用户名: 密码: 验证码:
工业生产黄豆酱乳酸菌和酵母菌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄豆酱是我国传统的发酵豆制品,以大豆和小麦为主要原料。黄豆酱以其特有的色、香、味,丰富的营养价值和良好的保健功能几千年来深受人们的喜爱。在制作黄豆酱的过程中微生物的作用显得尤为的突出,并已经在种曲培养阶段就发现并鉴定的微生物为米曲霉等霉菌。种曲中的霉菌通常利用淀粉、低聚糖、单糖、有机酸及醇类等作为碳源。蛋白质,氨基酸及尿素等作为氮源。而酵母菌和乳酸菌在黄豆酱发酵的过程中对增进风味也起到至关重要的作用。传统制酱工艺通常将大豆与面粉混合并制成块状,经日晒夜露制作种曲,种曲微生物的来源于原料或空气中,其中包括了耐盐性的酵母菌和在厌氧条件下生长良好的乳酸菌。经过相关资料报道这些微生物包括鲁氏酵母、球拟酵母和嗜盐四链球菌。近些年制作黄豆酱更趋于利用纯菌种发酵的方法,不但缩短了发酵周期,而且减少了杂菌的污染。本课题研究旨在对可发酵黄豆酱的鲁氏酵母、球拟酵母和嗜盐四链球菌进行富集培养,并制备成发酵剂,用于黄豆酱的后期发酵,来改善黄豆酱的品质。
     1.本文研究了嗜盐四链球菌、鲁氏酵母和球拟酵母菌的耐盐性。研究发现,嗜盐四链球菌可在12%NaCl的培养基中生长良好,鲁氏酵母和球拟酵母可在18%NaCl的培养基中生长良好。
     2.嗜盐四链球菌以MRS为培养基,恒定发酵pH值为6.5,控制溶氧量为15%,以3%的接种量接种,搅拌速度120rpm,在34℃下培养28h,嗜盐四链球菌的活菌数可达1.22×10~(12)cfu/mL。富集培养后的嗜盐四链球菌经5000rpm,离心20min,收集菌体,加入10%脱脂乳和5%的甘油作为嗜盐四链球菌细胞悬浮液的冷冻保护介质。经真空冷冻干燥后的嗜盐四链球菌的活细胞数达到5.58×10~(10)cfu/g,细胞存活率为73.28%。
     3.在生酱油培养基中,分别以葡萄糖为两株酵母的碳源,以硫酸铵为氮源,向鲁氏酵母培养基中的添加量为0.05%的K_2HPO_4,向球拟酵母培养基中的添加量为0.07%的K_2HPO_4。通过全自动模拟发酵罐进行增菌发酵试验得到,鲁氏酵母最优发酵条件为控制溶氧量在50%,发酵pH值为3.5,以8%接种量接种,搅拌速度120rpm,在25℃下培养32h,鲁氏酵母活菌数最高值可达1.07×10~(11)个/mL。球拟酵母的最优发酵条件为控制溶氧量在60%,发酵pH值为3.5,以6%的接种量,搅拌速度120rpm,在25℃下培养36h,球拟酵母活菌数的最高值可达和1.55×10~(11)个/mL。富集培养后的酵母菌体经5000rpm离心20min,用2.5%的氯化钠溶液洗涤多次,添加司盘60与土温80比例为1:1的混合物作为干燥保护剂,在温度为40℃条件下进行干燥,干燥至水分含量低于8%。干燥的产品经过25倍菌体重量的12Bé麦芽汁在36℃条件下复水15min,降温25℃活化120min。鲁氏酵母和球拟酵母的存活率分别为91.7%和91.07%。
     4.将三株菌分别进行单因素发酵试验,确定其单独发酵时的最佳添加时间及添加量。并根据各个菌株单因素发酵的试验结果,采用三因素三水平正交试验设计,研究在混合菌种发酵黄豆酱的方法中嗜盐四链球菌、鲁氏酵母、球拟酵母的最佳配比。得到在酱醪发酵的第11天添加嗜盐四链球菌,添加量为10~6cfu/g酱醪,在酱醪发酵的第14天同时添加鲁氏酵母和球拟酵母,添加量分别为10~5个/g酱醪和10~6个/g酱醪。产品经GC-MS分析,鉴定出24种挥发性风味化合物。并通过对理化指标和风味检测表明,混合菌种发酵的黄豆酱比仅利用米曲霉发酵生产的黄豆酱产品品质更好。
Soybean paste is a traditional fermentation soybean product. Fermented soybean paste madewith such materials as wheat and soybean. Soybean paste has been popular more than one thousandyears because it has pleasure aroma, taste, nutrition and function. Microorganism play veryimportant role in the processing of soybean paste. Microorganism found in koji almost alwaysbelongs to fungi species, Aspergillus oryzae and/or Asp. Sojae. The koji mold has the ability toutilize starch, oligosaccharides, simple sugars, organic acids and alcohols, etc as carbon sources,and protein, amino acids and urea, etc as nitrogen sources. Halophilic yeast and lactic acid bacterialalso play an important role in developing flavour during fermentation of soybean