用户名: 密码: 验证码:
微晶化对钾矿粉钾素释放的影响及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
难溶性钾矿粉直接施用可以促进植物生长发育并提高土壤养分含量,对酸性土壤改良也有一定的意义。与传统钾肥相比,钾矿粉中有效养分含量低,释放缓慢,施用量大,造成农学效果不明显,从而限制了难溶性钾矿粉大面积推广与应用。因此,如何促进钾矿粉中元素的释放则成为利用难溶性钾矿资源的关键。本研究利用机械力活化技术对钾长石和白云母进行改性处理,系统的研究了机械力活化对钾矿粉物理化学性质及矿质元素溶出的影响;同时以籽粒苋为研究对象,采用砂培和土培两种方式,深入的研究了活化钾矿粉对籽粒苋生长发育及土壤理化性质的影响。主要研究结果如下:
     1.在一定时间内,强机械力作用改善了钾矿粉的物理性质,具体表现为:钾矿粉颗粒粒径显著降低,粒度分布变窄,比表面积增大,表面形貌得到改善,晶格结构受到破坏,无序化程度提高。其中在相同研磨条件下,钾长石粉的这种有利变化强于白云母粉。
     2.强机械力作用促进了钾矿粉中矿质元素的溶出,随着研磨时间的延长, K、Na、Si、Al、Ca、Mg和Fe元素单次释放量均显著增大,这主要是由于钾矿粉物理性质改善造成的。其中,在研磨120min时各矿质元素的单次释放量均达到最大值。两种钾矿粉相比,除Na元素外,同一处理白云母粉中矿质元素的释放量均高于相对应的钾长石粉。
     3.浸提试验表明,强机械力作用促进了钾矿粉中钾素的积累,其中研磨120min时钾长石粉和白云母粉分别较未研磨原矿增加了7.14倍和3.44倍,差异显著。两种钾矿粉间相比,白云母粉钾素累积释放量明显高于钾长石粉。从钾素浸提率上看,研磨120min钾长石粉和白云母粉酸浸提率分别为7.50%和15.21%,表明大部分钾素仍被含钾矿物固有晶格束缚。运用灰色关联法对影响钾矿粉钾素释放的因素分析表明,同一种矿物,有效比表面积是决定钾矿粉钾素释放的关键因素。
     4.砂培籽粒苋试验表明,强机械力作用提高了钾矿粉的生物有效性。与无钾营养液处理相比,施用钾矿粉促进了籽粒苋植株的生长及对营养元素的吸收,且随着研磨时间的延长,籽粒苋植株生长的这种有利趋势就越明显。相同处理条件下,白云母粉的生物有效性强于钾长石粉,但两种钾矿粉处理籽粒苋生长状况与元素吸收量均低于全钾营养液处理。
     5.盆栽籽粒苋试验表明,施钾促进了籽粒苋的生长发育及对营养元素的吸收和利用,还提升了籽粒苋牧草的品质。各施钾处理中,微晶化钾矿粉对促进籽粒苋生长的效果好于普通钾矿粉;施用白云母粉的效果均好于相对应的钾长石粉处理;增施钾矿粉或配施钾矿粉对促进籽粒苋生长的效果均优于单倍独施钾矿粉处理。因此,合理施用钾矿粉可以促进植物的生长发育,对于缓解我国钾素匮乏矛盾有一定积极的作用。
     6.盆栽籽粒苋试验还表明,施用钾矿粉提高了籽粒苋栽培土壤中的钾素含量,还增加了土壤EC值和pH值,这对于维持土壤钾库平衡和改良酸性土壤有积极的意义。总的来看,各施钾处理中,微晶化钾矿粉对促进土壤钾素含量增加和改良土壤性质的效果要好于普通钾矿粉。配施钾矿粉和增施钾矿粉对土壤速效钾和缓效钾增加效果均优于单倍独施钾矿粉处理,且增施钾矿粉后对土壤改良的效果更佳。常规钾肥与钾矿粉按照一定比例配施,既能够满足作物的生长需求,同时也可以解决水溶性钾素易淋失和土壤酸化等问题。
Application of the insoluble potassium ore have stimulated plant growth, improved soilnutrients content and positively affected acidic soil properties. However, compared to theconventional potassium fertilizers, crushed or ground insoluble potassium rocks exhibit amuch slower potassium release and the effectiveness is relatively lower and a large amount ofmaterials have to be applied to meet crop needs. The use of insoluble potassium rocks inagriculture practices is very limited. Therefore the method of promoting the mineral elementsrelease became a crucial factor in utilizing the insoluble potassium resources. In this study,the K-feldspar rocks and muscovite rocks activated by a microcrystalline mill were used tostudy their physical-chemical properties and dissolution kinetics of mineral elements. Also,sand culture and soil culture experiment were carried to investigate the influence of activatedinsoluble potassium rocks on the growth of grain amaranth as well as on soil properties. Theresults were as follows:
     1. Microcrystalline grinding improved the physical properties of the insoluble potassiumrocks for a certain time. It appeared that mall particle size, high specific surface areas, roughsurface morphology and substantial structural disordering. When grinding under the samegrinding conditions, these favorable changes of K-feldspar powders are stronger thanmuscovite powders.
