现电源的模块化和大功率输出调节;采用电感短接作为能量存储和转换形式,使脉冲电源输出电流具有陡直前沿;针对开关损耗问题,运用缓冲型软开关技术,设计了无源缓冲型软开关电路,实现了零电流开通和零电压关断,降低了开关损耗,并改善了功率开关管的运行条件;针对脉冲电源各单元的功能和特点,在最大250kW等级,以PLC为核心设计了具有软启动、过压、过流和负载开路等保护功能的综合控制系统,为电源负载特性的深入研究以及国家重点工业性试验项目(PECC)的进行提供了必要条件。
     根据实验测量结果,分析了微弧氧化等效负载电路对电源输出脉冲幅值、频率、占空比等变化的响应规律;通过参数拟合的方法,结合氧化机理分析,建立了微弧氧化方波电流脉冲电源的负载电路模型,并进行了电路参数的定量表征;根据等效电路中的参数变化规律,对应得到了各个参数的具体物理意义;进行电路仿真分析,其结果与源于实际工况测量的响应特性和参数变化规律相吻合,为适于负载特性变化的微弧氧化脉冲电源及系统效率优化提供了设计依据和仿真研究条件。
     根据负载模型结构和定量参数,结合微弧氧化工艺实现条件,进行了电源脉冲作用效能分析,归纳了电源输出形式和波形参数对电能转化过程的影响规律。得出脉冲电流的前沿陡度对起弧速度具有决定性的影响;膜层击穿后仍然保持的电流既增加了系统的电能损耗,又是导致放电通道内的物质发生溅射的主要原因。在此基础上,对电源电流脉冲波形结构进行了优化,设计了具有电流尖峰形式输出的反激式电源实现方案,并进行了电源样机研制。通过仿真和实验,分别对方波脉冲电源和反激式脉冲电源进行功耗分析和对比,同时对本论文所建立的脉冲电源负载等效电路的合理性及其参数和反激式脉冲电源的优化效果进行了验证。为微弧氧化脉冲电源系统的优化设计提供了依据,进而为提高微弧氧化生产效率和电能转换效率提供了一种有效的方法。
Microarc oxidation (MAO) technology is an important research content of material surface modification that belongs to the crossing field of material engineering, electrochemical and power conversion technology. The uncertainty of oxidation mechanism and weakness of related basic theory research result in the mismatch between the output characteristics of MAO pulse power supply and its load which decrease the power conversion efficiency and machining efficiency. Induced high power consumption restricted the further research and industrial popularization and application of MAO technology. To definite the load characteristic of MAO pulse power supply and design the power supply matching to its load is the basic process problem to decrease the power consumption of MAO process. This paper carried on systematic researchs of the design and load electrical characteristic of MAO pulse power supply and the matching technology between power supply and its load.
     Firstly, this paper researched the modeling and quantitative analysis of the load equivalent circuit of MAO pulse power supply combining of theory analysis, experimental study and numerical simulation. According to the discharge principle and characteristic in MAO process, the whole oxidation process was divided into various stages. Load circuit models of MAO pulse power supply by stages were built using electrochemical impedance spectroscopy (EIS) research method. It was concluded that the load of MAO pulse power supply is essentially the capacitive load of oxidation film that can equivalent to a network of resistance-capacity structure under current pulse.
     Secondly, this paper designed the MAO square-wave constant current pulse power supply and researched its output forms and parameters design. A square-wave pulse power supply whose pulse width, amplitude and frequency can be regulated independently was put forward according to the requirements of MAO pulse power supply load characteristic and process. Paralleled unit structure BUCK-type circuit with constant current characteristic was designed. By parallel current sharing technology among constant current units, problems about amplitude regulation, capacity and redundancy were solved and modularization and high power output regulation of power supply were reached. Using inductance as the component of energy storage and conversion, pulse forming circuit was structured that can regulate the output frequency and pulse width and imply power supply to output pulse current with steep-wave rising edge. According to switching losses, a passive lossy buffer soft-switching circuit was designed to achieve ZCS and ZVS and decrease the switching loss and improve the operation condition of power switch tube. At maximum 250KV level, the parameters of main circuit and comprehensive control system with soft start and protection function to over voltage, over current and load open based on PLC were designed to prove the condition for the deep research of load characteristic and the implementation of natural important industry experiment project (PECC).