paste, particularlyin the later stage of the fermentation. Traditionally, the mixture of boiled soybean and wheat flourmade cuboid or elliptoid shape and kept in an incubation room to make koji. The organisms comefrom either the previous batch or environment in which they are natural present. The inoculumgenerally contains selected flora of salted tolerant yeasts and bacterial capable of growing underanaerobic conditions. The dominant microorganisms are yeast Zygosaccharomyces Rouxii andTorulopsis sp and certain lactic acid bacteria such as Tetragenococcus Halophilus. Since pureculture of these microorganism speeds up fermentation and reduce the influence of weed yeast andbacteria, its use in commercial soybean paste preparation has been popular in recent years. In thispaper we focus on Tetragenococcus Halophilus, Zygosaccharomyces Rouxii and TorulopsisCandida, to produce commercial used lactic acid bacteria starter and dried yeast that can be appliedin industrial producing soybean paste.
     1. Tetragenococcus Halophilus can be grown up at 12% NaCl, and Zygosaccharomyces Rouxiiand Torulopsis Candida can be grown up at 18% NaCl.
     2. Tetragenococcus Halophilus is aerobic in MRS in culture medium, with growth optimagenerally at pH 6.5, a temperature of 34℃, a dissoluble oxygen of 15%, a inoculation concentrationof 3%, a stir speed of 120rpm, and the incubation time of 28h. At this optimum cultural condition,the active cell number of Tetragenococcus Halophilus was 1.22×10~(12) cfu/mL. The culture organismwas centrifugalized 20 min at 5000rpm. The bacterial concentrate was mixed with 10% skim milkpowder and 5% glycerin, and was dried by vacuum freezing. The active cell number of driedTetragenococcus Halophilus was 5.58×10~(10) cfu/g., and the survival rate of the dried bacteria was73.28%.
     3. The culture media of Zygosaccharomyces Rouxii and Torulopsis Candida contained raw soysauce, glucose, and (NH_4)_2SO_4. It had been proved that 0.05% and 0.07% K_2HPO_4 in the culturemedia benefit the growth of Zygosaccharomyces Rouxii and Torulopsis Candida respectively. Theoptima fermentation condition of Zygosaccharomyces Rouxii was that controlled dissoluble oxygenof 50%, a pH of 3.5, a inoculation concentration of 8%, a stir speed of 120rpm, a temperature of25℃, a incubation time of 