     2. Microcrystalline grinding promoted the dissolution of mineral elements from theinsoluble potassium rocks. With increasing gringding time, the single release of potassium,sodium, silicon, aluminum, calcium, magnesium and iron were significantly increased mostlydue to the changes of the physical properties and the maximum single release was obtained bykeeping the grinding time at120minutes. In comparison to the K-feldspar rocks, the mineralelements release except sodium in muscovite rocks were higher than the corresponding K-feldspar rocks.
     3. The leaching experiment results showed that microcrystalline grinding promoted theaccumulation of potassium in insoluble potassium rocks. Compared to the rude rocks, thepotassium release of the K-feldspar rocks and the muscovite rocks milled at120minuteswere significantly increased by7.14times and3.44times, respectively. In comparison withthe K-feldspar rocks, the potassium release of the muscovite rocks was significant higher.Judging from the potassium leaching rate, the K-feldspar rocks and the muscovite rocks milled at120minutes were7.50%and15.21%, respectively. This indicated that most of thepotassium was still inherent in the lattice bondage. To analyze by using gray relationalgrade, effective specific surface area was a key factor in the decision to potassium releasefrom potassium rocks.
     4. Sand culture experiment results showed that microcrystalline grinding improved thebioavailability of the insoluble potassium rocks. Compared with non-potassium nutrientsolution treatment, the use of the insoluble potassium rocks promoted plant growth andnutrients absorption, and with the extension of the milling time, the above trend was moreobvious. Under the same processing conditions, the bioavailability of muscovite rocks washighter than K-feldspar rocks. In comparison with full potassium nutrient solution treatment,the bioavailability of the insoluble potassium rocks was lower.
     5. Pot culture experiment results showed that application of potassium promoted plantgrowth, nutrients absorption and utilization, but also enhance the quality of grain amaranth.Among the potassium treatments, the result of activated potassium rocks was better than theordinary potassium rocks, and the effect of the muscovite rocks was highter than thecorresponding K-feldspar rocks. When increasing the amount of potassium rocks or combinedapplication of potassium rocks and potassium chloride, the promotive effect was better.Therefore, rational application of potassium rocks could promote the growth of plant andthese were of the constructive significance for relieving the potassium crisis.
     6. Pot culture experiment results also showed that application of potassium rocksincreased the soil potassium and improved the value of soil electrical conductivity and soilpH, which were of the positive significance for the soil potassium maintenance and acidic soilimprovement. In general, the result of activated potassium rocks was better than the ordinarypotassium rocks, and increasing the amount of potassium rocks or combined application ofpotassium rocks and potassium chloride was found to be much better than the others,especially increasing potassium rocks exhibited in soil improvement. It is an urgentlyquestion that how to scientifically apply potassium rocks and potassium chloride according toa certain proportion, which not only suiting crops growth but to solving water-solublepotassium leaching and soil acidification.
引文
鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000,12.
    蔡蕊.湿法超细粉碎鸡骨泥品质及加工特性研究[D].华南理工大学,2012.
    蔡艳华,彭汝芳,马冬梅,等.机械力化学研究进展[J].无机盐工业,2008,40(8):7-10.
    曹文燕,钱晓刚.含钾枯土岩肥效试验研究[M].地坡地质,北京:地质出版社,1993:18-21.
    陈丽.2012年钾肥行业盘点与2013年展望[J].中国石油与化工经济分析,2013,(3):34-36.
    陈履安.含钾岩石开发应用问题及其建议[J].中国矿业,1997,6(2):18-23.
    陈渊,黄祖强,谢祖芳,等.机械活化玉米淀粉的微生物降解性能[J].农业工程学报,2009(4):293-298.
    程辉,董自斌,李学宇.低温水相碱溶分解钾长石工艺的优化[J].化工矿物与加工,2011,40(10):7-8.
    丁浩,邢峰,冯乃谦.天然沸石搅拌磨湿法细磨中机械力化学效应的研究[J].矿产综合利用,2000,6:26-31.
    丁喻.常压低温分解钾长石制钾肥新工艺[J].湖南化工,1996,26(4):3-4.
    方莹,芋艳梅,张少明.机械力化学效应对煤矸石物理性能的影响[J].材料科学与工艺,2008,16(2):290-292.
    盖国胜,陶珍东,丁明.粉体工程[M].北京:清华大学出版社,2009,124-154.
    高树军,吴其胜.机械力化学方法活化矿渣研究[J].南京工业大学学报:自然科学版,2002,24(6):61-65.
    关巧.机械合金化制备低活化钒合金的研究[D].华中科技大学,2012.
    郭德月,韩效钊,王忠兵,等.钾长石-磷矿-盐酸反应体系实验研究[J].磷肥与复肥,2009(6):14-16.
    国林涛,史衍玺,盖国盛.超微细磷矿粉的特性及其肥效机理研究[J].化工矿物与加工,2008(2):14-16.
    郭燕军.超微细猪骨泥的开发利用[J].山东食品科技,1998,4:012.
