用户名: 密码: 验证码:
多晶相水合碳酸镁结晶生长过程调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水合碳酸镁是一种重要的化工原料或产品,其结晶生长是制备过程中最基本、最重要的环节。本文旨在通过对水合碳酸镁结晶生长过程的系统研究,完善水合碳酸镁反应结晶过程控制手段和机制,为工业化提供理论指导和技术支持。主要内容归纳如下:
     实验研究了水合碳酸镁热力学性质。无定形亚稳态是由40~100nm的纳米级颗粒聚集而成,是包含细小晶粒和非晶态的具有网络组织结构的复杂物相,其组成可表示为xMgCO3·Mg(OH)2-yH2O。无定形碳酸镁具有“动态溶解”性质,反应物将不断转化为无定形物继而形成稳定晶体。采用简化方程、经验模型和BP神经网络拟合和预测溶解度,三者各有优缺点。实验表明,水合碳酸镁溶解度均随温度升高而降低,在NaCl溶液中溶解度显著提高。
     系统研究了结晶工艺参数对无定形亚稳态晶型转化的影响。研究表明,无定形亚稳态碳酸镁既可以向三水碳酸镁转变也可以向碱式碳酸镁转变,工艺参数的改变可以使结晶过程发生热力学和动力学控制结晶路径的转换。转化过程遵循颗粒介导机理,无定形纳米粒子充当了生长单元的角色。建立无定形亚稳态碳酸镁结晶动力学模型,利用XRD测定转化率。实验得到无定形物结晶活化能为31.70kJ·mol-1。采用BP神经网络模拟结晶工艺条件与产品粒度的关系,有效补充了结晶模型在对产品尺寸描述上的不足。
     从成核、生长、二次过程和外场强化四个层次研究了三水碳酸镁结晶生长调控。1)诱导期和无定形物转变时间受温度、浓度和晶种影响。在此基础上,提出搅拌一陈化合成工艺,通过对搅拌时间的控制,达到将成核与生长阶段分离的目的,合成出尺寸可控、形态良好的三水碳酸镁微棒。2)在SDS存在下,合成出平均长度为87~180μm、长径比为18~45的三水碳酸镁晶须。SDS在晶体或无定形纳米颗粒表面的物理吸附,促使三水碳酸镁发生定向生长,形成晶须。3)实验采用FBRM和形貌分析考察了三水碳酸镁的二次过程。结果表明,MgCl2对其聚结过程具有促进作用,聚结使颗粒形成束状形貌。4)采用超声场强化三水碳酸镁结晶。反应结晶的不同阶段引入超声所产生的效果不同;集中的超声作用更有利于晶体成核,增大颗粒尺寸,而持续作用促进二次成核,减小颗粒尺寸。
     实验考察了三水碳酸镁相转移合成碱式碳酸镁过程及动力学。三水碳酸镁分解后可能再度形成无定形物,并经由颗粒介导途径转化为碱式碳酸镁。相转移过程为:三水碳酸镁溶解→无定形纳米颗粒形成→碱式碳酸镁结晶。温度升高、前驱物尺寸减小和电解质溶液都可以加快相转移速率。较小尺寸前驱物热解得到花状颗粒,较大尺寸前驱物热解则得到中空管状颗粒。静态环境热解产物为多孔玫瑰花状微球,局部过饱和导致了微球的形成。通过分析固相中MgO含量估测热解过程转化率,对无定形亚稳态结晶模型参数重新定义,可以很好描述相转移动力学过程,测得相转移活化能为66.24kJ.mo1-1。
     本文还研究了碱式碳酸镁生长过程调控。首次在SDS辅助作用下,低温(<55℃)合成得到碱式碳酸镁微球。SDS的加入可以有效抑制无定形纳米颗粒向三水碳酸镁生长,使其直接向碱式碳酸镁转变。在较高温度下(>60℃)采用搅拌—陈化法,通过控制搅拌时间,得到了尺寸可控、形态良好的碱式碳酸镁微球;微球的微观形貌取决于晶种数量和无定形生长物质之间的分配比例。本文还利用微波场强化碱式碳酸镁合成,实验结果表明微波场可以强化反应进程,促进初始纳米颗粒的组装,但微波没有改变产物晶习。
Hydrated magnesium carbonate is an important kind of chemical raw material or product. The crystallization and growth process is the most basic and the most important link of its preparation. This paper aims to study the crystallization and growth process of hydrated magnesium carbonate systematically, improving the control means and mechanisms of the reactive crystallization process. Based on these, theoretical guidance and technical support can be provided for the industrialization. The main contents are summarized as follows:
     The thermodynamic properties of hydrated magnesium carbonate were studied experimentally. The study reveals that the metastable phase is gathered by nanoparticles with the size of40-100nm. It forms a framework structure, which is a complex substance containing fine crystalline and amorphous phase. The composition can be expressed as xMgCO3·Mg(OH)2-yH2O. A nature of dynamic solubility is appeared. The reactant will convert to amorphous substance continuously and then form stable crystal. Simplified equation, the empirical model and the BP neural network were used to fit and predict solubility. They have their own pros and cons. Experiments show that hydrated magnesium carbonate solubility decreases with increasing temperature and increases significantly in NaCl solution.
     The effects of crystallization process parameters on the crystalline transformation of metastable phase were studied systematically. The study shows that the metastable magnesium carbonate transfers to either nesquehonite or hydromagnesite. Changes in process parameters can make the conversion process shift from thermodynamic control to kinetically control. The transformation process is a particle-mediated process, in which amorphous nano-particles play the role of the growth units. A crystallization kinetics model of metastable magnesium carbonate was established combining the system characteristics. XRD was used to determine the conversion rate. Based on these, activation energy of the metastable phase crystallization was measured for31.70kJ-mol-1. To supplement the lack of metastable phase crystallization model for the description on product size, BP neural network was adapted to simulate the relationship between crystallization process conditions and product size.
