用户名: 密码: 验证码:
宁夏河东灌区浅层地下水动态特征与仿真模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水动态研究是认识地下水资源形成、演化以及揭示地下水系统内部状态特征的有效途径。宁夏河东灌区是我国西北内陆干旱区典型的引黄灌溉区域,长期引黄灌溉引发的一系列生态环境问题已成为制约当地社会经济可持续发展的重要瓶颈,因而对该区域地下水进行研究,深刻认识和掌握地下水动态变化特征,并在此基础上进行仿真模拟和预测,对于促进区域地下水问题的解决和合理开发、管理地下水资源具有重要意义。
     本文通过野外调查和室内资料整理,分析了河东灌区含水层结构和地下水补给、径流、排泄特征;利用收集的长观资料分析了地下水动态的一般特征及其影响因素。根据灌区地下水收支项资料,采用水均衡法对灌区地下水均衡进行了计算和分析。在GIS技术支持下,计算了研究区不同时间尺度地下水位过程线的分维数,运用地统计学方法分析了灌区地下水位的空间变异特征,采用普通克里格法进行了空间插值,得到不同时期地下水位的空间分布图并进行了具体比较分析。在MATLAB平台下,建立了BP-ANN地下水动态仿真模型,并对不同情景下的地下水埋深进行了预测。主要结论如下:
     (1)地下水动态的一般特征
     河东灌区浅层地下水动态类型为灌溉-蒸发型,由于受引黄灌溉影响,不同区域地下水位的年际变化存在明显的周期性,年际动态稳定,年内波动较大;引水量、排水量等人为因素是地下水动态的主要影响因子,气象因子如降水量、气温、日照时数等由于时空分布不均,其对地下水位的影响不同区域存在差异;均衡期内河东灌区地下水为正均衡,相对均衡差为1.04%,基本处于均衡状态。
     (2)地下水位的分形特征与空间变异
     河东灌区年际地下水位过程线分维数值域在1-1.1之间,年内分维数接近于1,说明研究区地下水位过程线在时空上分配的不规则性和复杂程度均较小。虽存在一定区域差异,但总体来说地下水动态变化并不剧烈。
     河东灌区地下水位样本近似呈正态分布,在东西方向呈明显的“U”型趋势,在南北方向呈稳定的线性趋势;变异分析表明,结构性因子对地下水位空间变异性的影响在减弱,人类活动如灌溉、地下水开采等影响增强;地下水位具有强烈的空间相关性,地下水埋深越浅,这种相关性就越大;自然状态下地下水位的空间相关性较小,灌溉可以使其显著增强;普通克里格插值表明,灌区2000-2010年间地下水位年际变幅较小,年内变化较大。
     (3)地下水动态仿真模拟与预测
     BP-ANN地下水动态仿真模型较全面地反映了地下水位动态变化特征,具有较高的泛化能力,可以用于灌区地下水动态变化预测;模型预测结果表明,在引水量减少和日照时数增加时,地下水位明显下降,但日照时数增加的影响较引水量减少的影响显著;当引水量增加、日照时数减少时,地下水位明显上升,但引水量增加上升的幅度远高于日照时数;引黄水量对河东灌区浅层地下水具有显著的“补源”作用,在未来引黄水量大幅削减的情况下,将直接影响地下水埋深,因此,在未来继续实施水权转换和节水改造过程中,应充分考虑引黄水量对地下水的补给作用,将河东灌区引黄水量保持在年均9亿m3左右可以保证适宜的地下水埋深。
The study of groundwater dynamic is an effective way to awareness of groundwater resources in the formation, evolution and reveals the internal state characteristics of the groundwater system. Hedong Irrigation District in Ningxia Hui Autonomous Region is situated in the northwest of China, a typical irrigation area of arid region. Eco-environment issues caused by long-term irrigation have become a restraining factor for social and economic development. In order to address the problem of regional groundwater, exploit reasonably and manage the groundwater resources, it is important to study the regional groundwater regime, understand the dynamic characteristics of groundwater, simulation and forecast groundwater dynamic.