    韩效钊,姚卫棠.离子交换法从钾长石提钾[J].应用化学,2003,20(4):373-375.
    韩效钊,胡波,肖正辉,等.钾长石与磷矿共酸浸提钾过程实验研究[J].化工矿物与加工,2006,34(9):1-3.
    韩效钊,刘荃,王忠兵,等.钾长石与磷矿共酸浸制NPK复合肥研究[J].化肥工业,2009,36(1):30-33.
    何振全,刘春生,盖国胜,等.磷矿粉超微细化对磷有效性的影响[J].水土保持学报,2009(2):210-212.
    侯俊,董元杰,刘春生,等.超微细磷矿粉包膜缓释肥的缓释特征及其对大白菜生理特性的影响[J].土壤学报,2012,49(003):583-591.
    胡波,韩效钊,肖正辉,等.我国钾长石矿产资源分布,开发利用,问题与对策[J].化工矿产地质,2005,27(1):25-32.
    胡德庚,朱云勤,周美姣,等.基于正交法的钾钙肥制备工艺研究[J].无机盐工业,2012,44(10):35-36.
    胡德庚,朱云勤,周美姣,等.用磷石膏钙渣和不溶性含钾岩石制备钾钙肥的工艺研究[J].化肥工业,2012,39(5):21-23.
    胡天喜,于建国. CaCl2-NaCl混合助剂分解钾长石提取钾的实验研究[J].过程工程学报,2010,10(4):701-705.
    黄昌勇.土壤学[M].北京:中国农业出版社,1999.
    黄理承,韩效钊,陆亚玲,等.硫酸分解钾长石的探讨[J].安徽化工,2011,37(001):37-39.
    黄锦锋,黄彪,陈翠霞,等.机械力辅助氯化锌活化法制备甘蔗渣活性炭[J].林业科学,2012,48(10):131-135.
    黄智,何琳燕,盛下放,等.矿物分解细菌Bacillus sp. L11对钾长石的风化作用[J].微生物学报,2013,53(11):1172-1178.
    简铭.在超细粉碎过程中研磨时间与粒度的关系初探[J].矿业研究与开发,1999,19(4):44-45.
    蒋梅茵.土壤含钾矿物中钾的固定与释放[J].土壤通报,1982,3:44-49.
    金继运.土壤钾素研究进展[J].土壤学报,1993,30(1):94-101.
    柯亮,石林,陈定盛.钾长石-硫酸钙-碳酸钙体系提钾添加剂的实验研究[J].非金属矿,2007,30(5):12-14.
    兰方青,旷戈.钾长石-萤石-硫酸-氟硅酸体系提钾工艺研究[J].化工生产与技术,2011,18(001):19-21.
    蓝计香,颜勇捷.钾长石中钾的加压浸取方法[J].高技术通讯,1994,8(26):26-28.
    雷岩,郭振华.利用“两个市场,两种资源”实现钾盐全球配置[J].中国国土资源经济,2012,(4):16-19.
    李冰茹,杜高翔,李巧玲,等.湿法超细研磨中白云石机械力化学效应[J].中国粉体技术,2011,17(1):46-51.
    李凤汀,郝正然,杨则瑗,等.硅酸盐细菌HM8841菌株解钾作用的研究[J].微生物学报,1997,37(1):79-81.
    李发福,王永晏.对于我国钾肥保障机制战略再思考[J].中国软件科学,2009,(4):10-15.
    李冷.机械力化学理论及实验方法[J].国外金属矿选矿,1991,(9):36-43.
    李冷,涂文懋,曾宪滨.云母微粉碎研究[J].武汉工业大学学报,1995,17(3):28-31.
    李美清,马文丽,吕乐福,等.微晶化磷矿粉的发酵活化效应[J].水土保持学报,2012,25(5):126-129.
    李廷轩,马国瑞,王昌全,等.籽粒苋根际土壤及根系分泌物对矿物态钾的活化作用[J].土壤通报,2003,34(1):48-51.
    李廷轩,马国瑞.籽粒苋不同富钾基因型根际钾营养与根系特性研究[J].水土保持学报,2004,18(3):90-93.
    李廷轩,马国瑞,张锡洲,等.籽粒苋不同富钾基因型根系分泌物中有机酸和氨基酸的变化特点[J].植物营养与肥料学报,2005,11(5):647-653.
    李雯雯,吴瑞华,刘贞.电气石超细粉碎机械力化学效应研究[J].硅酸盐通报,2010,29(1):66-71.
    李学垣.土壤化学[M].北京:高等教育出版社,2005.
    廖朝东,黄祖强,梁兴唐,等.花生壳在机械活化过程中结晶结构的变化[J].食品与机械,2009(4):28-30.
    连宾.硅酸盐细菌GY92对伊利石的释钾作用[J].矿物学报,1998,18(2):234-238.
    连宾,傅平秋.硅酸盐细菌解钾作用机理的综合效应[J].矿物学报,2002,22(2):179-183.
    梁成华,金耀青,宋菲,等.黑云母的释钾能力及其生物有效性研究[J].土壤学报,1994,31(2):220-223.