     The regulation of nesquehonite crystallization and growth was studied from the four levels of nucleation, growth, secondary processes and outfield strengthen.1) The induction period and amorphous transition time were affected by temperature, concentration as well as seed. According to the nucleation characteristics, stirring-aging method was proposed to synthesize nesquehonite microrods. By controlling stirring time, the nucleation stage and growth stage of nesquehonite can be separated. Nesquehonite microrods with controllable size, uniform size distribution and good shape were got.2) High length and high aspect ratio MgCO3·3H2O whiskers were synthesized in the presence of SDS. The obtained whiskers have an average length of87~180μm with an aspect ratio of18~45. Physical adsorption of SDS on nano-crystalline or amorphous nano-particles surface promoted oriented growth of nesquehonite. As a result, whiskers were formed.3) What's more, FBRM and morphology analysis were used to study the secondary processes of nesquehonite. The results show that MgCl2promotes aggregation, forming the bundle morphology.4) Ultrasonic was used to enhance MgCO3·3H2O crystallization. The effects of ultrasound introduced at different crystallization stages were different. Concentrated ultrasound was more conducive on nucleation and increased the particle size. By contrast, continuous ultrasound destroyed the forming nuclei, promoted secondary nucleation and reduced the particle size.
     In this paper, MgCO3·3H2O was severed as a precursor to prepare porous hydromagnesite crystals through pyrogenation under different conditions. The phase transformation process was system studied. The results show that amorphous material could be re-formed after nesquehonite decomposition. Hydromagnesite will be crystallized via particles-mediated pathway. The phase transformation process can be described as: nesquehonite dissolution→amorphous nanoparticles formation→hydromagnesite crystallization. The higher the pyrogenation temperature and the smaller the size of the precursor, the faster phase transfer rate will be. Electrolyte solution can also promote the phase transformation rate. Flower-like hydromagnesite particles were got by the smaller size precursor while hollow tubular particles were formed by the bigger size precursor. The pyrogenation product under static environment was porous rosette-like microspheres. The local supersaturation is the main reason to cause the formation of microspheres. The nesquehonite conversion rate during the transformation process was estimated by analyzing MgO content. The metastable phase crystallization model can be a useful description of the phase transformation kinetics after redefining the parameters. The activation energy of nesquehonite phase transformation process was calculated for66.24kJ·mol-1.
     The growth process of the metastable phase directly converts into hydromagnesite was also studied. Hydromagnesite microspheres were synthesized at lower temperatures (<55℃) with the aassistance of SDS for the first time. SDS can effectively inhibit the conversion of amorphous nano-particles to MgCO3·3H2O but grow into4MgCO3·Mg(OH)2·4H2O directly. Hydromagnesite microspheres with different size, uniform distribution and good shape were got via stirring-aging method at higher temperatures (>60℃). The morphology of the microspheres depends on the allocation proportion between the number of seed and amorphous growth substances. Microwave was additionally used for hydromagnesite synthesis. Experimental results show that the microwave field can enhance the reaction kinetics and promote the assembly of nano-particles. Thereby, the particle size was increased; however, the microwave crystal habit was not changed.
引文
[1]王渠东,丁文江.镁合金研究开发现状与展望[J.世界有色金属.2004,(7):8-11
    [2]张宏娟.高纯氧化镁的清洁生产工艺[D].山东大学,2006:5
    [3]尹衍升,师瑞霞,李嘉等.察尔汗盐湖镁资源的开发及展望[.J].材料导报.2002,16(10):6-8
    [4]三觜幸平,田边克幸,田上直树.碱式碳酸镁及其制备方法和用途[P].中国:CN1646430A,2005
    [5]Bhattacharjya D., Selvamani T. Thermal decomposition of hydromagnesite[J].J. Therm. Anal. Calorim.2012,107:439-445
    [6]Hollingbery L.A., Hull T.R. The fire retardant effects of huntite in natural mixtures with hydromagnesite[J]. Polym. Degrad. Stabil.2012,97:504-512
    [7]Atay H.Y., Celik E. Use of Turkish huntite/hydromagnesite mineral in plastic materials as a flame retardant[J]. Polym. Compos.2010.31 (10):1692-1700
    [8]秦麟卿,刘以波,黄志雄等.碱式碳酸镁颗粒形貌对环氧树脂黏度和固化时间的影响[J].2008,29(6):18-20
    [9]曲阳.前驱体路线合成特殊形貌的无机氧化物[D].黑龙江:黑龙江大学,2011:47-55
    [10]Li Q., Ding Y.. Yu G., et al. Fabrication of light-emitting porous hydromagnesite with rosette-like architecture[J]. Solid State Commun.2003.125(2):117-120
    [11]Zhang Z., Zheng Y., Chen J., et al. Facile synthesis of monodisperse magnesium oxide microspheres via seed-induced precipitation and their applications in high-performance liquid chromatography[J]. Adv.Funct.Mater.2007.17:2447-2454
    [12]Schaper H., Berg-Slot J.J., Dtork W.H.J. Stabilized magnesia:A novel catalyst (support) material [J]. Appl.Catal.1989.54(1):79-90
    [13]Wang C.Y. Control the polymorphism and morphology of calcium carbonate precipitation from a calcium acetate and urea solution[J]. Mater. Lett.2008.16(62):2377-2380