     Thirdly, voltage characteristics of equivalent load circuit to current pulse step were analyzed and the response of pulse power supply load to its output was researched. By parameter fitting, combined with oxidation mechanism analysis, the load model of MAO square-wave pulse power supply was built and circuit parameters were quantitative characterized. Specific physical significances of various parameters were gained corresponding according variation law of equivalent circuit parameters. Simulation analysis were carried out and its result same as the response characteristic and parameter variation law under practical condition. Above research prove supports to the design of MAO pulse power supply and system efficiency optimization technically and in theory.
     Finally, according to load model structure and quantitative parameters based on MAO process conditions, analysis about stress efficacy of power supply pulse and the effect of power supply output form and parameters to energy conversion law was inducted. Some conclusions were gained: the rising edge steepness of pulse current has decisive influence to arcing speed, keeping current after film breakdown increase the power loss of process system and result in the material sputtering from discharge channel. Current output form with steep-wave rising edge was put forward and flyback circuit with peak current form output was regulated. By simulation and experiment, power analysis and comparison between square-wave and flyback pulse power supply were carried out, the rationality of built pulse power supply load equivalent circuit and its parameters design were checked, and the matching relationship between the load model and the output form of pulse power supply were verified also. The research in this paper provided the foundation for the optimization of MAO pulse power supply, and it provided the method for the improvement of production efficiency and energy conversion efficiency in MAO process also.
引文
1严志军,朱新河,程东,等.低能耗铝合金表面微弧氧化工艺研究.第六届全国表面工程学术会议. 2006:972-997
    2蒋百灵,张先锋,朱静.铝、镁合金微弧氧化技术研究现状和产业化前景.金属热处理. 2004,29(1):23-28
    3严志军,朱新河,程东,等.影响铝合金微弧氧化成膜效率的因素分析.大连海事大学学报. 2007,33(4):113-117
    4 E. S. Karakozov, A. V. Chvdarov, N. V. Barykin.Microarc Oxidation– a Promising Method of Producing Ceramic Coatings. Welding International. 1994,8(3):218-222
    5 S. V. Gnedenkov, P. S. Gordienko, et al. Anticorrosion, Antiscale Coatings Obtained on the Surface of Aluminium Alloys by Microarc Oxidation Method. Corrosion. 2000,56(1):24-31
    6 A. Guntherschulze, H. Betz. Die Eletronenstromung in Isolatoren bei extremen Feldstarken.Z. Phys. 1934(91):70-96
    7 G. A. Markov. USSR Inventor’s Certificate no. 526961. Byull Izobret. 1976,32:163
    8 A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, et al. Discharge Characterization in Plasma Electrolytic Oxidation of Aluminium. J Phys D: Appl Phys. 2003,36:2110-2120
    9 T. B. Van, S. D. Brown, G. P. Wirtz. Mechanism of Anodic Spark Deposition.American Ceramic Society Bulletin. 1977,56(6):563-566
    10 S. Ikonopisov, A. Girgnivv, A. Machkova.Theory of Electrical Breakdown during Formation of Barrier Anodic Films. Electrochem. Acta. 1977,22(10):1077-1082
    11 J. M. Albella, I. Montero. A Theory of Avalanche Breakdown during Anodic Oxidation. Electrochemic Acta .1987,32(2):255-258
    12 A. L. Yerokhin, V. V. Lyubimov, R. V. Ashitkov.Phase Formation in Ceramic Coating during Plasma Electrolytic Oxidation of Aluminium Alloys. Ceramics International.1998,24(1):1-6
    13 A. V. Apelfeld, O. V. Bespalova, A. M. Borisov, et al.Application of theParticle Backscattering Methods for the Study of New Oxide Protective Coatings at the Surface of Al and Mg Alloys . Nulc. Instr. and Meth.2000,B161-163:553-557