    梁敦富.大力发展钾肥籽粒苋缓解我省钾源短缺问题的新途径[J].土壤农化通报,1995,10(2):21-32.
    林咸永.我国对植物耐性矿物质胁迫研究进展[C].浙江农大青年教师及研究生论文集,1990.
    刘文辉,周青平,贾志锋,等.施钾对青引1号燕麦产量及根系的影响[J].植物营养与肥料学报,2010,16(2):419-424.
    刘彩兵,盛勇,涂铭旌.小麦麸的超微细化研究[J].食品科技,2003,11(3):86-88.
    刘光龙,杨国兰,任志学.钾长石制碳酸钾联产白色熔融水泥[J].无机盐工业,1988,1:008.
    刘杰,韩跃新,印万忠.难溶性钾矿资源制备钾肥研究现状及展望[J].有色矿冶,2005,21(7):172-174.
    刘杰,韩跃新,印万忠.富钾页岩的高压水热化法提取钾研究[J].矿冶,2009,17(4):31-35.
    刘今,巩前明.低品位铝土矿预脱硅工艺及动力学研究[J].中南工业大学学报,1998,29(2):145-148.
    刘延吉,田晓艳,曹敏建.低钾胁迫对玉米幼苗期根系生长和钾吸收特性的影响[J].玉米科学,2007,15(2):107-110.
    刘玉红. MA法制备Al2O3, SiC弥散强化Al基复合粉末的研究[D].昆明理工大学,2001.
    鲁如坤.壤植物营养学原理和施肥[M].北京:化学工业出版社,1998.
    鲁如坤.土壤农业化学分析法[M].北京:中国农业科技出版社,2000.
    陆叙元,祝天龙,向天勇,等.物理活化玉米秸秆发酵蛋白饲料对乳猪下痢的影响研究[J].湖北畜牧兽医,2012(4):11-13.
    罗驹华.机械力化学法制备MnMg铁氧体粉体的研究[J].盐城工学院学报:自然科学版,2010(1):6-9.
    罗振.机械合金化制备高熔点,低熔点金属固溶体和化合物的研究[D].浙江大学,2007.
    马鸿文,白志民,杨静,等.非水溶性钾矿制取碳酸钾研究:副产-13X型分子筛[J].地学前缘,2005,12(1):137-150.
    马丽莉,铁生年,汪长安.碳化硅粉体湿法研磨中机械力化学效应研究[J].稀有金属材料与工程,2013,1:138-144.
    马明,翁兴媛.利用钾长石矿泥制钾钙肥[J].硅酸盐通报,2012,31(003):749-752.
    马斯纳.高等植物的矿质营养[M].北京:北京农业大学出版社,1991:270-274.
    毛达如,申建波.植物营养研究方法[M].北京:中国农业大学出版社,2004:19-21.
    孟小伟,王光龙.钾长石湿法提钾工艺研究[J].无机盐工业,2011,43(3):34-35.
    聂轶苗,马鸿文,刘贺,等.水热条件下钾长石的分解反应机理[J].硅酸盐学报,2006,34(7):846-850.
    潘牧.一株丝状真菌对含钾矿物的风化作用研究[D].贵州大学,2006.
    裴敬.一种用钾矿石制取硫酸钾的新工艺:中国,98112718.2000-07-12.
    彭清静.用硫-氟混酸从钾长石中提钾的研究[J].吉首大学学报,1996,17(2):62-65.
    彭清静,邹晓勇,黄诚.氯化钠熔浸钾长石提钾过程[J].过程工程学报,2002,2(2):146-150.
    彭智平,吴雪娜,于俊红,等.施钾量对花生养分吸收及产量品质的影响[J].花生学报,2013,42(6):27-31.
    平岛刚,王村彦.使用介质搅拌研磨机的煤炭微粉碎[J].煤质技术,1998,(3):37-42.
    齐美娟,李菊梅,谷思玉,等.微细磷矿粉的有效性研究[J].化肥工业,2011,38(001):26-30.
    曲均峰,赵福军,傅送保.非水溶性钾研究现状与应用前景[J].现代化工,2010(6):16-19.
    乔繁盛.我国利用钾长石的研究现状及建议[J].湿法冶金,1998(2):22-28.
    邱美娅,马鸿文,聂轶苗,等.水热法分解钾长石制备雪硅钙石的实验研究[J].现代地质,2005,19(3):348-354.
    任守国,周安国,王之盛,等.不同粉碎粒度的豆粕对断奶仔猪生长性能和养分消化率的影响[J].中国畜牧杂志,2012,48(13):60-63.
    任志学.高炉冶炼钾长石回收钾盐联产石膏熔渣白色水泥总结[J].化肥工业,1986,3:20-26.
    荣华伟,方莹.机械力化学研究进展[J].广东化工,2006,33(10):33-36.
    申军.钾长石综合利用综述[J].化工矿物与加工,2000,29(10):1-3.
    沈钦华,王火焰,周建民,等.含钾矿物中钾的释放及其与溶液环境中离子种类的关系[J].土壤,2009,41(6):862-868.
    盛下放,黄为一.硅酸盐细菌NBT菌株解钾机理初探[J].土壤学报,2002,39(6):863-871.