    [14]Colfen H., Qi L.M.. Mastai Y. et al. Formation of unusual 10-petal BaSO4 structures in the presence of a polymeric additive[J]. Cryst. Growth. Des.2002.2(3):191-196
    [15]Rasenack N., Muller B.W. Crystal habit and tableting behavior[J]. Int.J.Pharm. 2002.244:45-47
    [16]Mann S. The chemistry of form[J]. Angew. Chem. Int. Ed.2000.39(19):3392-3406
    [17]Mann S., Ozin G.A. Synthesis of inorganic materials with complex form[J]. Nature.1996, 382:313
    [18]Colfen H., Yu S.H. Biomimetic mineralization/synthesis of mesoscale order in hybrid inorganic-organic materials via nanoparticle self-assembly [J]. Mrs. Bulletin.2005.30:727-735
    [19]Li S.W., Xu J.H., Luo G.S. Control of crystal morphology through supersaturation ratio and mixing conditions[J]. J. Cryst. Growth.2007,304:219-224
    [20]Grimbergen R.F.P., Boek E.S., Meekes H., et al. Explanation for the supersaturation dependence of the morphology of lysozyme crystals[J]. J. Cryst. Growth. 1999,207(1-2):112-121
    [21]李小娜,尹秋响,陈巍等.溶剂对对苯二酚晶体晶习的影响[J].化工学报.2006,57(3): 480-485
    [22]Kiryanova E.V., Glikin A.E. The laws of fluorite and calcite habit formation in terms of the morphogenetic structural-chemical concept[J]. J. Cryst. Growth.1999,198-199:697-703
    [23]Zhang Y.P., Dawe R.A. Influence of Mg2+on the kinetics of calcite precipitation and calcite crystal morphology [J]. Chem. Geol.2000,163(1-4):129-138
    [24]张春艳,谢安建,沈玉华等.聚乙二醇对碳酸钙晶体生长影响的研究[J].安徽大学学报(自然科学版).2008,32(1):74-77
    [25]丛秋滋.多晶二维X射线衍射[M].北京:科学出版社,1997
    [26]张缨,王静康,冯天扬等.晶体形貌预测方法与应用[J].化学工业与工程.2002,19(1):119-123
    [27]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999
    [28]陆杰,王静康.反应结晶过程研究(Ⅱ)——二次过程及机理分析[J].化学工业与工程.1999,16(1):58-62
    [29]唐睿康.表面能与晶体生长/溶解动力学研究的新动向[J].化学进展.2005,17(2):368-376
    [30]陆杰,王静康.普鲁卡因青霉素的生成反应动力学[J].高校化学工程学报.1999,13(4):335-339
    [31]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985:90-122
    [32]Bransom S.H. Factors in the design of continuous crystallizer[J]. Br. Chem. Eng.1960,5: 838-843
    [33]Canning T.F., Randolph A.D. Some aspects of crystallization theory[J]. AIChE J.1967,13: 5-11
    [34]Abegg C.F., Stevens J.D., Larson M.A. Crystal size distribution in continuous crystallizer when growth rate is size dependent[J]. AIChE J.1968,14:188-194
    [35]Mydlarz J., Jones A.G. On modeling the size-dependent growth rate of potassium sulphate in an MSMPR Crystallizer[J]. Chem. Eng. Commun.1990,90:47-56
    [36]Mydlarz J., Jones A.G. On the estimation of size-dependent crystal growth rate functions in MSMPR crystallizers[J]. Chem. Eng. Commun.1993,53:125-135
    [37]Randolph A.D, Larson M.A. Theory of particulate processes[M]. New York:Academic Press Inc.2nd ed,1988
    [38]Leszek S., Mary Anne Farrell Epstein. Crystallization kinetics of sucrose in a CMSMPR evaporative crystallizer[J]. Ind. Eng. Chem. Process Des. Dev.1981.20(2):197-203
    [39]Taguchi K., Garsid J., Tavare N.S. Nucleation and growth kinetics of barium sulphate in batch precipitation[J]. J. Cryst. Growth.1996.163(3):18-328
    [40]Kotaki Y., Tsuge H. Reactive crystallization of calcium carbonate in a batch crystallizer[J]. J. Cryst. Growth.1990.99(1-4):1092-1097
    [41]Shukla S., Seal S., Vij R., et al. Effect of HPC and water concentration on the evolution of size, aggregation and crystallization of sol-gel nano zirconia[J]. J. Nanopart. Res.2002,4(6): 553-559
    [42]Shen Q., Wang L.C., Huang Y.P., et al. Oriented aggregation and novel phase transformation of vaterite controlled by the synergistic effect of calcium dodecyl sulfate and n-pentanol[J]. J. Phys. Chem. B.2006.110(46):23148-23153
    [43]Petersen M., Zangwill A., Ratsch C. Homoepitaxial Ostwald ripening[J]. Surf. Sci.2003. 536(1-3):55-60
    [44]Zhang L.H., Yang H.Q., Xie X.L., et al. Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening[J]. J Alloys Compd.2009,473(1-2):65-70
    [45]张良,宋兴福,汪瑾等.工艺条件对六氨氯化镁结晶过程中聚结的影响[J].无机盐工业.2008,40(8):23-26
    [46]Maksimova L.A., Ryazanova A.I., Heining K.H., et al. Self-organization of precipitates during Ostwald ripening[J]. Phys. Lett. A.1996.213:73-76
    [47]Madras G., McCoy B.J. Continuous distribution theory for Ostwald ripening comparison with the LSW approach[J]. Chem. Eng. Sci.2003.58(13):2903-2909
    [48]Mullin J.W. Crystallizalion[M]. London:Butterworth-Heinemann,3rd ed,1992
    [49]Wilke C.R., Chang P. Correlation of diffusion coefficients in dilute solutions[J]. J. Chem. Eng.1955.1(2):264-270
    [50]Mersmann A. Calculation of interfacial tensions[J]. J. Cryst. Growth.1990.102(4): 841-847
    [51]陆杰,王静康.反应结晶(沉淀)研究进展[J].化学工程.1999,27(4):24-27
    [52]Gilbert B., Zhang H.Z., Huang F., et al. Special phase transformation and crystal growth pathways observed in nanoparticles[J]. Geochem. Trans.2003.4(4):20-27
    [53]Kitamura M. Crystallization and transformation mechanism of calcium carbonate polymorphs and the effect of magnesium ion[J]. J. Colloid. Interf. Sci.2001.236(2):318-327
    [54]Tang H.. Yu J.G.. Zhao X.F. Controlled synthesis of crystalline calcium carbonate aggregates with unusual morphologies involving the phase transformation from amorphous calcium carbonate[J]. Mater. Res. Bull.2009.44(2):831-835.