     In this paper, the author analyzed the structure of groundwater aquifer, characteristics of recharge, runoff and discharge, combined with field survey and second-hand data. Based on long-term monitoring data, the groundwater dynamic and influencing factors were analyzed, and groundwater balance in target area was calculated. Supported by GIS technology, the fractal dimension of groundwater level on different time scale was calculated. Then the spatial variability of groundwater level was analyzed using geostatistics method, and the different period of groundwater level maps were made by ordinary Kriging interpolation. In MATLAB platform, the BP-ANN groundwater dynamic simulation model was established and used to predict the groundwater table under the different scenario. The main conclusions were summarized as follows:
     (1)General Characteristics of Groundwater Dynamic
     The dynamic type of shallow groundwater in Hedong Irrigation District is irrigation-evaporation. Due to the effect of irrigation, the change of groundwater level in distinct zone exist obvious periodicity, which steady in inter-annual and fluctuate largely in one year. Man-made factors such as diverted water volume and displacement are the main influence factors for groundwater dynamic. Meteorological factors such as precipitation, temperature, sunshine hours distributed unevenly in area and time, and its affect on groundwater level are distinct in different areas. In Hedong Irrigation District, groundwater dynamic is proper equilibrium during equilibrium period, the relatively balanced deviation is1.04%, and in a state of equilibrium basically.
     (2)Fractal Characteristics and Spatial Variation of Groundwater Level
     Fractal dimension of inter-annual groundwater level hydrograph in Hedong Irrigation District was between1and1.1, and it was close to1for the year, which indicated the level of distribution of groundwater irregularities and complexity were small in time and space. The complexity of groundwater dynamic process was difference in unlike regions, but the changes were not severe on the whole.
     There was a normal distribution of groundwater level sample in Hedong Irrigation District was obviously U trends in the east-west direction, and direction of stable linear trend in the north-south. The result of variability analysis showed that the structural factors influenced on the spatial variability of groundwater level were weakening, and human activities such as irrigation, groundwater exploitation were strengthening. Groundwater level had a strong spatial correlation and the more groundwater depth was shallow, the more correlation was enhanced. Spatial correlation that in natural state was small that was remarkable increased by irrigation. Ordinary Kringing interpolation showed that the inter-annual change of groundwater level was small and was comparatively large for the year in Hedong Irrigation District.
     (3)Simulation and Prediction of Groundwater Dynamic
     Simulation model of BP-ANN on groundwater dynamic with high generalization capability reflected the characteristics of change about groundwater level dynamic comprehensively, which could be used to predict the change of groundwater dynamic in Hedong Irrigation District. The results of model prediction showed that groundwater level significantly dropped when diverted water volume reduced and sunshine hours increased, but the effect of increase on sunshine hours was more remarkable than increase of diverted water volume. When diverted water volume increased and sunshine hours reduced, groundwater level was significantly increased but the influence of rise range of groundwater level on increase of diverted water volume was much higher than that sunshine hours. It was obvious that diverted water volume had a function of recharge on shallow groundwater in Hedong Irrigation District, which in the future diverted water volume sharply cut would have a directly influence on the groundwater depth. Therefore, to implement the conversion of water rights and water-saving transformation process continually in the future, the effect of diverted water volume to groundwater recharge should be given full consideration, and it is appropriate that diverted water volume from Yellow River keeping in900million m3can ensure appropriate groundwater depth.
引文
③参考《宁夏地下水资源》,张黎,王利等编著,2003年。
    [1]李九一,李丽娟.中国水资源对区域社会经济发展的支撑能力[J].地理学报.2012,67(3):410-419.
    [2]刘记来,庞忠和,王素芬等近30年来降水量变化和人类活动对北京潮白河冲洪积扇地下水动态的影响[J].第四纪研究.2010,30(1):138-144.
    [3]Bouchard DC, Williams MK, Surampalli RY. Nitrate contamination of groundwater sources and potential health effects[J]. Journal of the American Water Works Association.1992,84(9):85-90.
    [4]Alabdulaaly AI. Nitrate concentrations in Riyadh, Saudi Arabia drinking water supplies[J]. Environmental monitoring and assessment.1997,47(3):315-324.