32h. The active cells number of Zygosaccharomyces Rouxii was1.07×10~(11)/mL. The optima fermentation condition of Torulopsis Candida was that controlleddissoluble oxygen of 60%, a pH 3.5, a inoculation concentration of 6%, stir speed of 120rpm, atemperature of 25℃, and a incubation time of 36h. The active cells number of Torulopsis Candidawas 1.55×10~(11)/mL. The culture organism was centrifugalized 20 min at 5000rpm. The yeastconcentrates were washed by 2.5% NaCl several times, and the concentrates were mixed withspan60 and tween80 (1:1). The mixture was dried to 8% moisture content at 40℃. The dried yeastpowder was dissolved in 12Béwort at 36℃(15min), and then the yeast solution was incubated at25℃, 120min. The survival rate Zygosaccharomyces Rouxii and Torulopsis Candida were 91.70%and 91.07% respectively.
     4. In order to determine the optimal proportion of three strains, the three strains wereinoculated into soybean paste. Based on the effect of single strain on the quality of soybean paste, aL_9(3~3) orthogonal experiment design was conducted to study the proportion of TetragenococcusHalophilus, Zygosaccharomyces Rouxii and Torulopsis Candida. The results were thatTetragenococcus Halophilus was inoculated into soybean paste in the 11th day, and the inoculationconcentration was 10~6cfu/g. Zygosaccharomyces Rouxii and Torulopsis Candida were inoculatedinto soybean paste in the 14th day, however, the inoculation concentration of both was 10~5 cfu/g and10~6cfu/g respectively. 24 volatile flavor compounds were detected from soybean paste by GC-MS.The taste, chemical and physical characteristic and flavors, of that fermented by Aspergillus oryzae,yeast and lactic acid bacteria, were better than that only fermented by single Aspergillus oryzae.
引文
陈九武,霍炜,桂华明.2000.酵母合成酯类风味物质发酵条件的优化[J].中国酿造.1 26~27
    陈毛清,赵华.2006.葡萄酒活性干酵母的干燥工艺研究[J].酿酒科技.8 88~91
    陈敏,梁新乐,励建荣.2001.葡萄酒活性干酵母复水活化条件的研究[J].江苏食品与发酵.6 6~9
    陈远才,黎平,李朝晖.1992.耐高温酒精活性干酵母的研制和应用[J].食品与发酵工业.5 56~63
    蔡金星,曹小红,刘秀凤.2005.耐盐酱油酵母生长特性分析[J].中国酿造.5 14~17
    蔡金星,刘秀凤.2004.酱油增香发酵用酵母的纯化和生长特性分析[J].河北科技师范学院学报.12 17~19
    杜连祥,赵征.1999.乳酸菌及其发酵制品生产技术[M].天津:天津科学技术出版社.11
    丁耐克.1996.食品风味化学[M].北京:中国轻工业出版社.283
    方继功.1997.酱类制品生产技术[M].北京:中国轻工业出版社.41~42
    贡汉坤.2004.传统豆酱自然发酵的动态分析及人工接种多菌种发酵研究[D].江南大学硕士论文
    高玉荣,王霞,冯昌友.2000.酱渣多菌混合发酵提高酱油质量的研究[J].黑龙江八一农垦大学学报.9 102~104