    [55]Guo X.H., Yu S.H. Controlled mineralization of barium carbonate mesocrystals in a mixed solvent and at the air/Solution interface using a double hydrophilic block copolymer as a crystal modifier[J]. Cryst. Growth. Des.2007,7(2):354-359
    [56]Raghavan S.L., Trividic A., Davis A.F., et al. Crystallization of hydrocortisone acetate: influence of polymers[J]. Int. J. Pharm.2001.212(2):213-221
    [57]Yu J.G., Lei M., Cheng B., et al. Facile preparation of calcium cabonate particles with unusual morphologies by precipitation[J]. J. Cryst. Growth.2004,261(4):566-570
    [58]Sugawara A., Kato T. Aragonite CaCO3 thin-film formation by cooperation of Mg2+ and organic polymer matrices[J]. Chem. Commun.2000,6:487-488
    [59]Pal G.P., Elce J.S., Jia Z.C. Dissociation and aggregation of calpain in the presence of calcium[J]. J. Biol. Chem.2001,276(50):47233-47238
    [60]刘昉,Nora H. de Leeuw,张昭.计算机模拟阴离子对碳酸镍结晶过程的影响[J].无机化学学报.2009,25(10):1823-1828
    [61]Nan Z.D., Chen X.N., Yang Q.Q, et al. Transitions of calcium carbonate crystals controlled by self-assembly supermolecule of P-cyclodextrin and sodium dodecyl benzene sulfonate[J]. Mater Res Bull.2010,45(6):722-726
    [62]Almeida M.A.P., Cavalcante L.S., Varela J.A., et al. Effect of different surfactants on the shape, growth and photoluminescence behavior of MnWO4 crystals synthesized by the microwave-hydrothermal method[J]. Adv. Powder Technol.2012,23(1):124-128
    [63]Chen Y.X., Jia X.B., Zhao G.Q., et al. Facile preparation of cubic calcium carbonate nanoparticles with hydrophobic properties via a carbonation route[J]. Powder Technol. 2010,200(3):144-148
    [64]Guo H.X, Qin Z.P, Qian P., et al. Crystallization of aragonite CaCO3 with complex structures [J]. Adv. Powder Technol.2011,22(6):777-783
    [65]Wang J., Xu Y.H., Hojamberdiev M., et al. Influence of sodium dodecyl sulfonate (SDS) on the hydrothermal synthesis of YVO4:Eu3+crystals in a wide pH range[J]. J. Alloy Compd. 2009.487(1-2):358-362
    [66]Szczes A. Influence of SDS on particle size and adhesion of precipitating calcium carbonate[J]. Colloids Surf., A:Physicochem. Eng. Aspects.2008.320(1-3):98-103
    [67]Song X.C., Zhao Y., Zheng Y.F. Synthesis of MnO2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydrothermal process[J]. Cryst. Growth Des. 2007,7(1):159-162
    [68]Pan Y, Zhao X., Guo Y.P., et al. Controlled synthesis of hollow calcite microspheres modulated by polyacrylic acid and sodium dodecyl sulfonate[J]. Mater. Lett.2007,61(13): 2810-2813
    [69]Shen Q., Wei H., Wang L.C., et al. Crystallization and aggregation behaviors of calcium carbonate in the presence of poly(vinylpyrrolidone) and sodium dodecyl sulfate[J]. Phys. Chem.B.2005.109(39):18342-18347
    [70]Wei H., Shen Q., Zhao Y., et al. Crystallization habit of calcium carbonate in presence of sodium dodecyl sulfate and or polypyrrolidone[J]. J. Cryst. Growth.2004.260(3-4):545-550
    [71]Mann S., Colfen H. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures[J]. Angew. Chem. Int. Ed.2003,42:2350-2365
    [72]Colfen H., Antonietti M. Mesocrystals:inorganic superstructures made by highly parallel crystallization and controlled alignment[J]. Angew. Chem. Int. Ed.2005,44(35):5575-5591
    [73]Colfen H., Antonietti M. Mesocrystals and nonclassical crystallization[M]. England: John Wiley & Sons Ltd.2008
    [74]Song R.Q., Colfen H. Mesocrystals-ordered nanoparticle superstructures[J]. Adv. Mater. 2009.21:1-30
    [75]Xu A.W., Antonietti M., Colfen H..et al. Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization[J]. Adv. Funct. Mater..2006.16:903-908
    [76]Zhu Y., Liu Y., Ruan Q.,et al. Superstructures and mineralization of laminated vaterite mesocrystals via mesoscale transformation and self-assembly[J]. J. Phys. Chem. C 2009.113:6584-6588
    [77]Wohlrab S., Pinna N., Antonietti M., et al. Polymer-induced alignment of DL-alanine nanocrystals to crystalline mesostructures[J].Chem. Eur. J.2005.11:2903-2913
    [78]Lee T., Zhang C.W. Dissolution enhancement by bio-inspired mesocrystals:the study of racemic (R.S)-(±)-sodium ibuprofen dehydrate[J]. Pharm. Res.2008.25(7):1563-1571
    [79]Xu A.W., Antonietti M., Yu S.H., et al. Polymer-mediated mineralization and self-similar mesoscale-organized calcium carbonate with unusual superstructures[J].Adv. Mater. 2008.20:1333-1338
    [80]Medina D.D., Mastai Y. Synthesis of dl-alanine mesocrystals with a hollow morphology [J]. Cryst. Growth Des.2008.8(10):3646-3651
    [81]Busch S.. Dolhaine H., DuChesne A., et al. Biomimetic morphogenesis of fluorapatite-gelatin composites:fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and and reorganization of denatured collagen[J].Eur. J. Inorg. Chem.1999(10):1643-1653
