用户名: 密码: 验证码:
全自动尿沉渣检验仪自动调焦方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动调焦技术是广泛应用于数字成像系统及各种光学仪器设备中的关键技术。对于如全自动尿沉渣检验仪这类全自动光学仪器而言,自动调焦通常是必备的基本功能。自动调焦的精确度直接关系到所成图像的质量优劣,并进而影响之后图像处理任务的难易和结果。对自动调焦方法进行研究,具有重要的理论与应用意义。
     绪论部分对自动调焦技术的历史发展进行了简要的回顾,概要地介绍了常见自动调焦方法所采用的技术路线,说明了自动调焦技术的优越性,并阐明了论文研究课题的应用背景及重要性;
     然后对基于图像处理的已有自动调焦评价函数进行了详细的介绍,主要包括频域法、熵函数法和微分算子法等方法,同时对这些方法的优缺点进行了一定的分析;
     根据对已有方法缺点的分析,在第三章和第四章中,分别提出了两种新的调焦评价函数。第三章所提出的方法首先利用边缘检测来提取被成像对象的大致轮廓,然后通过考察轮廓上各像素点处的梯度强弱来判断图像清晰与否,而忽略了已有评价函数中对象或背景内部的灰度变化对评价值的贡献,从而更符合人类视觉对清晰度的感知;
     第四章的解决思路也与之类似,但相较于采用较为复杂耗时的边缘检测方法,第四章提出的方法则是通过将图像加以分块之后,利用各个图像块中最大的一个或少数几个梯度值作为该图像块中梯度的代表值,来求取梯度和作为清晰度的评价值,从而屏蔽掉绝大多数对象或背景内部梯度对评价值的影响;两种方法均在实际图像上与若干已有评价函数进行了对比实验,实验结果表明所提出的方法在调焦精度上优于已有方法;
     第五章对调焦过程中清晰度峰值的搜索问题进行了考察。首先介绍了Fibonacci搜索算法、函数逼近法、爬山搜索算法等已有方法。在考虑实时性要求的基础上,采用了改进的变步长爬山搜索算法。由于所提出的评价函数计算较为费时,难以满足自动调焦的实时性要求,因此在变步长爬山搜索算法的基础上,提出了一种粗调与细调相结合的调焦过程控制方法,先采用准确性较差但计算迅速的Roberts梯度算子来获取粗调评价函数,大致确定了清晰度峰值所在的小调焦范围之后,再利用提出的比较费时但精度更高的评价函数进行细调,以获得最佳的速度-精度综合性能。
Auto-focusing is a crucial technology broadly applied in digital imaging systems and various optical instruments and devices. For fully automated optical instruments such as automatic urinary sediment analyzer, auto-focusing is one of the necessary fundamental functions. The accuracy of auto-focusing directly influences the quality of the obtained images, and subsequently the hardship and results of the following image processing tasks. Researches on auto-focusing are thus of significant theoretical and practical importance.
     In the review of this thesis, the development history of the auto-focusing technology is briefly summarized, a concise introduction on common auto-focusing techniques is given, the advantages of auto-focusing are commented, and the application background and the importance of the proposed research are explained.
     Existing focus measures based on image processing techniques such as methods using frequency domain information, entropy-based methods and derivative-operator-based methods are then introduced in details. Advantages and disadvantages of the methods are analyzed.
     With the conclusions drawn from the analysis on the disadvantages of the existing focus measures, two new focus measures are proposed in Chapter 3 and 4, respectively. The method given in Chapter 3 uses edge detection to extract the rough contours of the imaged objects, and the definition of the image is judged by the image gradients along the contours. In this way, the image gradients within object or background regions, which contribute to the focus measure in the existing methods, are discarded, and the new focus measure is thus more compatible with the human perception of the image definition.
     The other method described in Chapter 4 follows a similar idea. However, instead of using the time-consuming edge detection, the proposed focus measure first partitions the image into square sub-image blocks, and the most significant image gradient(s) of each block are obtained as the representative of the image gradients in the block, and the sum of these representative image gradients gives the final focus measure. Impacts of image gradients in object and background regions on the focus measure is also filtered out in this approach. Both new focus measures are experimented on real world images in comparisons with several existing focus measures, and the results show that the proposed methods are advantageous over the existing ones.
     The search of the optimal image definition during a focusing process is inspected in Chapter 5. Existing approaches such as Fibonacci searching, function approximation and hill-climbing algorithm are introduced. Considering the real-time requirements on the auto-focusing apparatus, a hill-climbing algorithm with variable step length is employed. Since the focus measures proposed in Chapter 3 and 4 are computationally expensive and the real-time requirement on auto focusing is difficult to fulfill by directly applying the new focus measures, a coarse-to-fine focusing strategy based on the variable step length hill-climbing method is given. In this strategy, a less accurate but very fast coarse focus measure utilizing the Roberts operator is first applied to estimate the approximate focusing range where the optimal definition is located. The more time-consuming but more accurate new focus measure is then used to do a finer search in this small range to determine the best focusing, and thus to obtain the optimal speed-accuracy performance.
