用户名: 密码: 验证码:
架空导线覆冰状况自动检测系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从2008年冬季以来,南方各省都陆续出现严重的冰冻降雪天气,导致户外的架空输电线覆冰厚度最高达到50-100mm,很多导线、绝缘子串、塔杆不堪重负,因此出现断裂断股,塔杆倾斜甚至倒塌等现象,造成供电系统大面积的瘫痪,从而引起的一系列供电问题,影响用户的正常生活与工作。同样线路的事故维修也给社会经济造成巨大损失。
     导线覆冰不仅受气象环境以及地貌特点的影响,也受冷暖空气的对环流以及风向等因素的影响。根据中国气象局出版的《地面气象观测规范》自然条件下输电线路覆冰主要有3种类型:雨凇、雾凇和湿雪冻结。历年最大输电线路覆冰中,50%-90%为雨凇,较少地区以雾凇为主。
     本课题主要在阐述输电线路覆冰与气候关系以及各种输电线路覆冰监测方法的基础上,分析了各种监测方法的不足,对其做了改进,利用光纤光栅传感器体积小,重量轻,适合应用于恶劣环境,且不受电磁场干扰,具有极高的灵敏度和分辨率的优点,设计了一种基于光纤光栅传感技术的架空导线覆冰情况自动监测系统,可代替人工对输电线覆冰情况的巡检,并能实时记录覆冰情况,进行预报警,从而减轻了巡检人员的劳动强度、降低了事故的发生概率,提高了线路运行的可靠性。光纤光栅传感器包括信号传感单元以及信号解调单元。光纤作为传感单元的信号传感是无源的,解调单元是将光信号转换为电参量。光纤光栅传感技术可测点数多,可以串并联组网,实现多参数测量,并且传输距离长。
     本文根据覆冰导线所受的总荷载等于冰荷载,风荷载,以及自身荷载之间平衡关系,建立数学模型。光纤光栅传感器的原理是利用反射波长会随着温度,应变等参数的变化而变化,通过检测反射或透射中心波长的变化,就可根据波长漂移量与参数的线性关系间接测量出外界环境参数的变化。利用光纤光栅传感器测量监测点的温度,应变,风速的大小,计算出导线的总荷载,风荷载与自身的垂直载荷,得出导线所受的冰荷载大小,再通过冰荷载与导线覆冰厚度的关系式,计算得出覆冰的厚度大小。
     对于采集回的被测信号,通过光栅解调仪转换为脉冲电流信号后,采用AVR系列的8位处理器ATmega16单片机对电参量进行AD转换以及运算分析,并提取外界信息,传送到上位机中,利用组态王编写的用户界面中显示出现场的覆冰情况,包括温度,应变,风速以及覆冰厚度。工作人员可根据设定的报警值,对相关覆冰线路采取针对性防治措施。
Since its2008winter, provinces of southern have been seriously snow, leading to ice thickness overhead transmission lines reached50-100mm.The conductors, insulators or overwhelmed must be broken or collapse phenomenon occurs repeatedly, resulting in large-area of power supply system can't work, thus giving rise to a series of problems, affecting the user's normal life and work.
     According to the Chinese Meteorological bureau publication "Surface weather observation Standard", the transmission line regelation mainly has3kinds of types:glaze, rime and frozen snow. In the calendar year maximum of transmission line covered with ice,50%-90%is glaze, less areas mainly in the rime.
     Based on the analysis of transmission line icing and climate relationship and a variety of transmission line icing detection method, using the fiber bragg grating sensing technology design a kind of overhead transmission line icing condition automatic monitor system. The transmission line icing monitoring system instead of artificial transmission line icing can record the icing condition and forecast alarm, so as to reduce the individual labor intensity, reduce the occurrence of accidents probability, improve the operation reliability of lines. Fiber Bragg grating sensors, include the signal sensing unit and the signal demodulation unit. Signal sensing optical fiber as a sensing unit is passive, the demodulation unit is to convert optical signals to electrical parameters.
     According to the icing wire suffered load equal to the ice load, wind load, as well as its own load balanced relationship between the mathematical model is established. Fiber Bragg grating sensors to measure temperature, strain, wind speed and size of the monitoring points, in order to calculate the total load of the wire, wind load and vertical load. Through relationships with conductors ice coating thickness of ice loads, calculate thickness of ice.
     With AVR series of8-bit processor ATmega16single-chip machine operator for parametric analysis, extracts for external sources of information, transfer to PC. Use the kingview to write the user interface. The user interface shows the scene of the ice cover, including temperature, strain, wind speed and thickness of the ice cover. The staff may report to the police the value according to the hypothesis, takes the pointed preventing and controlling measure to the correlation line.
引文
[1]K. Dezelak, G. Stumberger, F. Jakl. Arrangements of overhead power line conductors related to the electromagnetic field limits[J].The International Conference on Modern Electric Power System (MEPS),2010, (9):47-52.
    [2]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社,2002:1-192.