    [82]Ma Y., Colfen H., Antonietti M. Morphosynthesis of alanine mesocrystals by pH control[J]. J. Phys. Chem. B.2006,110:10822-10828
    [83]Yuwono V.M., Burrows N.D., Soltis J.A., et al. Oriented aggregation:formation and transformation of mesocrystal intermediates revealed[J]. J. Am. Chem. Soc. 2010,132(7):2163-2165
    [84]Zheng X.J. Kuang Q.. Xu T..et al.Growth of prussian blue microcubes under a hydrothermal condition:possible nonclassical crystallization by a mesoscale self-assembly[J]. J. Phys. Chem. C.2007,111:4499-4502
    [85]Raiteri P., Gale J.D. Water is the key to nonclassical nucleation of amorphous calcium carbonate[J]. J. Am. Chem. Soc.2010,132:17623-17634
    [86]Cheng W.T., Li Z.B. Precipitation of nesquehonite from homogeneous supersaturated solutions [J]. Cryst.Res. Technol.2009,44(9):937-947
    [87]程文婷,李志宝,柯家骏MgCO3·3H2O晶体生长及晶形的影响因素[J].中国有色金属学报.2008,18(1):230-235
    [88]Zhang Z.P., Zheng Y.J., Ni Y.W., et al. Temperature-and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates[J]. J. Phys. Chem. B.2006,110(26): 12969-12973
    [89]Zhang Z.P., Zheng Y.J.,Zhang J.X.,et al. Synthesis and shape evolution of monodisperse basic magnesium carbonate microspheres[J]. Cryst. Growth Des.2007,7(2):337-342
    [90]Botha A., Strydom C.A. Preparation of a magnesium hydroxy carbonate from magnesium hydroxide[J]. Hydrometallurgy.2001,62(3):175-183
    [91]张英才,向兰,金涌.液相法合成多孔棒状碱式碳酸镁初探[J].盐业与化工.2006,35(4):4-6
    [92]翟学良,周相廷,李美玲MgCO3·3H2O水热分解产物及其组成[J].应用化学.1996,13(5): 79-81
    [93]Hopkinson L., Rutt K., Gressey G. The transformation of nesquehonite in the system CaO-MgO-H2O-CO2 an experimental spectroscopic study[J]. J. geo.2008,116(4):387-400
    [94]周相廷,刘丽艳,翟学亮.碱式碳酸镁前驱状态的研究[J].化学试剂.1999,21(3):135-137
    [95]闫小星,李云飞,薛冬峰等.基于水合碳酸镁结晶过程的化学键分析[J].人工晶体学报.2007,36(5):991-999
    [96]Giester G, Lengauer C.L., Rieck B. The crystal structure of nesquhonite, MgCO3·3H2O, from Lavrion, Greece[J]. Miner. Petrol.2000,70:153-163
    [97]Kloprogge J.T., Martens W.N., Nothdurft L., et al. Low temperature synthesis and characterization of nesquehonite [J]. J. Mater. Sci. Lett.2003,22:825-829
    [98]Wang Y., Li Z.B., Demopoulos G.P. Controlled precipitation of nesquehonite (MgCO3·3H2O) by the reaction of MgCl2 with (NH4)2CO3[J]. J. Cryst. Growth. 2008,310(6):1220-1227
    [99]Wang X.L., Xue D.F. Direct observation of the shape evolution of MgO whiskers in a solution system[J]. Mater Lett.2006,(60):3160-3164
    [100]王晓丽.氧化镁晶须的制备工艺研究[D].辽宁:大连理工大学,2006:29-30
    [101]邵明浩,史永刚,胡泽善.碳酸镁晶须的制备、表征与分析方法[J].后勤工程学院学报.2008,24(1):37-40
    [102]邵平平.硫酸镁制备三水碳酸镁影响因素及结晶动力学研究[D].北京:北京化工大学,2010
    [103]王万平,张懿.碳酸盐热解法制备氧化镁晶须[J].硅酸盐学报.2002,30(增刊):93-95
    [104]王麟生,卢荣丽,胡炳元.一种纳米氧化镁的制备方法[P].中国,CN 101033073A,2007
    [105]Guo M., Li Q., Ye X.S, et al. Magnesium carbonate precipitation under the influence of polyacrylamide[J]. Adv. Powder Technol.2010.200(1-2):46-51
    [106]Mitsuhashi K., Tagami N., Tanabe K., et al. Synthesis of microtubes with a surface of "house of cards" structure via needlelike particles and control of their pore size[J]. Langmuir. 2005,21(8):3659-3663
    [107]Akao M., Iwai S. The hydrogen bonding of hydromagnesite[J]. Acta Cryst. B. 1977.33(4):1273-1275
    [108]Lanas J., Alvarez J.I. Dolomitic limes:evolution of the slaking process under different conditions[J]. Thermochim. Acta.2004,423(1-2):1-12
    [109]Yan C.L., Xue D.F., Zou L.J. Fabrication of hexagonal MgO and its precursors by a homogeneous precipitation method [J]. Mater. Res. Bul.2006,41 (12):2341-2348
    [110]Liu F., Sun C.T., Yan C.L., et al. Solution-based chemical strategies to purposely control the microstructure of functional materials[J]. J. Mater. Sci. Technol.2008.24(4):641-648
    [111]Yan C.L., Xue D.F. Novel self-assembled MgO nanosheet and its precursors[J]. Phys. Chem. B.2005.109(25):12358-12361
    [112]Teir S., Eloneva S., Fogelholm C., et al. Fixation of carbon dioxide by producing hydromagnesite from serpentinite[J]. Appl Energ.2009.86:214-218
    [113]张黎黎,刘家祥,李敏.不同热解条件对碱式碳酸镁晶体形貌的影响[J].硅酸盐学报.2008,36(9):1310-1314
    [114]Mitsuhashi K., Tagami N., Tanabe K., et al. Synthesis and properties of a microtube photocatalyst with photoactive inner surface and inert outer surface[J]. J. Photoch Photobio. A. 2007,185(2-3):133-139
    [115]Hao Z.H., Pan J., Du F.L. Synthesis of basic magnesium carbonate microrods with a surface of'-house of cards" structure[J]. Mater. Lett.2009,63(12):985-988
    [116]Hao Z.H., Du F.L. Synthesis of basic magnesium carbonate microrods with a "house of cards" surface structure using rod-like particle template[J]. J. Phys. Chem. Solids.2009, 70(2):401-404
    [117]谢英惠,何豫基.球形碱式碳酸镁的合成及影响因素[J].海湖盐与化工.1999,28(6):4-7
    [118]金焱,毕学工,张晶.超声波对液相中微颗粒凝聚过程的作用机理[J].过程工程学报.2011,11(4):620-626