引文
[1]黄剑琪,徐之海,冯华君,等.基于分辨力空间变化的自动聚焦方法.光电工程.2001,28(1):22-26
    [2]刘传奇.图像理解与计算机视觉.厦门:厦门大学出版社.2002,9
    [3]申文彪.智能视频监控技术研究及应用.计算机视觉的应用.2009(119):18-19
    [4]F. Murtagh, X. Qiao, P. Walsh. Grading of construction aggregate through machine vision:results and prospects. Computers in Industry.2005(8):905-917
    [5]胡文彪,杜成华,李西荣,等.机器视觉技术在工程机械上的应用.工程机械.2009,40:53-56
    [6]张健钦,王秀,龚建华,等.基于机器视觉技术的叶面积测量系统实现.自然科学进展.2004,14(11):1304-1308
    [7]U. Watchareeruetai, Y. Takeuchi, T. Matsumoto, et al. Computer vision based methods for detecting weeds in lawns. Machine Vision and Applications.2006, 17:287-296
    [8]B. Astrand, A. Baerveldt. An agricultural mobile robot with vision-based perception for mechanical weed control. Autonomous Robots.2002(13):21-35
    [9]汤修映,张铁中.果蔬收获机器人研究综述.机器人.2005,27(1):90-96
    [10]马彦平,白由路,高祥照,等.计算机视觉技术在农业生产中的应用与展望.中国农业资源与区划.2009,30(4):20-27
    [11]W. S. Lee, D. C. Slaughter, D. K. Glies. Robotic weed control system for tomatoes. Precision Agriculture.1999(1):95-113
    [12]D. M. Woebbecke, G. E. Meyer, K. V. Bargen, et al. Shape features for identifying young weeds using image analysis. Transactions of the ASAE.1995, 38(1):271-281
    [13]A. Jafari, S. S. Mohtasebi, H. E. Jahromi.et al. Weed detection in sugar beet fields using machine vision. Int. J. Agri. Biol.,2006,8(5):602-605
    [14]张巧荣,李淑红,肖会敏.基于视觉注意的医学图像感兴趣区域提取.计算机应用研究.2009,26(12):4803-4805
    [15]K. R. Park, J. Kim. A real-time focusing algorithm for iris recognition camera. IEEE Transactions on Systems, Man, and Cybernerics.2005,35(3):441-444
    [16]S. Barbarossa, A. Scaglione. Autofocusing of SAR images based on the product high-order ambiguity function. IEE Proc.-Radar, Sonar Navig.,1998, 145(5):269-273
    [17]F. Berizzi, G. Corsini. Autofocusing of inverse synthetic aperture radar images using contrast optimization. IEEE Transactions on Aerospace and Electronic Systems,1996,32(3):1185-1191
    [18]X. Li, G. Liu, J. Ni. Autofocusing of ISAR images based on entropy minimization evaluation of autofocus functions in molecular cytogenetic analysis. IEEE Transactions on Aerospace and Electronic Systems.1999,35(4):1240-1252
    [19]徐丽群.计算机控制显微镜自动对焦与图像实时融合技术的研究.浙江大学信息学院.2008
    [20]瞿蓬,林喜荣.一种基于图像处理的自动调焦系统.电子技术应用.2002(10):33-35
    [21]K. Ooi, K. Izumi, M. Nozaki. An advanced autofocus system for video camera using quasi condition reasoning. Consumer Electronics. IEEE Transactions.1990, 36(3):536-530
    [22]J. He, R. Zhou, Z. Hong. Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera. IEEE Transactions on Consumer Electronics.2003,49(2):257-262.
    [23]H. Toyoda, S. Nishikawa, Y. Kitamura, et al. New automatic focusing system for video cameras. IEEE Transactions on Consumer Electronics.1986, 32(3):312-319
    [24]Y. K. Ko, J. S. Lee, Y. Y. Jung, et al. An advanced camera system having fast autofocus control.2001. ICCE.2001:210-211
    [25]王虎.自动对焦原理及方法.科技信息.2008(13):38
    [26]安有芳,程安珍,唐仁满.尿沉渣镜检的临床价值.西藏医药杂志.1999,20(1):42-43
    [27]边跃进.尿液沉渣的显微镜检查与临床意义.哈尔滨医药.2005,25(4):47.
