用户名: 密码: 验证码:
丝素蛋白与聚丁二酸丁二醇酯复合超细纤维膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在改善静电纺丝素蛋白(SF)超细纤维膜力学性能的不足,通过共混、混杂和同轴静电纺丝制备出结构不同的SF/PBS复合超细纤维膜,以期在提高其力学性能的同时,通过生物学评价可以获得具有良好细胞相容性的SF/PBS组织工程支架,以扩大静电纺丝素蛋白在组织工程支架材料领域的应用。
     首先研究了静电纺PBS的纺丝工艺,当质量分数为6%、电场强度为1.5kv/cm(纺丝电压18kv,纺丝距离12cm)和纺丝流率为0.01ml/min时,所得到的静电纺PBS超细纤维的形貌较好。通过对比分析静电纺PBS超细纤维膜与浇铸膜的结构及力学性能,静电纺PBS超细纤维膜结晶性能降低;拉伸破坏强度有所下降,为18.6MPa,但破坏应变明显增大,达到120%,表现出良好的力学性能。
     然后通过共混和混杂静电纺丝分别制备了结构不同的SF/PBS复合超细纤维膜,研究了甲醇处理前后的形貌、结构和力学性能。并进一步研究了PBS(核层)和SF(壳层)的同轴静电纺丝,分析了核壳超细纤维膜甲醇处理前后的结构及力学性能。最后对利用共混、混杂和同轴静电纺丝所制备的SF/PBS复合超细纤维膜进行生物学评价,研究了不同支架材料的细胞相容性。结论如下:
     (1)共混复合超细纤维膜经甲醇处理后的结晶性能随着PBS质量比的增加,结晶性能变好,相同共混质量比的复合超细纤维膜处理后结晶性变好;共混复合超细纤维膜处理后的拉伸破坏应力随着PBS质量比的增加,拉伸破坏应力先减小后增大,应变逐渐增大;相同共混质量比的复合超细纤维膜处理后的拉伸破坏应力变大,应变减小,当共混质量比为50/50时,应力、应变分别达到16MPa和50%,复合超细纤维膜表现出较好的力学性能。
     (2)混杂复合超细纤维膜的结晶性能经甲醇处理后随着PBS质量比的增加,结晶性能变好,相同混杂质量比的复合超细纤维膜经甲醇处理后结晶性能变好。甲醇处理后混杂复合超细纤维膜随着PBS含量的增加,拉伸破坏应力逐渐增大,应变也逐渐增大;相同混杂比的复合超细纤维膜经甲醇处理后的拉伸破坏应力增加,但应变减小。
     (3)通过FESEM和TEM的表征,成功制备了静电纺PBS/SF核壳结构超细纤维,经甲醇处理后由于壳层厚度的增加导致核层的衍射吸收强度减小,表现为整个超细复合纤维膜的结晶性能下降。与未经甲醇处理相比,处理后的静电纺PBS/SF核壳结构超细纤维膜的拉伸破坏应力从14.9MPa增大到17.2MPa,但是拉伸破坏应变从96.8%减小到81.8%。
     (4)通过L929细胞黏附和增殖实验,静电纺SF/PBS共混、混杂和同轴核壳结构超细纤维支架在细胞黏附上没有明显区别。静电纺SF/PBS复合超细纤维支架在细胞增殖上有一定的优势,尤其是SF/PBS共混质量比为50/50和PBS/SF核壳结构的支架材料有明显优势,其OD值已高于纯丝素蛋白的OD值,再结合力学性能可知,这两种支架材料在组织工程支架领域的应用有较大的潜力。
The SF/PBS ultrafine composite fibrous membranes of different structures were fabricated by the blend, hybrid and coaxial electrospinning in order to synchronously enhance the mechanical property of SF, and also obtain SF/PBS composite tissue engineering scaffolds, which possess a better cytocompatibility depending on biological evaluation, and finally further extend the application range of SF in biomaterials.
     To prepare SF/PBS ultrafine composite fibrous membranes, the parameters in electrospinning PBS process were studied. the morphology of the received electrospun PBS ultrafine fibers is better, when the mass fraction of 6%, electric field strength 1.5kv/cm (spinning voltage of 18kv, spinning distance of 12cm) and spinning flow rate of 0.01ml/min. Comparison with the PBS cast membrane, the crystallinity of electrospun PBS ultrafine fibrous membranes decreases, the tensile failure strength slightly decreases to 18.6MPa, but failure elongation is almost the double of cast membranes up to 120%.