    石海信.机械力化学效应及应用[J].化学教学,2008,(5):50-53.
    司玉慧.超微粉碎对大豆分离蛋白功能作用的影响[D].山东农业大学,2012.
    孙德四,张贤珍,张强.硅酸盐细菌代谢产物对硅酸盐矿物的浸溶作用研究[J].矿冶工程,2006,26(3):27-29.
    孙海栓,吕乐福,刘春生,等.不同形态磷肥的径流流失特征及其效应[J].水土保持学报,2012,26(4):90-93.
    陶珍东,郑少华.粉体工程与设备[M].北京:化学工业出版社,2010,153-168.
    谭琦,印万忠,刘磊,等.机械力化学/晶化法合成纳米水滑石[J].东北大学学报(自然科学版),2012,33(4):576-579+587.
    谭义秋,黄祖强,农克良.机械活化对玉米氧化淀粉糊性质的影响[J].粮食与饲料工业,2010(2):22-25.
    田改仓.论钾长石制钾肥的开发前景[J].化肥工业,1997,24(2):18-20.
    涂书新,郭智芬.富钾植物籽粒苋根系分泌物及其矿物钾释钾作用的研究[J].核农学报,1999,13(5):305-311.
    王晨,高宏,刘淑红,等.中低品位磷矿粉的机械力化学活化与活性表征[J].化工矿物与加工,2012,41(007):1-4.
    王东升,王君.低分子量有机酸作用下土壤矿物钾释放机制[J].辽宁工程技术大学学报:自然科学版,2009,28(A02):259-261.
    王加芳,罗驹华,李杰.机械力化学法制备超细钛酸镁粉体[J].无机盐工业,2008,40(6):23-26.
    汪家铭.新型硅钙钾肥的生产与应用[J].化工矿物与加工,2011,40(7):52-52.
    王瑾,李小坤,鲁剑巍,等.小分子有机酸和阳离子对含钾矿物钾素释放的影响[J].华中农业大学学报,2013,32(3):67-70.
    王明刚,谢淇.城市人口流动的灰色关联分析[J].科技和产业,2012,12(1):59-62.
    王万金,白志民,马鸿文.利用不溶性钾矿提钾的研究现状及展望[J].地质科技情报,1996,15(3):59-63.
    王文华,王东升,姜戈.低分子量有机酸对钾长石中结构钾释放的影响研究[J].辽宁农业科学,2005,(3):9-11.
    王秀林,孙德四,曹飞.硅酸盐细菌代谢产物对不同结构硅酸盐矿物风化作用的影响[J].非金属矿,2013,36(1):1-4.
    王洋,李珍,武慧君,等.机械力化学法制备TiO2-重晶石颜料[J].中国粉体技术,2013,19(6):32-36.
    王忠兵,程常占,王广志,等.钾长石-NaOH体系水热法提钾工艺研究[J].化工矿物与加工,2010,39(5):6-7.
    魏诗榴.粉体机械力化学[J].广州:华南理工大学出版社,1986.
    吴保林,赵中伟.机械活化对辉钼矿浸出的影响[J].稀有金属与硬质合金,2004,32(1):1-4.
    吴斌.微细化莲子淀粉理化特性研究[D].华中农业大学,2007.
    吴平霄.粘土矿物材料与土壤修复[M].北京:化学工业出版社,2004.
    吴其胜,张少明.机械力化学合成CaTiO3纳米晶的研究[J].硅酸盐学报,2001,29(5):479-483.
    吴涛,陈骏,连宾.微生物对硅酸盐矿物风化作用研究进展[J].矿物岩石地球化学通报,2007,26(3):263-268.
    席生岐,屈晓燕.高能球磨固态扩散反应研究[J].材料科学与工艺,2000,8(3):88-91.
    肖国光,孙德四,曹飞.硅酸盐细菌代谢产物影响斜长石风化作用的模拟试验[J].矿物岩石,2013(1):8-15.
    肖金凯.非金属矿物资源在农业上的应用[J].矿物岩石地球化学通讯,1990,2:101-102.
    鲜福.灰色关联因子分析法在金属腐蚀主因素辨识中的应[J].上海涂料,2013,51(4):9-11.
    谢建昌.土壤钾素研究的现状和展望[J].土壤学进展,1981,9(1):1-16.
    许乐.云母生产消费与国际贸易[J].中国非金属矿工业导刊,2012,1:0-19.
    徐红梅,陈清,蔡建国,等.机械力化学的原理及应用[J].长沙航空职业技术学院学报,2003,3(2):47-50.
    徐晓燕,马毅杰.土壤矿物钾的释放及其在植物营养中的意义[J].土壤通报,2001,32(4):173-176.
    徐则民,黄润秋,唐正光.硅酸盐矿物溶解动力学及其对滑坡研究的意义[J].岩石力学与工程学报,2005,24(9):1479-1490.
    薛彦辉,杨静.钾长石低温烧结法制钾肥[J].非金属矿,2000(1):19-21.
    薛彦辉,宋超.氟化物在低温烧结钾长石中行为的研究[J].中国非金属矿工业导刊,2002(1):29-30.