    [119]Best J.P. The formation of toroidal bubbles upon the collapse of transient cavities[J]. J. Fluid. Mech.1993,251:79-107
    [120]Qiu T.Q., Zhang X.M., Li Y.H. The treatment of saturated sugar solution with a sonic field[J].Int Sugar.1994,96:523-526
    [121]Li H., Wang J., Bao V., et al. Rapid soilocrystallization in the salting-out proces [J]. J. Cryst. Growth.2003.247:192-198
    [122]Guo Z., Jonesl A.G., Li N. The effect of ultrasound on the homogeneous nucleation of BaSO4 during reactive crystallization[J]. Chem. Eng. Sci.2006,61:1617-1626
    [123]Miyasaka E., Takai M., Hidaka H., et al. Effect of ultrasonic irradiation on nucleation phenomena in a Na2HPO4-12H2O melt being used as a heat storagematerial[J]. Ultrason. Sonochem.2006,13(4):308-312
    [124]王龙光,张保林.超声对硫酸钙结晶过程影响的研究[J].应用声学.2003,22(4):21-24
    [125]Thompson L.H.,Doraiswamy L.K. The rate enhancing effect of ultrasound by inducing supersaturation in a solid-liquid sy stem [J]. Chem. Eng. Sci.2000,55(16):3085-3090
    [126]Tekin T. Use of ultrasound in the dissolution kinetics of phosphate rock in HCl[J]. Hydrometallurgy.2002,64:187-192
    [127]Enomoto N., Katsumoto M., Nakagawa Z. Effect of ultrasound on the dissolution-pracipitation process in the aluminium hydroxide-water system[J]. Chem. Eng. Prog.1994,102(12):1105-1110
    [128]吴争平,尹周澜,陈启元等.超声波对四钼酸铵结晶的影响[J].中国有色金属学报.2002,12(1):196-200
    [129]Kurotani M., Hirasawa I. Effect of ultrasonic irradiation on the selective polymorph control in sulfamerazine[J]. Chem. Eng. Res. Des.2010,88:1272-1278
    [130]Kurotani M., Hirasawa I. Polymorph control of sulfamerazine by ultrasonic irradiation[J]. J. Cryst. Growth.2008,310:4576-4580
    [131]白允强,李木森,曹宁等.超声波和热处理对羟基磷灰石结晶度和形貌的影响[J].材料热处理学报.2007,28(2):22-25
    [132]Li H., Li H.R., Guo Z., et al. The application of power ultrasound to reaction crystallization [J]. Ultrason. Sonochem.,2006,13:359-363
    [133]梁新义,秦永宁,齐晓周等.超声共沉淀法制备LaCoO3纳米微晶的研究[J].化学物理学报.1998,11(4):375-378
    [134]Pietrowski M., Wojciechowska M. Microwave-assisted synthesis of spherical monodispersed magnesium fluoride[J]. J. Fluorine Chem.2007,128(3):219-223
    [135]Siddharthan A., Seshadri S.K., Kumar T.S.S. Influence of microwave power on nanosized hydroxyapatite particles[J]. Scripta Mater.2006,55(2):175-178
    [136]杜春华,郑诗礼,徐红彬等.物理场强化溶液结晶研究进展[J].现代化工.2006,(21):88-91
    [137]Li G., Hou H., Lin R. Rapid synthesis of mordenite crystals by microwave heating[J]. Solid State Sci.2011,13:662-664
    [138]Zhu Z.Q., Zhou J., Liu G.Z., et al. Rapid growth of ZnO hexagonal prism crystals by direct microwave heating[J]. Rare Metals.2008.27(5):517-521
    [139]Brar T., France P., Smirniotis P.G. Control of crystal size and distribution of zeolite A[J].Ind. Eng. Chem. Res.2001,40(4):1133-1139
    [140]Rivera J.A., Fetter G., Bosch P. Microwave power effect on hydrotalcite synthesis[J]. Microporous Mesoporous Mater.2006,89:306-314
    [141]翟学良,周相廷,张越.微波制备均分散定组成Mg5(CO3)4(OH)2·4H2O[J].化学试剂.1999,21(1):4-5,31
    [142]胡波.无机功能纳米结构材料的软溶液过程合成及其性质研究[D].安徽:中国科学技术大学,2008:86-89
    [143]Somani O.G., Choudhari A.L., Rao B.S., et al. Enhancement of crystallization rate by microwave radiation:synthesis of ZSM-5[J]. Mater. Chem. Phys.2003.82:538-545
    [144]Jhung S.H., Jin T., Hwang Y.K.,et al. Microwave effect in the fast synthesis of microporous materials:which stage between nucleation and crystal growth is accelerated by microwave irradiation?[J]. Chem. Eur. J.2007,13:4410-4417
    [145]陈勤芹.微波场对晶体矿物质表面性能的影响[D].四川:四川大学,2007:54-56
    [146]Hwang Y.K., Chang J.S., Kwon Y.U., et al. Microwave synthesis of cubic mesoporous silica SBA-16[J]. Microporous Mesoporous Mater.2004.68(1-3):21-27
    [147]Yoon S.Y., Park Y.M., Park S.S., et al. Synthesis of hydroxyapatite whiskers by hydrolysis of a-tricalcium phosphate using microwave heating[J]. Mater. Chem. Phys. 2005,91:48-53
    [148]Siddharthan A., Seshadri S.K.. Kumar T.S.S. Influence of microwave power on nanosized hydroxyapatite particles[J]. Scripta Mater.2006.55:175-178
    [149]赵岩岩.微波辐照对硫酸钙结晶的影响及特殊效应研究[D].四川:四川大学,2007
    [150]汤建伟,钟本和,许秀成.微波作用下的结晶过程分析[J].化工矿物与加工.2002,31(11):7-11,17
    [151]Jhung S.H., Lee J.H., Yoon J.W., et al. Selective crystallization of CoAPO-34 and VAPO-5 molecular sieves under microwave irradiation in an alkaline or neutral condition[J]. Microporous Mesoporous Mater.2005.80:147-152
    [152]Kawanoa J., Shimobayashi N., Kitamura M.,et al. Formation process of calcium carbonate from highly supersaturated solution[J]. J.Cryst.Growth.2002,237-239:419-423
    [153]Lee H.S., Ha T.H., Kim K. Fabrication of unusually stable amorphous calcium carbonate in an ethanol medium[J]. Mater. Chen. Phys.2005,93:376-382
    [154]蔡安华.生物矿化中的纳米无定形碳酸钙[D].浙江:浙江大学,2008
    [155]Miyazaki T., Yoshioka S., Aso Y., et al. Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen[J]. J. Pharm. Sci.2004,93(11): 2710-2717