     The SF/PBS ultrafine composite fibrous membranes of different structure are prepared by the blend and hybrid electrospinning, and the morphology, structure and mechanical properties are also studied before and after treatment of methanol. Coaxial electrospinning of PBS (core layer) and SF (shell layer) was also further studied. The morphology, structure and mechanical properties of PBS/SF core/shell ultrafine fibrous membrane were also tested. Finally, Cell biocompatibility was evaluated on different SF/PBS ultrafine composite fibrous scaffolds prepared by the blend, hybrid and coaxial electrospinning. The main results of this work are summarized as follow:
     (1) After treatment with methanol, the crystallization properties of electrospun SF/PBS blend ultrafine composite fibrous membranes gradually becomes better with addition of PBS, and the crystallization properties on the ultrafine composite fibous membranes with same mass ratio is better. The tensile strength first decreases and then increases with addition of PBS, and failure strain gradually increases. For the same blend mass ratio, failure strength increases, but failure strain decreases. When the blend ratio is 50/50, failure strength is close to 16MPa and failure strain is up to 50%, so mechanical properties of SF/PBS blend ultrafine fibrous membranes was improved.
     (2) The crystallization properties of the whole hybrid composite ultrafine fibrous membranes treated with methanol also increase with addition of PBS, and the crystallization properties on the same hybrid mass ratio is better than that before treatment. in addition, the tensile strength gradually increases with addition of PBS, and also failure strain gradually increases. For the same hybrid mass ratio, tensile strength increase, but failure strain decreases. When the hybrid mass ratio is 50/50, mechanical properties of SF/PBS hybrid ultrafine fibrous membrane was best, failure strength was up to 17.3MPa and failure strain was 38.2%.
     (3) The PBS/SF core/shell ultrafine fibers was successfully prepared by coaxial electrospinning, After treatment with methanol, due to the increasing of shell thickness, absorption intensity of X-ray diffraction in core PBS decreases, which lead to the whole crystallization properties of PBS/SF core/shell ultrafine fibrous membranes dropped. Compared with non-treatment, the electrospun PBS/SF core/shell ultrafine fibrous membrane tensile strength increased from 14.9MPa to 17.2MPa, but the failure strain decreased from 96.8% to 81.8 %.
     (4) Through L929 cell adhesion experiment, it was found that the blend, hybrid, and core-shell ultrafine composite fibrous scaffolds do not have significant difference. However, for proliferation experiment, they have certain advantages, especially scaffolds of blend mass ratio 50/50 and core/shell scaffolds show more obvious advantages, their OD values are higher than that of SF, and the mechanical properties are better, so we can see that these scaffolds have great application potential in tissue engineering scaffolds.
引文
[1] Huang Z M, Zhang Y Z, Kotakic M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63: 2223-2253.
    [2] Beachley V, Wen X J. Effect of electrospinning parameters on the nanofiber diameter and length[J]. Materials Science and Engineering C, 2009, 29: 663-668.
    [3] Travis J S, Horst A. R. Electrospinning: Applications in drug delivery and tissue engineering[J]. Biomaterials, 2008, 29: 1989-2006.
    [4] Liang D H, Hsiao B S, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications[J]. Advanced Drug Delivery Reviews, 2007, 59: 1392–1412.
    [5]马驰吴,俞建勇. PBS静电纺非织造布结构与过滤性能的关系分析[J].产业用纺织品, 2008, 5: 13-15.
    [6] Nisbet D R, Rodda A E, Finkelstein D I, et al. Surface and bulk characterization of electrospun membranes[J]. Colloids and Surfaces B: Biointerfaces, 2009, 71: 1-12.
    [7] Kim H, Choi Y, Kanuka N. Preparation of Pt-loaded TiO2 nanofibers by electrospinning and their application for WGS reactions[J]. Applied Catalysis A: General, 2009, 352: 265-270.
    [8] Sawicka K M, Gouma P. Electrospun composite nanofibers for functional applications[J]. Journal of Nanoparticle Research, 2006, 8: 769-781.