    14 V. N. Malyshev, N. V. Malysheva. Proceedings of Russian Conference‘Anode’88’, KAI, Kazan, 1988, P.88, in Russian.
    15 P. A. Dearnley, J. Gummersbach, H. Weiss, et al. The Sliding Wear Resistance and Frictional Characteristics of Surface Modified Aluminum Alloys under Extreme Pressure, 1999, 225-229: 127-134
    16 S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, et al. Composition and Adhesion of Protective Coatings on Aluminum, Surf. Coat. Technol., 2001, 145: 146-151
    17 X. Nie, A. Wilson, A. Leyland, et al. Deposition of Duplex Al2O3/DLC Coatings on Al Alloys for Tribological Applications using a Combined Micro-arc Oxidation and Plasma-immersion Ion Implantation Technique, Surf. Coat. Technol. 2000, 121: 506-513
    18 J. Tian, Z. G. Luo, S. K. Qi, et al. Structure and Antiwear Behavior of Micro-arc Oxidized Coatings on Aluminum Alloy, Surf. Coat. Technol., 2002, 154: 1-7
    19 L. R. Krishna, K. R. C. Somaraju, G. Sundararajan. The Tribological Performance of Ultra-hard Ceramic Composite Coatings Obtained through Microarc Oxidation, Sur. Coat. Technol., 2003, 163-164: 484-490
    20 S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, et al. Wear- and Heat-Resistant Microplasma Protective Coatings on Aluminum, Protection of Metals, 1999, 35(5): 480-483
    21 S.V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, et al. Production of Hard and Heat-resistant Coatings on Aluminum using a Plasma Micro-discharge, Surf. Coat. Technol., 2000, 123: 24-28
    22 N. M. Chigrinova, V. E. Chigrinov, A. A. Kukharev. The Heat Protection of Highly Forced Diesel Pistons by Anodic Microarc Oxide Coating, Protection of Metals, 2000, 36(3): 269-274
    23 X. Nie, E. I. Meletis, J. C. Jiang, et al.Abrasive Wear/corrosion Properties and TEM Analysis of Al2O3 Coatings Fabricated Using Plasma Electrolysis, Surf. Coat. Technol., 2002,149: 245-251
    24 R.L. Twite, G.P. Bierwagen. Review of Alternatives to Chromate for Corrosion Protection of Aluminum Aerospace Alloys, Progress in Organic Coating, 1998, 33: 91-100
    25 K. Shimizu, G. M. Brown, K. Kobayashi, et al. A Route towards the Enhanced Understanding of the Corrosion and Filming and Filming Behavior of Aluminum and its Alloys, Corros. Sci., 1998, 40(7):1049-1072
    26 L. Anicai, A. Meghea, T. Visan. Analysis of Electrochemical Colored Aluminum Anodic Films in AgNO3-based Electrolytes by Diffuse Reflectance Spectra, Metal Finishing, 1998, 10: 10-13
    27 S. Yongqing. Electrolytic Coloring of Aluminum in Ferrous Sulfate Solution, Aluminum Finishing, 2000, 12: 61-62