    [5]贾瑞亮,周金龙,李巧.我国气候变化对地下水资源影响研究的主要进展[J].地下水.2012,34(1):1-4.
    [6]王金哲,张光辉,母海东等浅层地下水补给对人类活动影响的响应特征研究[J].地球学报.2010,31(4):557-562.
    [7]孙月,毛晓敏,杨秀英等西北灌区地下水矿化度变化及其对作物的影响[J].农业工程学报.2010,26(2):103-108.
    [8]杨晓婷,张徽,王文科等地下工程建设对城市地下水环境的影响分析[J].铁道工程学报.2008,122(11):6-10.
    [9]胡卸文,宋大各,王帅雁等京沪高铁沿线某地地下水开采与地面沉降关系分析[J].岩石力学与工程学报.2011,30(9):1738-1746.
    [10]张林洪,王甦达,唐正光等山区公路工程建设对地下水渗流的影响[J].地质灾害与环境保护.2009,19(4):81-86.
    [11]罗兰.我国地下水污染现状与防治对策研究[J].中国地质大学学报:社会科学版.2008,8(2):72-75.
    [12]Maxwell RM, Kollet SJ. Interdependence of groundwater dynamics and land-energy feedbacks under climate change[J]. Nature Geoscience.2008,1(10):665-669.
    [13]中国地下水科学战略研究小组编.中国地下水科学的机遇与挑战[M].北京:科学出版社.2009.
    [14]仵彦卿,李俊亭.地下水动态研究现状与展望[J].长安大学学报(地球科学版).1992,14(4):58-64.
    [15]于艳青,余秋生,薛忠歧等同位素技术判定银川平原地下水补给模式[J].宁夏工程技术.2005,4(3):208-212.
    [16]孙亚乔,钱会,张黎等银川地区地下水环境演化[J].干旱区资源与环境.2006,20(5):51-55.
    [17]薛奇.银川平原地下水补径排特征及其变化规律[J].地质灾害与环境保护.2011,22(1):56-62.
    [18]韩宇平,许拯民,蒋任飞.银川平原地下水流的数值模拟[J].西北农林科技大学学报.2007,35(12):222-226.
    [19]任立新,孙洪宝.青铜峡河东灌区水文地质参数分析[J].甘肃水利水电技术.2000,36(4):281-283.
    [20]史彦文.宁夏青铜峡灌区退水规律研究[D].西安:西安理工大学.2005.
    [21]赵新宇,费良军.LM算法的神经网络在灌区地下水位预测中的应用研究[J].沈阳农业大学学报.2006,37(2):213-216.
    [22]石建勋,刘新荣,王艳芳等基于BP神经网络方法计算灌区农业耗水量的研究[J].工程勘察.2011,39(5):41-46.
    [23]张元禧,施鑫源.地下水水文学[M].北京:中国水利水电出版社.1998.
    [24]张文鸽,黄强,佟春生.基于混沌优化的支持向量机地下水位动态预测[J].资源科学.2007,29(5):105-109.
    [25]王仕琴,宋献方,王勤学等华北平原浅层地下水水位动态变化[J],地理学报.2008,63(5):462-472.
    [26]张盼,刘文兆.应用时间序列模型分析长武塬区地下水水位的变化特征[J].水土保持研究.2010,17(3):22-27.
    [27]连英立,张光辉,聂振龙等西北内陆张掖盆地地下水温度变化特征及主要影响因素识别 [J].干旱区地理.2011,34(3):391-399.
    [28]蒋中明,冯树荣,曾铃等水封油库地下水位动态变化特性数值研究[J].岩土工程学报.2011,33(11):1780-1785.
    [29]魏国孝,王德军,工刚等GIS技术和FEFLOW在酒泉东盆地地下水系统数值模拟中的应用[J].兰州大学学报:自然科学版.2008,43(6):1-6.
    [30]孙栋元,赵成义,魏恒等台兰河流域地下水系统数值模拟[J].自然资源学报.2010,25(4):636-645.
    [31]刘玉邦,梁川.地下水动态水位预测的非线性PLSR方法[J].武汉理工大学学报.2010,32(13):127-130.