    [28]归改霞.血液和尿液中成分用显微镜复检的必要性.实用医技杂志.2006,13(4):584-585
    [29]顾可梁.尿沉渣检查的新进展.临床检验杂志.2004,22(5):395
    [30]程庆砾.尿沉渣检查—“体外无创性肾活检”.肾脏病与透析肾移植杂志.2005,14(2):149-150
    [31]姚松,曹丹华,吴裕斌.图像信息量的变化对自动对焦评价函数的影响.光电工程.2006.33(5):81-84
    [32]S. Y. Lee, J. T. Yoo, Y. Kumar, et al. Reduced energy-ratio measure for robust autofocusing in digital camera. IEEE Signal Processing Letters.2009, 16(2):133-136
    [33]J. Baina, J. Dublet. Automatic focus and iris control for video cameras. Image Processing and its Applications.1995.232-235
    [34]J. Widjaja, S. Jutamulia. Wavelet transform-based autofocus camera systems. IEEE APCCAS 1998.1998:49-51
    [35]冯华君,毛邦福,李奇,等.一种用于数字成像的自动对焦系统.光电工程.2005,31(4):69-73
    [36]李齐,冯华君,徐之海等.数字图像清晰度评价函数研究.光子学报,2002,31(6):736-738
    [37]王平江,陈德均,巫孟良,等.一种复合的自动对焦方法在影响测量仪中的应用.中国机械工程.2007,18(21):2555-2560
    [38]李齐,冯华君,徐之海.自动对焦系统中图像非均匀采样的实验研究.光子学报.2003,32(12):1499-1501
    [39]Y. Yao, B. R. Abidi, M. A. Abidi. Extreme zoom surveillance:system design and image restoration. Journal of Multimedia,2007,2(1):20-31
    [40]孙杰,袁耀辉,王传永.数字图像处理自动图像聚焦算法的分析和比较.光学学报.2007,27(1):36-40
    [41]将婷.基于图像处理的自动对焦理论和技术研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学,2008
    [42]管维乐,姜威.基于多分辨率分析的数字图像自动聚焦算法研究.计量技术.2004(6):1-5
    [43]冈萨雷斯.数字图像处理(MATLAB版).北京:电子工业出版社.2005:172,180,289-292
    [44]刘兴宝,袁道成.基于纹理分析的小波变换图像清晰度评价方法研究.仪器仪表学报.2007,28(8):1508-1513
    [45]傅祖芸.信息论基础.北京:高等教育出版社.1986:37
    [46]朱铮涛,黎绍发,陈华平.基于图像熵的自动聚焦函数研究.光学精密工程.2004,12(5):537-542
    [47]杨再华,李玉和,李庆祥,等.基于边缘特征提取的图像清晰度评价函数.计算机工程与应用.2005,10:35-36,161
    [48]高成,董长虹,郭磊,等.Matlab图像处理与应用(第2版).北京:国防工业出版社.2007:168-172
    [49]马瑾,陈立潮张永梅.轮廓跟踪与边沿检测的图像自动识别.中北大学学报(自然科学版).2006,27(5):431-435
    [50]M. Subbarao, J.K. Tyan. Selecting the optimal focus measure for autofocusing and depth-from-focus. IEEE Transactions on Pattern Analysis and Machine Intelligence.1998,20(8):864-870
    [51]任仕刚,李见为,谢利利.基于灰度差分法的自动调焦技术.光电工程,2003,30(2):53-55
    [52]赵辉,鲍歌堂,陶卫.图像测量中自动调焦函数的实验研究与分析.光学精密工程.2004,12(5):531-536
    [53]张建民,程洪涛.用于CCD数码成像的自动对焦技术.天津工程师范学院学报.2007,17(2):11-15
    [54]H. Wang, A. Qin, M. Huang. Autofocus method for digital holographic reconstruction of microscopic object. Photonics and Optoelectronics,2009.1-4
    [55]蔡明荣,马军山,王福红.自动调焦系统中图像清晰度判别方法的研究.光学仪器.2008,30(5):35-39
    [56]陈国金,朱妙芬,张克松.图像调焦过程的清晰度评价函数研究.数据采集与处理.2009,24(2):165-169
    [57]周贤,姜威.基于图像边缘能量的自动聚焦算法.光学技术.2006,32(2):213-218
    [58]裘晓光,陈国真.基于数字图像边缘信息的自动对焦算法研究.杭州电子工业学院学报.2004,24(4):91-95
    [59]董代,刘荣,孙明磊,等.基于互相关的自动聚焦方法.北京航空航天大学学报.2006,32(3):306-310
    [60]K. S. Choi, J. S. Lee, S. J. Ko. New autofocusing technique using the frequency selective weighted median filter for video cameras. IEEE Transactions on Consumer Electronics.1999,45(3):820-827
    [61]赵耀,陈慧女.图像细化的VC实现.科技信息.2008(16):376-377
    [62]高赞.自动聚焦评价函数的精确度和稳定性研究:[山东大学硕士学位论文].济南:山东大学,2007
    [63]张秋梅.数码相机自动对焦算法的研究与实现:[西北工业大学硕士学位论文].西安:西北工业大学,2006
    [64]Y. Yao, B. Abidi, M. Tousek, and M. Abidi. Auto-focusing in extreme zoom surveillance:a system approach with application to faces. Advances in Visual Computing.2nd Intl. Symposium on Visual Computing, Lake Tahoe NV, Springer Berlin:Heidelberg,2006,4291:401-410
    [65]高赞,姜威,朱孔凤,等.一种自适应的自动聚焦算法.光学学报.2006,26(10):1474-1478

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700