    28 M. F. Shaffei, S.S Abd El-Rehim, N.A. Shaaban, et al. Electrolytic Coloring of Anodic Aluminum for Selective Solar Absorbing Films: Use of Additives Promoting Color Depth and Rate, Renwable Energy, 2001, 23:489-495
    29 P. S. Gordienko, S. V. Gnedenkov. Micro Arc Oxidation of Titanium and its Alloys, Dalnauka, Vladivostok, 1997 in Russian
    30 V. S. Rudnev, T. P. Yarovaya, D. L. Boguta, et al. The 3rd Russ.-Korean Intern. Symp. On Sci. and Technol., Novosibirsk, Russia, 22-25 June. Abstracts, 1999, 2:629-635
    31 Y. Han, S. H. Hong, K. Xu. Structure and in Vitro Bioactivity of Titania-based Films by Micro-arc Oxidation, Surf. Coat. Technol., 2003, 168:249-258
    32 A. G. Vlyssides, M. Loizidou, P. K. Karlis , et al. Electrochemical Oxidation of a Textile Dyewastewater using a Pt/Ti Electrode, J. Hazard. Mater. 1999, B70: 41-52
    33 X. H. Wu, Z. H. Jiang, H. L. Liu, et al. TiO2 Ceramic Films Prepared by Micro-plasma Oxidation Method for Photo Degradation of Rhodamine B, Mater. Chem. Phys. 2002(9722) :1-5
    34 A. G. Vlyssides, P. K. Karlis, N. Rori, et al. Electrochemical Treatment in Relation to pH of Domestic Wastewater Using Ti/Pt Electrodes, J. Hazar. Mater., 2002, B95: 215-226
    35 K. W. Kim, E. H. Lee, Y. J. Kim, et al. A Study on Characteristics of an Electrolytic–photo Catalytic Reactor Using an Anode Coated with TiO2, J.Photochem. Photobio. A:Chem., 2003, 161: 11-20
    36 X. Nie, A. Leyland, A. Matthews. Deposition of Layered Bioceramic Hydroxyapatite/TiO2 Coatings on Titanium Alloys Using a Hybrid Technique of Micro-arc Oxidation and Electrophoresis, Surf. Coat. Technol., 2000, 125:407-414
    37 X. G. Wang, F. Zhang, C. G. Li. Improvement of Blood Compatibility of Artificial Heart Valves via Titanium Oxide Film Coated on Low Temperature Isotropic Carbon, Surf. Coat. Technol. 2000, 128-129: 36-42
    38 Y. X. Leng, J. Y. Chen, Z. M. Zeng, et al. Properties of Titanium Oxide Biomaterials Synthesized by Titanium Plasma Immersion Ion Implantation and Reactive Ion Oxidation, Thin Solid Films, 2000, 377-378:573-577
    39 Y. X. Leng, P. Yang, J.Y. Chen, et al. Fabrication of Ti-O/Ti-N Duplex Coatings on Biomedical Titanium Alloys by Metal Plasma Immersion Ion Implantation and Reactive Plasma Nitriding/oxidation, Surf. Coat. Technol., 2001, 138: 296-300
    40 H. B. Hu, C. J. Lin, R. Hu, et al. A Study on Hybrid Bioceramic Coatings of HA-poly (vinyl acetate) Co-deposited Electrochemically on Ti–6Al–4V Alloy Surface, Mater. Sci. Eng., 2002, C20: 209-214