    [3]CIGRE-WG-B2.06,BigStorm Events-What we have leaed(TB344),2008.
    [4]黄新波,刘家兵,蔡伟等.电力架空覆冰雪的国内外研究[J].电网技术。2008,32(3):4-23,28.
    [5]杨文宇,杨俊杰,范越等.高压输电线路覆冰在线监测系统研究.中国国际供电会议。2008.
    [6]Fikkesm, Hanssen Je, Rolfsengl. Long range transported pollution and conductivity on atmosphere ice on insulators [J].IEEE Transactions on Power Delivery, 1993,8(3):1311-1321.
    [7]张予.架空输电线路导线覆冰在线监测系统[J].高电压技术.2008,34(9):1992-1995
    [8]李鹏,范建斌.750 kV交流输电线路覆冰区绝缘设计[J].电力设备,2007,8(3):24-27.
    [9]王小朋,胡建林,孙才新,等.应用图像边缘检测方法在线监测输电线路覆冰厚度研究[J].高压电器,2009,45(6):69-73.
    [10]郝兰荣,王国龙.谭磊.浅析送电线路大负荷运行与导线弧垂的关系[J].高电压技术,2006,32(1):107-109.
    [11]徐青松,侯炜,王孟龙.架空输电线路覆冰实时监测方案探讨[J].浙江电力,2007.45(3):9-12.
    [12]Tang, Liqun, Sang, Dengfeng; Chen, Jinming; Yang, Bao; Liu, Yiping.Damage behaviors of fiber Bragg grating sensor in fabrication[J].The International Society for Optical Engineering.2009(2):34-38.
    [13]J.C. Salari, A. Mpalantinos, J.I. Silva, Comparative analysis of 2-and 3D methods for computing electric and magnetic fields generated by overhead transmission lines[J]. IEEE Transaction on Power Delivery.2009,24 (1):338-344.
    [14]L.-S. Yan, T.Luo, Q.Yu. Investigation of performance variations due to the amplitude of group-delay ripple in chirped fiber Bragg gratings[J].Department of Electrical Engineering-ystems,2005(6):84-88.
    [15]K.O.HillY, Fuji,D.C Jonson et al. Photosensitivity in Optical Fiber Waveguides; Application to Reflection Filter Fabrication[J]. Applied. Physics. Letters, 1978,32(10);647-649.
    [16]何海涛,姚国珍.光纤光栅解调技术在电力系统中的应用[J].电力系统通信.2010.31(212):42-45.
    [17]Ahangrani Mostafa, Gogolla Torsten. Spontaneous Raman Scatering in Optical Fibers with Modulated Temperature Raman Remote Sensing[J] Journal of Lightwave Technology,1999,17:1378-1391.
    [18]江毅,陈伟民,杨礼成,等.光纤光栅用于应变温度传感初探[J].传感技术学报,1997,10(3):43-47.
    [19]李路明,孟小波,张治国,等.基于光纤光栅应变传感器的架空输电线弧垂实时监测[J].电力建设,2011,32(7):51-54.
    [20]马国明,李成榕,蒋建.架空输电线路覆冰监测用光纤光栅风速传感器的研制.中国电机工程学报,2011,13(31):128-134.
    [21]詹亚歌,向世清,方祖捷.光纤光栅传感器的应用[J].物理学与高新技术,2004,33(1):58-61.
    [22]刘春城,刘佼.输电线路导线覆冰机理及雨凇覆冰模型[J].高电压技术,2011,37(1):241-247.
    [23]Makkkonen L. Modeling power line icing in freezing precipitation[C].7th International Workshop on Atmospheric Icing of Structures,1996,195-200.
    [24]刘和云,周迪,付俊萍。导线雨凇覆冰预测简单模型的研究[J].中国电机工程学报,2001,21(4):44-47.
    [25]王敏,乔学光,贾振安,等。光纤布拉格光栅传感系统信号解调技术研究[J].激光与光电子学进展,2004,41(12):54-58.
    [26]谢芳,王慧琴.用光纤F-P滤波器解调的光纤光栅传感器的研究[J]。光电子激光,2003,14(4):359-362.
    [27]廖春蓝.AVR单片机在测控实验系统中的设计与应用[J].自动化技术与应用,2007,26(7):243-246.
    [28]孙江涛.基于ATmega16的断路器机械特性测试仪的研制[D],大连理工大学,2009.
    [29]Atmega16中文数据手册.
    [30]夏路易智能仪表设计基础.2009,08.
    [31]RTL8019AS使用手册.
    [32]申明会.基于ATmega16单片机的流量控制器的开发[D],四川大学,2006
    [33]B. Harris, R. Hunt. TCP/IP security threats and attack methods[J]. Department of Computer Science,1999, (1):32-34.
    [34]吴锐,季春光.基于组态王的锅炉自动控制系统.自动化仪表,2002,23(11):45-47.
    [35]北京亚控自动化软件科技公司.组态王6.53使用手册,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700