    薛彦辉,周广柱,张桂斋.钾长石-萤石-硫酸体系中分解钾长石的探讨[J].化学与生物工程,2004,21(2):25-27.
    亚历山大罗夫.硅酸盐细菌[M].北京:科学出版社,1955.
    严红革,陈振华.反应球磨技术原理及其在材料制备中的应用[J].功能材料,1997,28(1):15-18.
    宴结义,吴美仁,肖雨生.矿物钾肥在红壤中的试验效果分析[J],2003,26(4):27-28.
    杨国峰,张杰.贵州难溶性含钾页岩提钾试验研究[J].化工矿物与加工,2008,37(9):7-9.
    杨珺,王东昕.鳖甲超微细粉免疫调节功能实验研究[J].食品科学,2000,21(3):40-42.
    杨南如.机械力化学过程及效应(Ⅰ):-机械力化学效应[J].建筑材料学报,2000,3(1):19-26.
    殷海荣,武丽华,陈福.机械力化学合成纳米晶体的研究[J].化工新型材料,2006,33(9):36-38.
    于振文,梁晓芳,李延奇,等.施钾量和施钾时期对小麦氮素和钾素吸收利用的影响[J].应用生态学报,2007,18(1):69-74.
    赵夫涛,盖国胜,井大炜,等.磷矿粉的超微细活化及磷释放动态研究[J].植物营养与肥料学报,2009(2):474-477.
    赵恒勤,金梅.钾长石的碱石灰烧结法综合利用研究[J].非金属矿,2003,26(1):24-26.
    赵玲玲,王光龙.钾长石-磷矿-硝酸脲体系分解钾长石的探讨[J].无机盐工业,2013,45(5):27-29.
    赵平,林克惠,郑毅.氮钾营养对烟叶衰老过程中内源激素与叶绿素含量的影响[J].植物营养与肥料学报,2005,11(3):379-384.
    赵娣芳,孙虹,鲁红典,等.坡缕石的机械力化学效应研究[J].中国非金属矿工业导刊,2007,(6):40-42.
    张恩平,张淑红,李天来,等.蔬菜钾素营养的研究现状与展望[J].中国农学通报,2006,21(8):265-268.
    张福锁,张卫峰,马文奇.中国化肥产业技术与展望[M].北京:化学工业出版社,2007.7.
    张立先,李桂春.矿物超细粉碎机械力化学效应研究进展[J].矿业快报,2007,458:31-34.
    张西兴,庞世花,朱云勤.用磷石膏和不溶性含钾岩石制备钾钙肥的初步研究[J].化肥工业,2008,35(5):40-42.
    张晓卫.世界钾肥市场对我国钾肥供求关系的影响及对策[J].化工矿物与加工,2006,(3):1-4.
    张修庆,朱心昆.反应球磨技术制备纳米材料[J].材料科学与工程,2001,19(2):95-99.
    张燕燕,韩效钊,王忠兵,等.钾长石与氯化钙在磷酸体系中的反应过程探讨[J].安徽化工,2009,35(4):26-29.
    张永旺,曾溅辉,张善文,等.长石溶解模拟实验研究综述[J].地质科技情报,2009,28(1):31-37.
    张志勇,王清连,李召虎,等.缺钾对棉花幼苗根系生长的影响及其生理机制[J].作物学报,2009,35(4):718-723.
    郑永超,倪文,徐丽,等.铁尾矿的机械力化学活化及制备高强结构材料[J].北京科技大学学报,2010(4):504-508.
    周明,涂书新,孙锦荷,等.富钾植物籽粒苋对土壤矿物钾的吸收利用研究[J].核农学报,2005,19(4):291-296.
    朱云勤,时明昕.钾钙肥中钾的溶出行为研究[J].化肥工业,1999,26(3):14-16.
    朱再胜,骆振福,杨玉芬,等.含钾页岩粉碎过程中粒度分布的分形表征[J].化工矿物与加工,2011,(12):8-11.
    Abe O, Suzuki Y. Mechanochemically assisted preparation of BaTiO3powder [J]. Mater SciForum,1996,225:563-568.
    Bakr M Y, Zatout A A, Mouhamed M A. Orthoclase, gypsum and limestone for production ofaluminum salt and potassium salt [J]. Interceram,1979,28(1):34-35.
    Barker W W, Welch S A, Chu S, et al. Experimental observations of the effects of bacteria onaluminosilicate weathering [J]. American Mineralogist,1998,83:1551-1563.
    Barman A. K., Varadachari C., Ghosh K. Weathering of silicate minerals by organic acids:1.Nuture of Cation solubilisation [J]. Geoderma,1992,53:45-63.
    Bin L. A study on how silicate bacteria GY92dissolves potassium from illite [J]. ActaMineralogica Sinica,1998,18(2):234-238.
    Blake R. E. and Walter L. M. Kinetics of feldspar and quartz dissolution at70-80℃and near-neutral pH: effects of organic acids and NaCl [J]. Geochim. Cosmochim. Acta,1999,63:2043-2059.