    41 H. B. Faramarz, O. Mohammad. Analysis of Thickness Dependence of the Sensitivity in Thin Resistive Gas Sensors, Sens. Actuators B, 2003, 6977:1-6
    42 Q. Fang, D.G. Chetwynd, J.A. Covington, et al. Micro-gas-sensor with Conducting Polymers, Sens. Actuators B, 2002, 84: 66-71
    43 X. Zhang, A. Mehra, A. A. Arturo, et al. Igniter and Temperature Sensors for a Micro-scale Combustion System, Sens. Actuators A, 2003,103:253-262
    44吴汉华.铝、钛合金微弧氧化陶瓷膜的制备表征及其特性研究.吉林大学博士学位论文. 2004
    45 V. I. Belevantsev, O. P. Terleeva, G. A. Markov, et al. Micro-plasma Electrochemical Process Review. Zashch Met, 1998,34(5):469
    46刘全心.电参数对镁合金微弧氧化膜层的显微结构和耐蚀性能的影响.华中科技大学硕士学位论文. 2005
    47姜兆华,李爽,姚忠平,等.电解液对微弧氧化陶瓷膜结构与耐蚀性的影响.材料科学与工艺. 2006,14(5):460-462
    48 I. Han, J. H. Choi, B. H. Zhao, et al. Micro-arc Oxidation in VariousConcentration of KOH and Structural Change by Different Cut off Potential. Current Applied Physics. 2007,(7):23-27
    49梁戈,赵仁兵,蒋百灵.电解液参数对铝合金微弧氧化黑色陶瓷膜性能的影响.材料热处理学报.2006,27(5):91-95
    50王亚明. Ti6Al4V合金微弧氧化涂层的形成机制与摩擦学行为.哈尔滨工业大学博士学位论文. 2006
    51 H. H. Wu, X. Y. Lu, X. Q. Wang, et al. The Effects of Cathodic and Anodic Voltage on the Characteristics of Porous Nanocrystalline Titania Coatings Fabricated by Microarc Oxidation.Mater Lett. 2005,59:370-375
    52 Y. L. Shi, F. Y. Yan, G. W. Xie.Effect of Pulse Duty Cycle on Micro-Plasma Oxidation of Aluminum Alloy.Mater Lett.2005,9(22):2725-2728
    53钟涛生,蒋百灵,李均明.微弧氧化技术的特点、应用前景及其研究方向.电镀与涂饰. 2005,24(6):47-50
    54王力霞,李廷刚,李淑华.微等离子体氧化技术的研究进展,有色金属, 2009,61(3):48-52
    55来永春,陈如意.微弧氧化镀覆金属表面的方法及装置.中国专利: 1311354A, 2001-09-05
    56张荣发,单大勇,韩恩厚.一种耐蚀性镁合金微弧氧化电解液及其微弧氧化方法.中国专利: 1796613A, 2006-07-05
    57贲洪奇,姜兆华,李延平,等.用于微弧氧化的高频大功率多波形电源.中国专利: 1523745 A, 2004-08-25
    58 Y. Han, S. H. Hong, K. W. Xu. Porous Nanocrystalline Titania Films by Plasma Electrolytic Oxidation. Surf. Coat. Technol., 2002 (154): 314-318
    59 Y. Han, S. H. Hong, K. W. Xu. Synthesis of Nanocrystalline Titania Films by Micro-arc Oxidation. Mater. Lett., 2002(56):744-747
    60吴晓宏,石连升,秦伟,等.钛表面原位生长TiO2膜及其光催化活性.哈尔滨工业大学学报, 2006,38(11):1919-1922
    61 W. B. Xue, C. Wang, R. Y. Chen, et al. Structure and Properties Characterization of Ceramic Coatings Produced on Ti–6Al–4V Alloy by Microarc Oxidation in Aluminates Solution. Mater. Lett., 2002(52):435-441
    62李鹤岐,赵介勇,李春旭,等.大功率微弧氧化电源的研制—主电路的设计.电焊机, 2005, 35(11):15-18
    63任文平.中频高压直流发生器的研制.西安交通大学硕士学位论文. 2001
    64 A. K. Vijh. Corros.Sci.1971(11):411
    65 J. Yahalon, Proc. Shmp. Oxide-Electrolyte Interfaces. The Journal Electrochem. Inc.1973
    66 T. B. Van. Am. Ceramic. Soc. Bulletin. 1977.56(6):563-566