    [156]Yu L. Amorphous pharmaceutical solids:preparation, characterization and stabilization[J]. Adv. Drug Del. Rev.2001,48:27-42
    [157]Combes C., Rey C. Amorphous calcium phosphates:synthesis, properties and uses in biomaterials[J]. Acta Biomaterialia.2010,6(9):3362-3378
    [158]Becker A., Bismayer U., Epple M., et al. Structural characterisation of X-ray amorphous calcium carbonate(ACC)in sternal deposits of the crustacea porcellio scaber[J].Dalton Trans. 2003,551-555
    [159]Hasse B., Ehrenberg H., Marxen J., et al. Calcium carbonate modifications in the mineralized shell of the freshwater snail biomphalaria glabrata[J]. Chem.Eur.J.2000,6: 3679-3685
    [160]Zhang W., Zhou X., Tao X., et al. In situ construction of carbon nano-interconnects between the LiFePO4 grains using ultra low-cost asphalt[J]. Electrochim. Acta. 2010,55:2592-2596
    [161]Zhang Z.S., Xie M.T., He C.L., et al. A facile catalyst-free method for the synthesis of amorphous carbon nanotubes with bamboo-like morphology [J]. Chinese J. Inorg. Chem. 2011,27(3):3397-402
    [162]Goodwin A.L., Michel F.M., Phillips B.L., et al. Nanoporous structure and medium-range order in synthetic amorphous calcium carbonate[J]. Chem. Mater. 2010,22,3197-3205
    [163]Jin H., Hollar E., Robertson I., et al. Electronic transitions associated with small crystalline silicon inclusions within an amorphous silicon host[J]. Phys. Rev. B. 1999,60(7):4442-4445
    [164]Nebel H., Epple M. Continuous preparation of calcite, aragonite and vaterite, and of magnesium-substituted amorphous calcium carbonate (Mg-ACC)[J]. Z. Anorg. Allg. Chem. 2008,634:1439-1443
    [165]Levi-Kalisman Y., Raz S., Weiner S., et al. X-Ray absorption spectroscopy studies on the structure of a biogenic "amorphous" calcium carbonate phase[J]. J. Chem. Soc., Dalton Trans.2000,21:3977-3982
    [166]Addadi L., Raz S., Weiner S. Taking advantage of disorder:amorphous calcium carbonate and its roles in biomineralization[J]. Adv. Mater.2003,15(12):959-970
    [167]Politi Y., Levi-Kalisman Y, Raz S.,et al. Structural characterization of the transient amorphous calcium carbonate precursor phase in sea urchin embryos[J]. Adv. Funct. Mater. 2006.16:1289-1298
    [168]Levi-Kalisman Y., Raz S., Weiner S., et al. Structural differences between biogenic amorphous calcium carbonate phases using X-ray absorption spectroscopy[J].Adv. Funct. Mater.2002,12(1):43-48
    [169]Nebel H.R, Neumann M., Mayer C., et al. On the structure of amorphous calcium carbonate a detailed study by solid-state NMR spectroscopy[J]. Inorg. Chem. 2008.47:7874-7879
    [170]Xu X.R., Cai A.H., Liu R., et al. The roles of water and polyelectrolytes in the phase transformation of amorphous calcium carbonate[J]. J. Cryst. Growth.2008,310:3779-3787
    [171]Gunther C., Becker A., Wolf G., et al. In vitro synthesis and structural characterization of amorphous calcium carbonate[J]. Z. Anorg. Allg. Chem.2005.631:2830-2835
    [172]Faatz M., Grohn F., Wegner G. Amorphous calcium carbonate:synthesis and potential intermediate in biomineralization[J]. Adv.Mater.2004,16(12):996-1000
    [173]Faatz M., Grfhn F., Wegner G. Mineralization of calcium carbonate by controlled release of carbonate in aqueous solution[J]. Mater. Sci. Eng. C.2005.25:153-159
    [174]Lam R.S.K, Chamock J.M, Lennie L., et al. Synthesis-dependant structural variations in amorphous calcium carbonate[J]. Cryst.Eng.Comm.2007.9:1226-1236
    [175]Li Y., Gao S., Song P., et al. Effects of pitzer mixing parameters on the solubility prediction of the phase system HCl-NaCl-H2O[J]. Acta Phys. Chim. Sin.2001.17(01):91-94.
    [176]Visscher A.D., Vanderdeelen J.Estimation of the solubility constant of calcite. aragonite, and vaterite at 25℃ based on primary data using the Pitzer ion interaction approach[J]. Monatshefte fur Chemie.2003.134:769-775
    [177]Apelblat A., Manzurola E. Solubilities of o-acetylsalicylic,4-aminosalic. 3,5,-dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water from T=(278 to 348)K[J]. J. Chem. Thermodyn.1999.31:85-91
    [178]Jouyban A, Majidi M., Jalilzadeh H., et al. Modeling drug solubility in water-cosolvent mixtures using an artificial neural network[J]. Il Farmaco.2004.59:505-512
    [179]Zhang X., Zhang S., He X.Prediction of solubility of lysozyme in lysozyme-NaCl-H2O system with artificial neural network [J]. J. Cryst. Growth.2004.264:409-416
    [180]郭林.邻苯二甲酸的溶解度测定及其神经网络模拟[D].河南:郑州大学,2005
    [181]Huuskone J. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology[J]. J. Chem. Inf. Comput. Sci.2000.40:773-777
    [182]Tian G. Jin J.. Zhang Z. Prediction of solubility of the aromatic compounds in supercritical CO2 using molecular topology[J]. Ind. Eng. Chem. Res.2007.46:6326-6331.