    Bloom P. R. and Erich M. S. Effect of solution composition on the rate and mechanism ofgibbsite dissolution in acid solution [J]. Soil Sci. Soc. Am. J.,1987,51:1131-1136
    Busenberg E, Clemency C V. The dissolution kinetics of feldspars at25℃and1atm CO2partial pressure [J]. Geochimica et Cosmochimica Acta,1976,40(1):41-49.
    Chardon E S, Livens F R, Vaughan D J. Reactions of feldspar surfaces with aqueous solutions[J]. Earth-Science Reviews,2006,78(1):1-26.
    Coroneos C., Hinsinger P., Gilkes J. R. Granite powder as a source of potassium for plants: aglasshouse bioassay comparing two pasture species [J]. Fert. Res.,1996,45:143-152
    David L. J. Organic acids in the rhizosphere-a critical review [J]. Plant and Soil,1998,205:25-44.
    Dong H., Kukkadapu R. K., Fredrickson J. K., et al. Microbial reduction of structural Fe (III)in illite and goethite [J]. Environmental science&technology,2003,37(7):1268-1276.
    Eick M. J., Grossl P. R., Golaen D. C. et al. Dissolution kinetics of a lunar glass stimulant at25℃: The effect of pH and organic acids [J]. Geochim. Cosmochim. Acta,1996,60(1):157-170.
    Ezequiel C. S., Enrique T. M., Cesar D. et al. Effects of grinding of the feldspar in thesintering using a planetary ball mill [J]. J. Mater. Proc. Technol.,2004,152:284-290.
    Feng-Chih L, Clemency C V. The kinetics of dissolution of muscovites at25℃and1atmCO2partial pressure [J]. Geochimica et Cosmochimica Acta,1981,45(4):571-576.
    Gutman E. M. Mechanochemisty of Material[M]. Cambridge International Sicence:Carnbridge,UK.,1998.
    Gaffet E, Abdellaoui M, Malhouroux-Gaffet N. Formation of nanostructural materialsinduced by mechanical processings (overview)[J]. Materials Transactions-JIM,1995,36(2):198-209.
    Glowa K R, Arocena J M, Massicotte H B. Extraction of potassium and/or magnesium fromselected soil minerals by piloderma [J]. Geomicrobiology Journal,2003,20(2):99-111.
    Harley A. D. Evaluation and improvement of silicate mineral fertilizers [D]. PhD thesis,University of Western Australia: Perth, Australia,2003.
    Hinsinger P., Bolland M. D. A., Gilkes R. J. Silicate rock powder: effect on selected chemicalproperties of a range of soils from western Australia and on plant growth as assessed in aglasshouse experiment [J]. Fert. Res.,1996,45:69-79.
    Holdren G. R. and Berner R. A. Mechanisms of feldspar weathering:1. experimental studies[J]. Geochim. Cosmochim. Acta,1979,43:1164-1171.
    Holdren Jr G R, Speyer P M. Reaction rate-surface area relationships during the early stagesof weathering-I. Initial observations[J]. Geochimica et Cosmochimica Acta,1985,49(3):675-681.
    Huang W. H. and Keller W. D. Dissolution of rock-forming silicate minerals in organic acids:simulated first-stage weathering of fresh mineral surfaces [J]. Am. Mineralogist,1970,55:2076-2094.
    Hutchens E., Valsami-Jones E., McEldowney S., et al. The role of heterotrophic bacteria infeldspar dissolution-an experimental approach [J]. Mineralogical Magazine,2003,67(6):1157-1170.
    Hunt N, Gilkes B. Farm monitoring handbook [M].1992.
    Kleiv R A, Thornhill M. Production of mechanically activated rock flour fertilizer by highintensive ultrafine grinding [J]. Minerals Engineering,2007,(20):334-341.
    Lagache M. New data on the kinetics of dissolution of alkali feldspars at200℃in CO2charged water [J]. Geochim. Cosmochim. Acta,1976,40:157-161.
    Lasaga A C. Chemical kinetics of water-rock interactions [J]. Journal of GeophysicalResearch: Solid Earth (1978-2012),1984,89(B6):4009-4025.
    Leonardos O. H., Theodoro S. H., Assad M. L. Remineralization for sustainable agriculture: atropical perspective from a Brazilian viewpoint [J]. Nutrient Cycling in Agroecosystems,2000,56:3-9.
    Liao J., Senna M. Enhanced dehydration and amorphization of Mg(OH)2in the presence ofultrafine SiO2under mechanochemical conditions[J]. Thermochimica acta,1992,210:89-102.
    Maurice P A, Vierkorn M A, Hersman L E, et al. Enhancement of kaolinite dissolution by anaerobic Pseudomonas mendocina bacterium [J]. Geomicrobiology Journal,2001,18(1):21-35.
    McCormick P. G. Application of mechanical alloying to chemical refining (overview)[J].Materials Transactions-JIM,1995,36(2):161-169.
    Mi G., Murakami Y., Shindo D., et al. Microstructural investigation of CaTiO3formedmechano-chemically by dry grinding of a CaO-TiO2mixture [J]. Powder technology,1999,104(1):75-79.