    67 J. M. Albella, I. Montero, J. M. Martinez-Duart. Electro Induction and Avalanche during the Anodic Oxidation of Tantalum. J Fleetrochow. Sol. 1984, 131(5):1101-1104
    68张新平,熊守美,许庆彦,等.微弧氧化工艺参数对覆盖层厚度的影响规律模型,材料保护. 2004, 37(8):19-20
    69白基成,郭永丰,李立青,等.双极性微弧氧化脉冲电源加工LY12铝合金工艺试验研究.中国机械工程, 2008,19( 11):1274-1277
    70张荣发,单大勇,韩恩厚,等.电流模式对镁合金微弧氧化膜性能的影响.稀有金属材料与工程, 2006,35(9):1392-1395
    71 Z. J. Yan, X. H. Zhu, D. Cheng, et al. The Study on The Deposition Efficiency of Microarc Oxidation on Aluminum Alloy. Key Engineering Materials. 2008,v373-374:269-272
    72陈宏,冯忠绪,郝建民,等.负脉冲对铝合金微弧氧化的影响.长安大学学报(自然科学版), 2007,27(1):96-98
    73吴汉华,汪剑波,龙北玉,等.电流密度对铝合金微弧氧化膜物理化学特性的影响.物理学报, 2005,54(12):5743-5749
    74 A.V. Timoshenko, V. Yu. Magurova. Investigation of Plasma Electrolytic Oxidation Processes of Magnesium Alloy MA2-1 under Pulse Polarisation Modes. Surface and Coatings Technology. 2005,v199,n2-3:135-140
    75王亚明,蒋百灵,郭立新,等.磷酸盐系溶液中钛合金微弧氧化涂层生长与组织结构.中国有色金属学报, 2004,14(4):548-553
    76 P. Huang, K. W. Xu, Y. Han. Study of the Elastic Modulus of the Micro-arc Oxidation Layer in Different Electrolytes. Journal of Advanced Materials, 2007,39(2):37-40
    77蒋百灵,张先锋.不同电导率溶液中镁合金微弧氧化陶瓷层的生长规律及耐蚀性.稀有金属材料与工程, 2005,34(3):393-396
    78 J. F. Sun, Y. Han, X. Huang. Hydroxyapatite Coatings Prepared by Micro-arc Oxidation in Ca- and P-containing Electrolyte. Surface and Coatings Technology, 2007, v 201, n 9-11 SPEC. ISS., p5655-5658
    79王亚明,蒋百灵,雷廷权,等.电参数对Ti6Al4V合金微弧氧化陶瓷膜结构特性的影响.无机材料学报, 2003,18(6):1325-1330
    80 A. L. Yerokhin, A. Shatrov, V. Samsonov, et al.Oxide Ceramic Coatings on Aluminium Alloys Produced by a Pulsed Bipolar Plasma Electrolytic Oxidation Process. Surface and Coating Technology, 2005(199): 151
    81 F. Y. Jin, P. K. Chu, G. D. Xu, et al. Structure and Mechanical Properties of Magnesium Alloy Treated by Micro-arc Discharge Oxidation Using Direct Current and High-frequency Bipolar Pulsing Modes. Materials Science and Engineering A, 2006,v 435-436, n5, p123-126
    82张荣发,单大勇,陈荣石,等.电参数对镁合金微弧氧化膜厚度的影响.中国有色金属学报, 2007,17(10):1574-1579
    83李全军,吴汉华,汪剑波,等.脉冲频率对纯钛微弧氧化膜生长特性的影响.无机材料学报, 2006,21(2):488-492
    84王亚明,雷廷权,蒋百灵,等.交流窄脉冲占空比调制对钛合金微弧氧化陶瓷涂层的影响.稀有金属材料与工程, 2005,34(2):329-333
    85徐桂东,沈丽如,李炯.直流和直流脉冲电源对镁合金微弧氧化膜层性能的影响.材料保护, 2007,40(6):42-44
    86谢发勤,陈仲昌,胡宗纯,等.电流密度对Ti6Al4V微弧氧化膜形貌和性能的影响.电镀与环保, 2007,27(3):31-34
    87 H. F. Guo, M. Z. An. Growth of Ceramic Coatings on AZ91D Magnesium Alloys by Micro-arc Oxidation in Aluminate-fluoride Solutions and Evaluation of Corrosion Resistance. Applied Surface Science, 2005, v246(6),n1-3:229-238.