    [32]郭瑞,冯起,翟禄新等改进型BP神经网络对民勤绿洲地下水位的模拟预测[J].中国沙漠.2010,30(3):737-741.
    [33]张小娟,蒋云钟,秦长海等时间序列分析在地下水位预报中的应用[J].南水北调与水利科技.2007,5(4):40-42.
    [34]刘东,张健,付强.基于连续小波变换与分形理论的三江平原井灌区地下水埋深序列复杂性研究[J].水土保持研究.2011,18(2):116-120.
    [35]杨自辉,方峨天,刘虎俊等民勤绿洲边缘地下水位变化对植物种群生态位的影响[J].生态学报.2007,27(11):4900-4906..
    [36]高鸿永,伍靖伟,段小亮等地下水位对河套灌区生态环境的影响[J].干旱区资源与环境.2008,22(4):134-138.
    [37]赵辉,陈文芳,崔亚莉.中国典型地区地下水位对环境的控制作用及阈值研究[J].地学前缘.2010,17(6):159-165.
    [38]杨会峰,张发旺,王贵玲等河套平原次生盐渍化地区地下水动态调控模拟研究[J].南水北调与水利科技.2011,9(3):63-67.
    [39]张双凤,孙晴,张小涛.邯郸地形变与地下水位动态相互关系研究[J].西北地震学报.2009,31(4):367-373.
    [40]王广才,沈照理.地震地下水动态监测与地震预测[J].自然杂志.2010,32(2):90-92.
    [41]尹宝军.唐山井地下水动态特征研究[Jl.国际地震动态.2011,(3):34-35.
    [42]杨旭,黄家柱,杨树才.地下水动态监测的三维可视化初步研究[J].水文.2006,26(4):47-50.
    [43]董殿伟,林沛,晏婴等北京平原地下水水位监测网优化[J].水文地质工程地质.2007,34(1):10-19.
    [44]郭燕莎,王劲峰,殷秀兰.地下水监测网优化方法研究综述[J].地理科学进展.2011,30(9):1159-1166.
    [45]周仰效,李文鹏.区域地下水位监测网优化设计方法[J].水文地质工程地质.2007,34(1):1-9.
    [46]Mackay DM, Freyberg D, Roberts P et al. A natural gradient experiment on solute transport in a sand aquifer,1. Approach and overview of plume movement[J]. Water Resources Research.1986, 22(13):2017-2029.
    [47]LeBlanc DR, Garabedian SP, Hess KM et al. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts:1. Experimental design and observed tracer movement[J]. Water Resources Research.1991,27(5):895-910.
    [48]Boggs JM, Young SC, Beard LM et al. Field study of dispersion in a heterogeneous aquifer:1. Overview and site description[J]. Water Resources Research.1992,28(12):3281-3291.
    [49]Zheng C, Gorelick S. Analysis of the effect of decimeter-scale preferential flow paths on solute transport[J]. Ground Water.2003,41(2):142-155.
    [50]Freeze RA, Witherspoon PA. Theoretical analysis of regional groundwater flow:1. Analytical and numerical solutions to the mathematical model[J]. Water Resources Research.1966,2(4): 641-656.
    [51]Anderson MP, Woessner WW. Applied groundwater modeling:simulation of flow and advective transport[M]. New York:Academic Press Inc,1992:145-152.
    [52]Fagherazzi S, Furbish DJ, Rasetarinera P et al. Application of the discontinuous spectral Galerkin method to groundwater flow[J]. Advances in water resources.2004,27(2):129-140.
    [53]Chenini I, Ben Mammou A. Groundwater recharge study in arid region:An approach using GIS techniques and numerical modeling[J]. Computers & Geosciences.2010,36(6):801-817.
    [54]孙讷正.地下水流的数学模型和数值方法[M].北京:地质出版社.1981.
    [55]李俊亭.地下水流数值模拟[M].北京:地质出版社.1989.
    [56]林学钰.地下水污染模拟及污染控制和处理工程[M].长春:吉林科技出版社.1994.