    Mi G., Saito F., Hanada M. Mechanochemical synthesis of afwhillite by room temperaturegrinding [J]. Inorganic Mater.,1996,3(11):587-591.
    Oelkers E. H., Gislason S. R. The mechanism, rates and consequences of basaltic glassdissolution: I. An experimental study of the dissolution rates of basaltic glass as afunction of aqueous Al, Si and oxalic acid concentration at25°C and Ph=3and11.Geochimica et Cosmochimica Acta,2001,65(21):3671-3681.
    Palaniandy S., Azizli K. A. M., Hussin H., et al. Study on mechanochemical effect of silicafor short grinding period [J]. International Journal of Mineral Processing,2007,82(4):195-202.
    Peters K.1st Europ Symp Zerkleinern(ed.H.Rump).Verlag Che-mie,Weinbeim,VDI verlagdusseldorf,1962.
    Piha M. I. The yield potential, fertility requirements of drought tolerance of grain amaranthcompared with maize under Zimbabwean conditions [J]. Tropical Agriculture,1995,72(1):7-12.
    Priyono J, Gilkes R J. Dissolution kinetics of milled-silicate rock fertilizer in organic acid. JTanah Trop,2008,13(1):1-10.
    Romanyuk B. N., Suzuki Y. Mechano-chemically assisted preparation of BaTiO3powder [C].Materials Science Forum,1996,225:563-568.
    Sanz Scovino J. I. and Rowell D. L. The use of feldspars as potassium fertilizers in thesavannah of Columbia [J]. Fert. Res.,1988,17:71-83.
    Sparks D. L. Kinetics of ionic reactions in clay minerals and oils [J]. Adv Agron,1985,38:231-246.
    Sparks D. L. Potassium dynamics in soils [M]. Advances in soil science. Springer New York,1987:1-63.
    Taiz L.and Zeiger E. Plant Physiology (2nd Ed)[M]. Sunderland: Sinauer Associates, Inc.,1998:521-527.
    Urakaev F. K., Boldyrev V. V. Mechanism and kinetics of mechanochemical processes incomminuting devices:1. Theory [J]. Powder Technology,2000,107(1):93-107.
    Urakaev F. K., Boldyrev V. V. Mechanism and kinetics of mechanochemical processes incomminuting devices:2. Applications of the theory. Experiment [J]. PowderTechnology,2000,107(3):197-206.
    Wallander H., Wickman T. Biotite and microcline as potassium sources in ectomycorrhizaland non-mycorrhizal Pinus sylvestris seedlings [J]. Mycorrhiza,1999,9(1):25-32.
    Wang H. Y., Shen Q. H., Zhou J. M. et al. Plants use alternative strategies to utilizenonexchangeable potassium in minerals [J]. Plant Soil,2011,343:209-220.
    Wang J. G., Zang, F. S., Cao, Y. P. et al. Effect of plant types on release of mineral potassiumfrom gneiss [J]. Nutrient Cycling in Agroecosystems,2000a,56:37-44.
    Wang J. G., Zang, F. S., Zang, X.L. et al. Release of potassium from K-bearing minerals:effect of plant roots under P deficiency [J]. Nutrient Cycling in Agroecosystems,2000b,56:45-52.
    Weerasuriya T. J., Pushpakumara S., Cooray P. I. Acidulated pegmatic mica: a promising newmulti-nutrient mineral fertilizer [J]. Fert. Res.,1993,34:67-77.
    Welch S. S. and Ullman W. J. Feldspar dissolution in acidic and organic solutions:compositional and pH dependence of dissolution rate [J]. Geochimica et CosmochimicaActa,1996,60:2939-2948.
    Welham N J. Mechanochemical processing of gold-bearing sulphides [J]. MineralsEngineering,2001,14(3):341-347.
    Wei L, Hu H, Chen Q, et al. Effects of mechanical activation on the HCl leaching behavior ofplagioclase, ilmenite and their mixtures [J]. Hydrometallurgy,2009,99(1):39-44.
    Yuan L., DeHua F., ZhiHui W., et al. Bio-mobilization of potassium from clay minerals: I.By ectomycorrhizas [J]. Pedosphere,2000,10(4):339-346.
    Yuan L., Huang J., Li X., et al. Biological mobilization of potassium from clay minerals byectomycorrhizal fungi and eucalypt seedling roots [J]. Plant and soil,2004,262(1-2):351-361.
    Zhang H. and Bloom P. R. Dissolution kinetics of hornblende in organic acid solutions [J].Soil Sci. Soc. Am. J.,1999,63:815-822
    Zhang L, Hu H, Wei L, et al. Effects of mechanical activation on the HCl leaching behaviorof titanaugite, ilmenite, and their mixtures [J]. Metallurgical and Materials TransactionsB,2010,41(6):1158-1165.
    Zhang Q., Kasai E., Saito F. Mechanochemical changes in gypsum when dry ground withhydrated minerals [J]. Powder technology,1996,87(1):67-71.
    Zhang Y, Li X, Pan L, et al. Effect of mechanical activation on the kinetics of extractingindium from indium-bearing zinc ferrite [J]. Hydrometallurgy,2010,102(1):95-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700