    [9] Zhao Y Y, Wang H Y, et al. Lu X F. Fabrication of refining mesoporous silica nanofibers via electrospinning[J]. Materials Letters, 2008, 62: 143-146.
    [10] Agarwal S, Wendorff J H, Greiner A. Use of electrospinning technique for biomedical applications[J]. Polymer, 2008, 49: 5603-5621.
    [11] Bhattarai S R, Bhattarai N, Yi H K, et al. biodegradable electrospun membrane: scaffold for tissue engineering[J]. Biomaterials, 2004, 25: 2595-2602.
    [12] Duan B, Yuan X Y, Zhu Y, et al. A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning[J]. European Polymer Journal, 2006, 42: 2013-2022.
    [13] Cao H Q, Liu T, Chew S Y, The application of nanofibrous scaffolds in neural tissue engineering[J]. Advanced Drug Delivery Reviews, 2009, 61: 1055-1064.
    [14] Chronakis I S. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review[J]. Journal of Materials Processing Technology, 2005, 167: 283-293.
    [15] Shalumon K T, Binulal N S, Selvamurugan N, et al. Electrospinning of carboxymethyl chitin/poly (vinylalcohol) nanofibrous scaffolds for tissue engineering applications[J]. Carbohydrate Polymers, 2009, 77: 863-869.
    [16] Norman J J, Desai T A, Methods for Fabrication of Nanoscale Topography for Tissue Engineering Scaffolds[J]. Annals of Biomedical Engineering, 2006, 34(1): 89-101.
    [17] Sell S A, Mcclure M J, Garg K, et al. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering[J]. Advanced Drug Delivery Reviews, 2009, 61: 1007-1019.
    [18] Liu X H, Ma P X. Polymeric Scaffolds for Bone Tissue Engineering[J]. Annals of Biomedical Engineering, 2004. 32(3): 477-486.
    [19] Frenot A, Chronakis I S. Polymer nanofibers assembled by electrospinning[J]. Current Opinion in Colloid and Interface Science, 2003, 8: 64-75.
    [20] Theron S A, Zussman E, Yarin A L, Experimental investigation of the governing parameters in the electrospinning of polymer solutions[J]. Polymer, 2004, 45: 2017-2030.
    [21] Chronakis I S. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review[J]. Journal of Materials Processing Technology, 2005, 167: 283-293.
    [22]何创龙,黄争鸣,张彦中,等.静电纺丝法制备组织工程纳-微米纤维支架[J].自然科学进展, 2005, 15(10): 1175-1182.
    [23] Zong X H, Kim K W, Fang D F, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes [J]. Polymer, 2002, 43: 4403-4412.
    [24] Neves N M, Campos R, Pedro A, et al. Patterning of polymer nanofi ber meshes by electrospinning for biomedical applications[J]. International Journal of Nanomedicine, 2007, 2(3): 433-448.
    [25] Lyons J, Ko F. Melt Electrospinning of Polymers: A Review[J]. Polymer News, 2005, 30: 1-9.
    [26] Doshi J, Reneker D H. Electrospinning process and application of electrospun fibers. J Electrostatics, 1995, 35: 151-160.
    [27] Buchko C J, Chen L C, Shen Y, et al. Processing and microstructural characterization of porous biocompatible protein polymer thin films[J]. Polymer, 1999, 40: 7397-7407.
    [28] Spivak A F, Dzenis Y A, Reneker D H. A MODEL OF STEADY STATE JET IN THE ELECTROSPINNING PROCESS[J]. Mechanics Research Communications, 2000, 27(1): 37-42.A MODEL A
    [29] Detizel J M, Kleinmeyer J, Harris D, et al. The effect of processing variables on morphology ofelectrospun nanofibers and textiles[J]. Polymer, 2001, 42: 261-272.
    [30] Shin Y M, Hohman M M, Brenner M P, et al.Experiment characterization of electrospinning: the electrically forced jet and instabilities[J]. Polymer, 2001, 42: 9955-9967.
    [31] Kenawy E R, Bowlin G L, Mansfield K, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid) and a blend[J]. J Control Release, 2002, 8: 57-64.