    [57]薛禹群,谢春红.地下水数值模拟[M].北京:科学出版社.2007.
    [58]宁立波,董少刚,马传明.地下水数值模拟的理论与实践[M].武汉:中国地质大学出版社.2010.
    [59]Li SG, McLaughlin D, Liao HS. A computationally practical method for stochastic groundwater modeling[J]. Advances in water resources.2003,26(11):1137-1148.
    [60]Narasimhan T, Witherspoon P. An integrated finite difference method for analyzing fluid flow in porous media[J]. Water Resources Research.1976,12(1):57-64.
    [61]Sato T, Kojima J, Loaiciga HA. Multicell model for ground water recharge analysis:The Ibi River basin, Japan[J]. Ground Water.1999,37(1):58-69.
    [62]Rozos E, Koutsoyiannis D. Error analysis of a multi-cell groundwater model[J]. Journal of Hydrology.2010,392(1):22-30.
    [63]方乐润,施鑫源,陈绍玉.应用时间序列分析法模拟地下水资源系统[J].河海大学学报.1990,8(6):85-91.
    [64]杨金忠,蔡树英.地下水动态预报的多层递阶组合模型[J].水科学进展.1995,6(2):101-106.
    [65]吴东杰,王金生,滕彦国.小波分解与变换法预测地下水位动态[J].水利学报.2004,5(5):39-42.
    [66]廖伙木,董增川,束龙仓等地下水位预报中的组合时间序列分析法[J].山东大学学报(工学版).2008,38(2):96-100.
    [67]蔡明科,胡国杰,许义和.基于混沌时间序列的地下水动态预报[J].水资源与水工程学报.2010,21(5):106-108.
    [68]薛联青,程光.区域地下水位预报的季节型神经网络模型[J].水科学进展.2002,13(4):473-477.
    [69]邱林,胡庆和,冯丽云等改进RBF神经网络在地下水动态预报中的应用[J].华北水利水电学院学报,2004,25(2):1-3.
    [70]陈伟韦,卢文喜,柳大伟等Elman神经网络在地下水动态预测中的应用[J].吉林大学学报:地球科学版.2008,36(S1):43-46.
    [71]徐强,束龙仓,杨桂莲等基于遗传算法优化的小波神经网络在地下水位预测中的应用[J].水文.2010,(1):27-30.
    [72]王景雷,吴景社,孙景生等支持向量机在地下水位预报中的应用研究[J].水利学报.2003,(5):122-128.
    [73]王文圣,廖杰,丁晶.浅层地下水位预测的小波网络模型[J].土木工程学报.2004,37(12):62-66.
    [74]孙金丹,于兴杰,畅建霞等基于灰色马尔柯夫预报模型地下水动态预报研究[J].地下水.2008,30(1):1-3+11.
    [75]张黎,王利,王红英等宁夏地下水资源[M].银川:宁夏人民出版社.2003.
    [761中国地质调查局编.银川平原地下水资源合理配置调查评价[M].北京:地质出版社.2008.
    [77]耿侃,单鹏飞.银川地区:过去、现在及未来——晚第四纪地理环境演变的过程、特征和规律[M].北京:测绘出版社.1992.
    [78]刘光龙,王芳,张建明.基于水足迹估算的银川市水资源利用研究[J].宁夏大学学报(自然科学版).2012,33(2):1-5.
    [79]黄晓荣,汪党献,裴源生.宁夏国民经济用水投入产出分析[J].资源科学.2005,27(3):135-139.
    [80]阮本清,许凤冉,蒋任飞.基于球状模型参数的地下水水位空间变异特性及其演化规律分析fJl.水利学报.2008,39(5):573-579.
    [81]徐建华.地理建模方法[M].北京:科学出版社.2010.
    [82]朱大奇.人工神经网络研究现状及其展望[J].江南大学学报(自然科学版).2004,3(1):103-110.
    [83]刘国东,丁晶.BP网络用于水文预测的几个问题探讨[J].水利学报.1999,1(11):65-70.
    [84]阮本清,韩宇平,蒋任飞.灌区生态用水研究[M].北京:中国水利水电出版社.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700