    贺稚非,向瑞玺,李洪军.2006.泡菜活性直投式乳酸菌发酵剂的研究[J].食品科学.8 191~198
    鞠洪荣.1995.日本、韩国酱油的成分浅析[J].中国酿造.4 7~9
    江浩,吴耘红,蒋继风.2002.黄稀酱生产新工艺的研究[J].食品科学.10 62~64
    江浩,王文侠,栾广忠.2004.大豆深加工技术[M].北京:中国轻工业出版社.164~167
    吕兵,张国农.2001.乳酸菌发酵剂浓缩培养的研究[J].中国乳品工业.3 12~15
    吕承广.1995.浅谈酱油香气形成途径及提高措施[J].中国调味品.7 13~14
    吕燕妮,靳志强,李平兰.2005.酸奶生产用直投式乳酸菌发酵剂研究[J].中国乳业.11 47~50
    凌代文,尔秀珠.1999.乳酸细菌分类鉴定及实验方法[M].北京:中国轻工业出版社
    刘副林,杨文侠,朱丽莉.1999.多菌种发酵蚕豆酱的研制[J].中国调味品.1 20~23
    刘振民,骆承庠.2002.乳酸菌冻干特性的研究[J].中国乳品工业.30(5)30~33
    刘会勇,封际钢.2001.T酵母应用技术研究报告.中国酿造.6 39~42
    李华,骆艳娥,刘延琳.2002.真空冷冻干燥微生物的进展[J].微生物通报.3 78~81
    李金红.2004.乳酸菌在酱油酿造工业及蔬菜加工中的应用[J].江苏调味副食品.4 11~15
    李琴,杜风刚.2003.发酵过程中添加生香酵母改善酱油风味的探讨[J].中国酿造.6 27~29
    连玉晶.2003.N,O-羧甲基壳聚糖涂膜保鲜剂在油豆角上的应用研究[D].东北农业大学硕士论文.10~11
    林祖申.2002.先固后稀添加酵母、乳酸菌是提高酱油风味的捷径[J].中国调味品.1 26~30
    林祖申.2005.多菌种发酵是提高酱油、食醋质量的重要途径[J1.中国酿造.6 1~5
    莫湘筠.1993.酵母脱水保藏机理探讨及其在活性干酵母生产中的应用[J].食品与发酵工业.1 76~77
    蒲丽丽,刘宁.2004.乳酸菌冻干保护剂及保护机理的研究进展[J].现代食品科技.1 147~150
    乔发东,吴秀芳.1998.高效浓缩乳酸菌发酵剂的制作与应用[J].农牧产品开分.1 32~35
    漆光琦.1977.酱油酿造中乳酸菌的作用[J].日本酿造协会杂志.10
    邱立友,宫明宇,朱光州.1993.多菌种在酱油酿造中的应用[J].中国酿造.1 2~7
    施安辉,刘而尊.1996.多菌种发酵酿制特鲜酱油的研究[J].中国调味品.2 7~11
    施安辉.2001.乳酸菌分类、生理特性及在食品酿造工业上的应用[J].中国调味品.11 2~8
    施庆珊,陈仪本,欧阳友生.2006.酱油酿造中的生香酵母及生香过程[J].中国酿造.1 57~60
    松本伊左尾.1989.乳酸菌和酵母的添加时期及添加量对酱醪发酵的影响[J].中国调味品.7 27~31
    孙翠焕,冀宝营,王艳华.2006.高活性乳酸菌发酵剂培养条件优化及活性测定[J].微生物学杂志.3 70~73
    宋钢.2003.新编调味品生产与应用[M].北京:中国轻工业出版社31~39
    史龙君,杨铎,孙岩.2004.多菌种稀发酵酱油的对照试验[J].中国酿造.10 22~25
    山田浩一.1977.最近日本发酵工业的进展[J].中国调味品.4 21~24
    谭周进,谢达平.2000.乳酸菌在酿造调味品中的呈味作用[J].湖南农业科学.5 44~45
    万红兵.2006.高效浓缩型酸奶冻干发酵剂制备关键技术研究[D].河北农业大学硕士论文.54
    吴津颖.2005.对酱油中产膜性酵母菌检验的研究[J].江苏调味品.22(1)22~24
    吴思方,邹发斌,张钦.1991.产酯活性干酵母的研究[J].湖北工学院学报.12 64~67
    王洪升,王素珍,马敬丽.2004.耐盐乳酸菌在高盐稀态酱油中的应用[J].中国酿造.10 28~29
    王琳,岳田利,云育行.2004.酿酒高活性干酵母复水活化工艺研究[J].塔里木农垦大学学报.6 13~15
    王雅芬.2000.酿酒酵母抗冷冻干燥内在机理初步研究[J].食品科学.21(12)10~12
    王亚军,姚善泾,吴天星.2004.渗透剂对酿酒酵母细胞增殖、形态和存活力的影响[J]。化工学报.7 1150~1154
    王亚楠,肖冬光,张军.2002.啤酒活性干酵母应用工艺的研究[J].酿酒.29(1)34~36
    肖冬光,尹荣杰.1990.用活性于酵母代替传统酒母发酵的研究[J].酿酒科技.1 22~26
    夏恒连.1991.日本酱油新品种[J].中国酿造.2 10~11
    项锦欣.2004.直投式发酵剂生产橄榄菜技术研究[D].西南农业大学硕士论文.27~28
    谢丽源.2003.活性干燥菌乳酸菌发酵剂的研究[D].西南农业大学硕士论文
    谢韩,丁洪波.2002.添加耐盐酵母改善低盐固态酱油风味[J].江苏调味副食品.75 6~7
    徐晓红,汪志君,方维明.2003.麦汁中啤酒酵母的最适接种量研究[J].酿酒科技.4 73~74
    徐志远,刘荣.2006.保护剂在乳酸菌冻干过程中的应用[J].乳业科学与技术.4 155~158