    [32] Megelski S, Stephens J S, Chase D B, et al. Micro-and Nanostructured Surface Morphology on Electrospun Polymer Fibers[J]. Macromolecules, 2002, 35: 8456-8466.
    [33] Viswanathamurthi P, Bhattarai N, Kim H Y, et al. Preparation and morphology of niobium oxide fibres by electrospinning[J]. Chemical Physics Letters, 2003, 374: 79-84.
    [34] Ding B, Kimura E, Sato T, et al. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning[J]. Polymer, 2004, 45: 1895-1902.
    [35] Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers[J]. Electrostatics. 1995, 35(2-3): 151-160.
    [36] Varesano A, Carletto R A., Mazzuchetti G. Experimental investigations on the multi-jet electrospinning process[J]. Journal of Materials Processing Technology, 2009, 209: 5178–5185.
    [37] Sukigara S , Gandhi M, Ayutsede J, et al. Regeneration of Bombyx mori silk by electrospinning. Part 2. Process optimization and empirical modeling using response surface methodology[J], Polymer, 2004, 45: 3701-3708.
    [38]李妮,覃小红,王善元.溶液性质对静电纺纤维形态的影响[J].纺织学报, 2008, 29(4): 1-4.
    [39] Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning[J]. Materials Letters , 2004,58: 493– 497.
    [40] Fong H, Chun I, Reneker, D H. Beaded nanofibers formed during electrospinning [J]. Polymer, 1999, 40: 4585-4592.
    [41]尹桂波,张幼珠,耿琴玉.静电纺丝素纳米纤维工艺影响分析[J].南通纺织职业技术学院学报:综合版, 2006, 6(3): 1-5.
    [42] Koombhongse S, Liu Wa, Reneker D H. Flat Polymer Ribbons and Other Shapes by Electrospinning[J]. Journal of Polymer Science: Part B: Polymer Physics, 2001, 39: 2598-2606.
    [43] Langer R, Vacanti J P. Tissue engineering[J]. Science, 1993, 260(5): 920-926.
    [44]刘亚欣,王慈,刘丽娜,等.静电纺组织工程支架[J].国外丝绸, 2008, 1: 12-15.
    [45] Takezawa T. A strategy for the development of tissue engineering scaffolds that regulate cell behavior[J].Biomaterial, 2003, 24: 2267-2275.
    [46] Kim B S, Mooney D J. Development of biocompatible synthetic extra cellular matrices for tissue engineering[J]. Trends Biotechnol, 1998, 16(5): 224-226.
    [47] Lannutti J, Reneker D, Ma T, et al. Electrospinning for tissue engineering scaffolds[J]. Mat Sci Eng:C, 2007, 27: 504-509.
    [48] Ma P X. Biomimetic materials for tissue engineering[J]. Advanced Drug Delivery Reviews, 2008, 60: 184-198.
    [49]房乾,陈登龙,姚清华,等.静电纺丝在组织工程支架材料制备中的应用[J].福建师范大学学报(自然科学版), 2008, 24(1): 103-107.
    [50] Li M Y, Mondrinosa M J, Gandhi M R., et al. Electrospun protein fibers as matrices for tissue engineering[J]. Biomaterials, 2005, 26: 5999-6008.
    [51]陈敏洁,杨驰,俞昊,等.软骨细胞在纳米级PHBV支架材料与PHBV/ECOFLEX复合支架材料中的生长状况比较[J].中国口腔颌面外科杂志, 2008, 6(2): 119-123.
    [52] Kim H W, Lee H H, Knowles J C. Electrospinning biomedical nanocomposite fibers of hydroxyapatie/poly(1acticacid)for bone regeneration[J]. Journal of Biomedical Materials Research, 2006, 79(3): 643-649.
    [53] Wang M, Jin H J, Kaplan D L, et al. Mechanical properties of electrospun silk fibers [J]. Macromolecules, 2004, 37: 6856-6864.
    [54] Li M Y, Mondrinos M J, Chen X S. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds[J]. Journal of Biomedical Materials Research, 2006, 79(4): 963-973.
    [55] Li M Y, Mondrinos M J, Gandhi M R, et al. Electrospun protein fibers as matrices for tissue engineering [J]. Biomaterials, 2005, 26(30): 5999-6008.