    88王乃丹,龙北玉,吴汉华,等.单极性脉冲电流密度对铝合金MAO膜相结构和微结构的影响.吉林大学学报(理学版), 2005,43(5):645-649
    89魏同波,张学俊,王博,等.电流密度对铝合金微弧氧化膜的生长及结合力的影响.材料保护. 2004,37(4):4-6
    90郭洪飞,安茂忠,徐莘,等.电流密度对镁合金微弧氧化过程及氧化陶瓷膜性能的影响.稀有金属材料与工程, 2005,34(10):1554-1557
    91 G. L. Yang, X. Y. Lu, Y. Z. Bai, et al. The Effects of Current Density on the Phase Composition and Microstructure Properties of Micro-arc Oxidation Coating. Journal of Alloys and Compounds. 2002,34(5):196-200
    92蒋百灵,白力静,蒋永锋.铝合金微弧氧化陶瓷层组织结构与性能的研究.中国机械工程, 2001,12(3):331-333
    93辛铁柱,赵万生,刘晋春.电源参数对铝合金表面微弧氧化陶瓷膜的影响研究. 2005年中国机械工程学会年会论文集:489-486
    94贺永胜,赵志龙,刘一洋,等.铝合金微弧氧化热力学机理及影响因素的分析.电镀与环保, 2005,25(6):38-40
    95王燕华,王佳,张际标.镁合金微弧氧化过程中不同电压下获得膜层的性能研究.中国腐蚀与防护学报, 2005,25(5):267-270
    96 D. Q. Wei, Y. Zhou, D. C. Jia, et al. Influence of Applied Voltage on the Structure of Micro-plasma Oxidized Titania-based Coatings Formed in an Electrolyte Containing Nano-HA and Calcium Salts and Phosphate. Key Engineering Materials. 2008,v368-372,p1209-1211
    97朱瑞富,王志刚,肖桂勇,等.电极电压对纯钛表面微弧氧化陶瓷膜结构及特性的影响.硅酸盐学报, 2008,36(5):631-635
    98 H. H. Wu, X. Y. Lu, X. Q. Wang, et al. The Effects of Cathodic and Anodic Voltage on the Characteristics of Porous Nanocrystalline Titania Coatings Fabricated by Microarc Oxidation.Mater. Lett., 2005(59):370-375
    99张菊梅,王志虎,蒋百灵.脉冲频率对钛合金微弧氧化膜/环氧树脂结合强度的影响.西安科技大学学报, 2006,26(3):362-365
    100张以忱,徐辉,杨英福.铝合金表面微弧氧化脉冲频率优化研究.第八届全国真空冶金与表面工程学术会议论文集:33-40
    101李颂,刘耀辉,庞磊.电源频率对铸铝合金微弧氧化陶瓷层的影响.材料科学与工艺, 2008,16(2): 287-289
    102翁海峰,陈秋龙,蔡珣.脉冲占空比对纯铝微弧氧化膜的影响.表面技术, 2005,34(5): 59-62
    103 Inho. Han, J. H. Choi, B.H. Zhao, et al. Changes in Anodized Titanium Surface Morphology by Virtue of Different Unipolar DC Pulse Waveform.Surface and Coatings Technology. 2007,201(9-11): 5533-5536
    104胡宗纯,谢发勤,吴向清.不同控制方式下占空比对钛合金微弧氧化膜的影响.电镀与环保, 2006,26(5):23-25
    105吕维玲,陈体军,马颖,等. AZ91D镁合金恒定小电流密度微弧氧化工艺.中国有色金属学报, 2008, 18(9): 1590-1595
    106 Y. M. Wang, D. C. Jia, L. X. Guo, et al.Effect of Discharge Pulsating on Microarc Oxidation Coatings Formed on Ti6Al4V Alloy. MaterialsChemistry and Physics, 2005, 90(10): 128-133
    107钟涛生,蒋百灵,易茂中.能量参数对黑色微弧氧化陶瓷膜结合力的影响.材料保护, 2008,41(04):18-20
    108王燕华,王佳,张际标. AZ91D镁合金微弧氧化过程中的火花放电现象研究.中国腐蚀与防护学报, 2006,26(5):267-271
    109 G. Sundararajan, L. R. Krishna. Mechanisms Underlying the Formation of Thick Alumina Coatings through the MAO Coating Technology. Surface and Coatings Technology. 2003, (167):269-274
    110绕国才,张益平.广义软开关变换器的原理及其实现. 2000年中国电源新技术及应用研讨会论文集:202-208
    111郭长林,刘军军.高可靠性BUCK高频直流变换器中的设计考虑.第一届中国国际电源新技术研讨会论文集. 1999, 43-44
    112 P. L. Bonora, Deflorian, L. Fedrizzi. Electrochemical Impedance Spectroscopy as a Tool for Investigating Underpaint Corrosion. Electrochimica Acta. 1996(41):1073-1082

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700