    于景芝.2005.酵母生产与应用手册[M].北京:中国轻工业出版社
    熊晓辉,于修,熊强.2004.乳酸菌发酵剂高密度培养的研究[J].中国调味品.5 18~22
    杨开平.1995.麦汁充氧对酵母增殖作用的探讨[J].广州食品工业科技.11 41~42
    姚立兵,邵红,张文.2002.活性干酵母扩大培养的研究[J].酿酒.9 47~48
    袁亚宏,岳田利.2003.冻干高活力乳酸菌粉保护剂的研究[J].西北农林科技大学学报.1082~85
    张海.1993.大豆酱发酵过程中乳酸菌和酵母菌的作用[J].中国调味品.6 5~8
    张建国,张春晖.2003.乳酸菌冻干伤害与保护[J].食品工业科技.1103~105
    赵建新,顾小红,刘杨岷.2006.传统豆酱挥发性风味化合物的研究[J].食品科学.2 684~687
    赵志华,岳田利,王燕妮.2006.酿酒活性干酵母的研究[J].中国酿造.11 1~4
    种克.2006.双歧杆菌高效浓缩型酸奶发酵刺制备关键技术研究[D].河北农业大学硕士论文.64~65
    朱史齐.2004.提高酿造酱油风味的试验几则[J].中国调味品.3 27~29
    周秀琴.1993.90年日本酱油、酱、L-谷氨酸研究成果(二)[J].上海调味品.1 4-6
    Akira Hirota, Miyuki Inaba, YU-chi Chen.2004.Isolation of 8-hydroxyglycitein and 6-dydroxydaidzein from soybean miso[J].Biosici.Biotechnol.Biochem.68 1372~1374
    Asa Schoug, Johan Olsson, Johan Carlfors.2006.Freeze-drying of Lactobacillus coryniformis Si3-effects of sucrose concentration, cell desity, and freezing rate on cell survival and thermophysical properties[J].Cryoiology.53 119~127
    Aure lie Baliarda, et al.2003.Potential osmoprotectants for the lactic acid bacteria Pediococcus pentosaceus and Tetragenococcus halophila[J].Internationa J J of Food Microbiology 84 13~20
    Bassirou Ndoye, Frederic Weekers, Brehima Diawara.2007.Survival and preservation after freeze-drying process of thermoresistant acetic acid bacteria isolated from tropical products of Subsaharan Afric[J].Joumal of Food Engineering.79 1374~ 1382
    B.De Giulio, P.Orlando, G.Barba, R.Coppola.2005.Use of alginate and cryo-protective sugars to improve the viability of lactic acid bacteria after freezing and freeze-drying[J].World Journal of Microbiology and Biotechnology.21 739~746
    Catrinus Vandersluis, Yovita S.P.Rahardjo.2002.Concomitant Extracellular Accumulation of Alpha-Keto Acids and Higher Alcohol by Zygosaccharomyces rouxii[J].Journal of Bioscience and Bioengineering.Vo193.No.2 117~124
    Daosheng Zhang, Robert W.Lovitt.2006.Performance assessment of malolactic fermenting bacteria Oenococus oeni and Lactobacillus brevis in continuous culture[J].Appl Microbiol Biotechnol.69 658~664
    Fumio Noda, Kazuya Hayashi, Takeji Mizunuma. 1982.Influence of pH on inhibitory activity of acetic acid on osmophilic yeases used in brine fermentation of soy sauce[J].Applied And Environmental Miccrobiology.43 245—246
    