    [56] Boudriot U, Dersch R, Greiner A, et al. Electrospinning approaches toward scaffold engineering-a brief overview[J]. Artificial Organs, 2006, 30(10): 785-792.
    [57] Town S A, Jayasinghe S N. Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds[J]. Biomacromolecules, 2006, 7(12): 3364-3369.
    [58]吴佳林,张钰,张幼珠.多层静电纺丝技术制作血管支架[J].国外丝绸, 2007, 1: 6-8.
    [59] Min B M, Lim J, Nam Y S, et al. Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes[J]. International Journal of Biological Macromolecules, 2004, 34:223-230.
    [60]王曙东,张幼珠,王红卫,等.静电纺PLA/丝素-明胶管状支架的结构与性能[J].纺织学报, 2009, 30(6): 6-9, 14.
    [61] Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering[J]. Biomaterials, 2005, 26: 2603-2610.
    [62] Yang F, Xu CY, Kotaki M, et al. Characterization of neural stem cells on electrospun poly (L-lactic acid) nanofibrous scaffold[J]. J Biomater Sci Polym Ed, 2004, 15: 1483-1497.
    [63]汝玲,黄毅萍,陈萍,等.蚕丝素蛋白最新研究进展[J].化学推进剂与高分子材料, 2007, 5(4): 26-29, 36.
    [64]王佳培,胡建恩,白雪芳,等.蚕丝素蛋白及其应用[J].精细与专用化学品, 2004, 12(12): 13-18.
    [65] Ma P X. Biomimetic materials for tissue engineering[J]. Advanced Drug Delivery Reviews, 2008, 60: 184-198.
    [66] Yamada Hi, Igarashi Y, Takasu Y, Identification of fibroin-derived peptides enhancing the proliferation of cultured human skin fibroblasts[J]. Biomaterials, 2004, 25: 467-472.
    [67] Yang Y M, Chen X M, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro[J]. Biomaterials, 2007, 28: 1643-1652.
    [68] Kim K H, Jeong L, Park H N, et a1. Biological eficacy of silk fibroin nanofiber membranes for guided bone regeneration[J]. Journal of Biotechnology, 2005, 120: 327-339.
    [69] Li C M, Veparia C, Jin H J, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27: 3115-3124.
    [70]董运海,张锋,左宝齐,等.再生丝素蛋白纳米纤维网支持和引导神经胶质细胞的生长与迁移[J].中国生物医学工程学报, 2009, 28(1): 96-102,116.
    [71]翟美玉,彭茜.生物可降解高分子材料[J].化学与黏合, 2008, 30: 566-69.
    [72] Yu H, Guo X J, Qi X L, et al. Synthesis and characterization of arginine-glycine-aspartic peptides conjugated poly(lactic acid-co-L-lysine) diblock Copolymer[J]. J Mater Sci: Mater Med, 2008, 19: 1275-1281.
    [73] Vigneswari S, Vijaya S, Majid M, et al. Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer with manipulated variables and its properties[J]. J Ind Microbiol Biotechnol, 2009, 36: 547-556.
    [74] Mavis B, Demirtas T T, Gu musderelioglu M, et al. Synthesis, characterization and osteoblastic activity ofpolycaprolactone nanofibers coated with biomimetic calcium phosphate[J], Acta Biomaterialia, 2009, 5: 3098-3111.
    [75] Matuana L M. Solid state microcellular foamed poly(lactic acid): Morphology and property characterization[J]. Bioresource Technology, 2008, 99: 3643-3650.
    [76] Ye C, Hu P, Ma M X, et al. PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering[J]. Biomaterials, 2009, 30: 4401-4406.
    [77]石峰晖,王晓青,季君晖,等.新型生物材料聚丁二酸丁二醇酯体外水解[J].中国组织工程研究与临床康复, 2008, 12(23): 4473-4476.
    [78]段久芳,郭宝华.嵌段聚合物聚乳酸-聚丁二酸丁二醇酯-聚乳酸的制备及其性能研究[J].塑料科技, 2009, 37(3): 33-34.
    [79] Shih Y F, Chen L S, Jeng R J, Preparation and properties of biodegradable PBS/multi-walled carbon nanotube nanocomposites[J]. Polymer, 2008, 49: 4602-4611.
    [80] Jeong E H, Im S S, Youk J H. Electrospinning and structural characterization of ultrafine poly(butylene succinate) fibers[J]. Polymer, 2005, 46: 9538-9543.
    [81]陈静,周艺峰,武锦,等.生物可降解聚丁二酸丁二醇酯的合成及两亲性改性研究[J].功能材料, 2007, 38(增刊): 1884-1887.
    [82]石峰晖.聚丁二酸丁二醇酯类聚酯的合成及其作为新型生物医用材料应用的研究[D].中国科学院研究生院, 2008.
    [83] Li H Y, Chang J, Cao A M, et al. in vitro Evaluation of Biodegradable Poly(butylenes succinate) as a Novel Biomaterial[J]. Macromol Biosci, 2005, 5: 433–440.
    [84] Hong K, Nakayama K, Park S. Effects of protective colloids on the preparation of poly(l-lactide)/poly(butylene succinate) microcapsules[J]. European Polymer Journal, 2002, 38: 305-311.
    [85] Tang X J, Wu Q Y, Mesenchymal stem cellular adhesion and cytotoxicity study of random biopolyester scaffolds for tissue engineering[J]. J Mater Sci: Mater Med 2006, 17: 627–632.
    [86] Wang H Y, Ji J H, Zhang W, et al. biocompatibility and bioactivity plasma-treated biodegradable poly(butylene succinate)[J]. Acta Biomaterialia, 2009, 5: 279-287.
    [87] Zhang D M, Chang J, Zeng Y. Fabrication of fibrous poly(butylene succinate)/wollastonite/apatite composite scaffolds by electrospinning and biomimetic process[J]. J Mater Sci: Mater Med, 2008, 19: 443–449.
    [88]张昌辉,赵霞.聚丁二酸丁二醇酯合成研究的进展[J].聚酯工业, 2008, 21(2): 8-11.
    [89] Bordes P, Pollet E, Averous L. Nano-biocomposites: Biodegradable polyester/nanoclay systems[J]. Progress in Polymer Science, 2009, 34: 125-155.
    [90] Rutledge G C, Fridrikh Se V. Formation of fibers by electrospinning[J]. Advanced Drug Delivery Reviews, 2007, 59: 1384-1391.
    [91] Jingxin Zhu, Yaopeng Zhang, Huili Shao, et al. Electrospinning and rheology of regenerated Bombyx mori silk fibroin aqueous solutions: The effects of pH and concentration[J]. Polymer, 2008, (49): 2880-2885.
    [92]孙杰,刘俊玲,廖肃然,等.高相对分子质量聚丁二酸丁二醇酯的合成与表征[J].精细化工, 2007, 24(2): 117-120.
    [93] Jeong E H, Im S S, Youk J H. Electrospinning and structural characterization of ultrafine poly (butylene succinate) fibers[J]. Polymer, 2005, 46: 9538-9543.
    [94]史铁钧,翟林峰,周玉波.尼龙66电纺纳米纤维膜的纤维分散形态和结晶性能[J].高分子材料科学与工程, 2007, 23(2): 149-152.
    [95]郭宝华,丁慧鸽,徐晓琳,等.生物可降解共聚物聚丁二酸/对苯二甲酸丁二醇酯(PBST)的序列结构及结晶性研究[J].高等学校化学学报, 2003, 24(12): 2312-2316.
    [96] Liu Y, He J H, Yu J Y. Preparation and Morphology of poly (butylene succinate) nanofibers via electrospinning[J]. FIBRES & TEXTILES in Eastern Europe, 2007, 15 (4): 30-33.
    [97] Ishiaku U S, Khondker O A, Baba S, et al. Processing and Characterization of Short-Fiber Reinforced Jute/Poly Butylene Succinate Biodegradable Composites: The Effect of Weld-Line[J]. Journal of Polymers and the Environment, 2005, 13(2): 151-157.
    [98]张雨青.蚕丝脱胶方法的比较分析[J].蚕业科学, 2002, 28(1): 75-79.
    [99]左保齐,吴徵宇,严春,等.甲醇、乙醇凝固剂对再生丝素纤维性能的影响[J].材料科学与工程学报, 2004, 22(6): 842-846.