    Johan Palmfeldt, Barbel Hahn-Hagerdal.2000.Influence of culture pH on survival of Lactobacillus reuteri subjected to freeze-drying[J].International Journal of Food Microbiology.55 235—238
    
    Johan Palmfeldt, Peter Radstrom, Barbel Hahn-Hagerdal.2003.Optimisation of initial cell concentration enhances freeze-drying tolerance of Pseudomonas chlororaphis[J]. Cryobiology.47 21-29
    
    Kobayashi T, Kajiwara M, Wahyuni M, Hamada-Sato N, Imada C, Watanabe E.2004.Effect of culture conditions on lactic acid production of Tetragenococcus species J of Applied[J]. Microbiology.96 (6) 1215—1221
    
    Michael Jansen, Janine H.Veurink, Gert-Jan W. Euverink, Lubbert Dijkhuizen.2003.Growth of the salt-tolerant yeast Zygosaccharomyces rouxii in microtiter plates: effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids[J].FEMS Yeast Research.3 313—318
    
    Pitipong Wanakhachornkrai, Sittiwat Lertsiri.2003.Comparison of determination method for volatile compounds in Thai soy sauce[J].Food Chemistry.83 619—629
    
    P.Lodato, M.Segovia de Huergo, M.P.Buera. 1999. Viability and thermal stability of a strain of Saccharomyces xdcerevisiae freeze-dried in different sugar and polymer matrices[J].Appl Microbiol Biotehnol.52 215—220
    
    Seung-Ho Kim, Kyung-Ae Lee.2003.Evaluation of taste compounds in water-soluble extract of a doenjang (soybean paste) [J].Food Chemistry.83 339—342
    
    Shigehiro Kataoka.2005.Functional Effects of Japanese Style Fermented Soy Sauce(Shoyu) and Its Components[J].Journal of Bioscience and Bioengineering. Vol 100.No.3 227—234
    
    Shigeki Koseko, Makoto Hisamatsu, Masayoshi Matsunaga. 1993.Study on soy sauce production from soy sauce-moromi mash by using bioreactor systems[J].Nippon Shokuhin Kogyo Gakkaishi.Vol.40,No.8,558-567.
    
    Thomas Dahlen, Tobias Hauck, Martina Wein, Wilfried Schwab.2001. 2,5-Dimethl4- 4-Hydroxy-3(2)-Furanone as a Secondary Metabolite from D-Fructose-1,6-Diphosphate Metabolism by Zygosaccharomyces rouxii[J].JournaI of Bioscience and Bioengineering.Vol.91,No.4 352—358
    
    Yasuhiko Suezawa, Isao Kimura.2006.Identification and Typing of Miso and Soy Sauce Fermentation Yeasts,Candida etchellsii and C.versatilis,Based on Sequence Analyses of the D1D2 Domain of the 26S Ribosomal RNA Gene, and the Region of Internal Transcribed Spacer 1,5.8S Ribosomal RNA Gene and Internal Transcribed Spacer2[J].Biosci.Biotechnol.Biochem, 70(2) 348-354
    
    Yasushi Yamamoto, Hideyuki Imaizumi, Kazuo Higashi. 1992.Inhibitory effects of pediococus halophilus on the growth of zygosaccharomyces rouxii in shiro-shoyu fermentation[J].Nippon Shokuhin Kogyo Gakkaishi.vol,39.No.10 934—938
    
    Yoshio Makino, Itsuko Takegami.l999.Producion of Soy-Sauce by Use of Yeast Cultured in a Medium Including Wastewater Produced by Desalted Soy-Sauce Lees[J].Nippon Shokuhin Kagaku Kogaku Kaishi.vol,46(10) 664-668
    
    Yukie Miyamoto-Shinohara, Junji Sukenobe, Takashi Imaizumi.2006.Survival curves for microbial species stored by freeze-drying[J].Cryobiology.52 27—32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700