    [100]左葆齐,唐人成.甲醇溶液处理后丝素膜结构的变化[J].国外丝绸, 2000, 1: 24-30.
    [101] Wang Z G, Wan L S, Xu Z K. Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview[J]. Journal of Membrane Science, 2007, 304: 8–23.
    [102] Wang M, Jin H J, Kaplan D L, Rutledge G C. Mechanical Properties of Electrospun Silk Fibers[J]. Macromolecules, 2004, 37: 6856-6864.
    [103] Jeong L, Lee K Y, Liu J W, et al. Time-resolved structural investigation of regenerated silk fibroinnanofibers treated with solvent vapor[J]. International Journal of Biological Macromolecules, 2006, 38: 140–144.
    [104] Kim Y J, Park O O. Miscibility and biodegradability of Poly(Butylene Succinate)/Poly (butylene terephthalate) blends[J]. Journal of Environmental Polymer Degradation, 1999, 7(1) : 53-66.
    [105] Kidoaki S, Kwon I K, Matsuda T. Mesoscopic spatial designs of nano-and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques [J]. Biomaterials, 2005, 26: 37-46.
    [106] Ishiaku U S., Khondker O A., Baba S, et al. Processing and Characterization of Short-Fiber Reinforced Jute/Poly Butylene Succinate Biodegradable Composites: The Effect of Weld-Line[J]. Journal of Polymers and the Environment, 2005, 13(2): 151-157.
    [107]邓宗才,李建辉.混杂复合材料混杂效应的研究与进展[J].玻璃钢/复合材料, 2008, 1: 9-13.
    [108]邓宗才,李建辉.混杂FRP复合材料单轴拉伸性能研究[J].玻璃钢/复合材料, 2008, 3: 30-34.
    [109] Velmurugan R, Manikandan V. Mechanical properties of palmyra/glass fiber hybrid composites[J]. Composites, 2007, 38: 2216–2226.
    [110]王建广,刘俊建,范存义,等.同轴静电纺丝法制备神经生长因子纳米纤维缓释载体[J].中国组织工程研究与临床康复, 2008, 12(28): 4440-4444.
    [111] Loscertales I G, Barrero A, Guerro I, et al. Micro/nano encapsulation via electrified coaxial liquid jet[J]. Science, 2002, 295(5560): 1695-1698.
    [112]何创龙,黄争鸣,韩晓建,等.同轴射流技术制备纳米复合材料研究进展[J].复合材科学报, 2005, 22(6): 1-8.
    [113] Zhang Y Z, Su B, Venugopal J, et al. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers[J]. International Journal of Nanomedicine, 2007, 2(4): 623-638.
    [114] Bazilevsky A V, Yarin A L, Megaridis C M. Co-electrospinning of Core-Shell Fibers Using a Single-Nozzle Technique[J]. Langmuir, 2007, 23: 2311-2314.
    [115] Jiang H L, Hu Y Q, Zhao P C, et al. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006, 79 (1): 50- 57.
    [116] Lu Y, Jiang H L, Tu K H, et al. Mild immobilization of diverse macromolecular bioactive agents onto multifunctional fibrous membranes prepared by coaxial electrospinning[J]. Acta Biomaterialia, 2009, 5: 1562-1574.
    [117] Zhang Y Z, Venugopal J, Huang Z M, et al. Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts[J]. Biomacromolecules, 2005, 6(5): 2538-2589.
    [118]赵鹏程.同轴电纺在组织工程支架表面改性中的应用[D].杭州:浙江大学, 2006.
    [119] Sun B, Duan B, Yuan X Y. Preparation of Core/shell PVP/PLA Ultrafine Fibers by Coaxial Electrospinning[J]. Journal of Applied Polymer Science, 2006, 102(1): 39-45.
    [120] Myoung J M, Yoon W H, Lee D H, et al. Effects of Thickness Variation on Properties of ZnO Thin Films Grown by Pulsed Laser Deposition[J]. Jpn. J. Appl. Phys, 2002, 41: 28-31.
    [121] Chen F, Li X, Mo X, et al. Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extrcellular matrix[J]. Journal of Biomaterials Science, Polymer Edition, 2008, 19(5): 677-691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700