    [183]Wang Q.B., Xu H.B., Li X. Solubility of terephthalic acid in acetic acid from 423.15 to 513.15K[J]. Fluid Phase Equilib.2005,233:81-85
    [184]Lin Y.Z., Li J.D., Zeng C.Y. Prediction of solid-liquid equilibrium for KCl in mixed water-ethanol solutions using the LIQUAC model[J]. Tsinghua Science&Technology.2005, 10(5):548-553
    [185]Sauceau M., Letoumeau J.J., Freiss B., et al. Solubility of eflucimibe in supereritical Carbon dioxid with or without a co-solvent[J]. J. Supercrit. Fluids.2004,31(2):133-140
    [186]Wells R. The solubility of magnesium carbonate in natural waters [J]. J. Am. Chem. Soc. 1915,37(7):1704-1707
    [187]Dong M., Cheng W.T., Li Z.B., et al. Solubility and stability of nesquehonite (MgCO3·3H2O) in NaCl, KCl, MgCl2, and NH4Cl Solutions[J]. J. Chem. Eng. Data.2008, 53(11):2586-2593
    [188]Keller L., Dollase W.A. X-ray determination of crystalline hydroxyapatite to amorphous calcium phosphate ratio in plasma sprayed coatings[J]. J. Biomed. Mater. Res. A. 2000,49:244-249
    [189]Shah B., Kakumanu V.K., Bansal A.K. Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids[J]. J. Pharm Sci.2006,95:1641-1665
    [190]Otsuka M., Kato F., Matsuda Y. Comparative evaluation of the degree of indomethacin crystallinity by chemoinfometrical fourie-transformed near-infrared spectroscopy and conventional powder X-ray diffractiometry[J]. AAPS Pharmsci.2000,2(1):80-87
    [191]Black D.B., Lovering E.G. Estimation of the degree of crystallinity in digoxin by X-ray and infrared methods[J]. J. Pharm. Pharmac.1977,29:684-687
    [192]Crocker L.S., Mccauley J.A. Comparison of the crystallinity of imipenem samples by X-ray diffraction of amorphous material[J]. J. Pharm. Sci.1995,84,(2):226-227
    [193]Hanchen M., Prigiobbe V., Baciocchi R., et al. Precipitation in the Mg-carbonate system-effects of temperature and CO2 pressure[J]. Chem. Eng. Sci.2008,63(4):1012-1028
    [194]Chen J., Xiang L. Controllable synthesis of calcium carbonate polymorphs at different temperatures [J]. Powder Technol.2009,189(1):64-69
    [195]Aizenberg J., Muller D.A., Grazul J.L., et al. Direct fabfication of large micropattemed single crystals[J]. Science.2003,299:1205-1208
    [196]Kralj D., Brecevic L., Kontrec J. Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation[J]. J. Cryst. Growth.1997,177:248-257
    [197]Wolf S.E., Leiterer J., Kappl M., et al. Early homogenous amorphous precursor stages of calcium carbonate and subsequent crystal growth in levitated droplets [J]. J. Am. Chem. Soc. 2008.130:12342-12347
    [198]Shen Q., Wei H., Zhou Y, et al. Properties of amorphous calcium carbonate and the template action of vaterite spheres[J]. J. Phys. Chem. B.2006,110:2994-3000
    [199]Eanes E.D., Termine J.D., Nylen M.U. An electron microscopic study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite[J]. Calc. Tiss. Res.1973.12:143-158
    [200]Politi Y., Arad T., Klein E.. et al. Sea urchin spine calcite forms via transient amorphous carbonate phase[J]. Science.2004,306:1161-1164
    [201]Politi Y., Metzler R.A., Abrecht M.Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule[J]. PNAS.2008,105(45):17362-17366
    [202]Kim S., Ryu H., Shin H..et al.In situ observation of hydroxyapatite nanocrystal formation from amorphous calcium phosphate in calcium-rich solutions[J]. Mater. Chem. Phys.2005,91:500-506
    [203]Xu X.R.. Han J.T., Kim D.H., et al. Two modes of transformation of amorphous calcium carbonate films in air[J]. J.Phys.Chem.B.2006,110:2764-2770
    [204]Wang Y. Liu W..Huang F., et al. The "jump of size" phenomenon in aqueous-nanoparticle reaction system:phase transformation from nano-Mg(OH)2 to bulk MgCO3-3H2O[J]. Cryst. Eng. Comm.2012.14:7165-7169
    [205]Fang J., Ding B., Song X. Self-assembly ability of building units in mesocrystal, structural, and morphological transitions in Ag nanostructures growth[J]. Cryst. Growth Des. 2008,8(10):3616-3622
    [206]Dickinson S.R., Henderson G.E.. McGrath K.M. Controlling the kinetic versus thermodynamic crystallisation of calcium carbonate[J]. J. Cryst. Growth.2002,244:369-378
    [207]Genoveva G.R., Enrique O.R., Teresita R.G.E., et al. The influence of agitation speed on the morphology and size particle synthesis of Zr(HPO4)2[J]. Journal of Minerals & Materials characterization & Engineering.2007,6(1):39-51
    [208]Pai R.K., Jansson K. Hedin N. Transport-mediated control of particles of calcium carbonate[J]. Cryst. Growth Des.2009.9(11):4581-4583
    [209]彭达洲,高大维,于淑娟等.搅拌操作对L-谷氨酸结晶晶型的影响[J].食品科学.1997,18(6):5-8
    [210]Yan F.W., Zhang S.F., Guo C.X., et al. Influence of stirring speed on the crystallization of calcium carbonate[J]. Cryst. Res. Technol.2009.44(7):725-728
    [211]郑亚君,党利琴,张智平等.搅拌时间对水合碳酸镁形貌和组成的影响[J].精细化工.2007,24(9):835-839
    [212]Loffelmann M., Mersmann A. How to measure supersaturation[J]. Chem. Eng. Sci. 2002,57(20):4301-4310
    [213]Cheng W., Li Z. Nucleation kinetics of nesquehonite(MgCO3·3H2O) in the MgCl2-Na2CO3 system[J]. J. Cryst. Growth.2010,312(9):1563-1571
    [214]吴燕利,孙伟丽,冯晓平等.结晶碳酸钕的水热合成、外观形貌及其组成[J].无机 化学学报.2007,23(3):550-554
    [215]Zhuang Z., Huang F., Lin Z., et al. Aggregation-induced fast crystal growth of SnO2 nanocrystals[J]. J. Am. Chem. Soc.2012,134:16228-16234
    [216]Gal J.Y, Bollinger J.C., Tolosa H., et al. Calcium carbonate solubility:a reappraisal of scale formation and inhibition[J]. Talanta.1996,43:1497-1509
    [217]Kanagasekaran T., Gunasekaran M., Srinivasan P.,et al. Studies on growth, induction period, interfacial energy and metastable zonewidth of m-nitroaniline[J]. Cryst. Res. Technol. 2005,40(12):1128-1133
    [218]Teychene S., Biscans B. Nucleation kinetics of polymorphs:induction period and interfacial energy measurements [J]. Cryst. Growth. Des.2008,8(4):1133-1139
    [219]Sun Y.Z., Song X.F., Luo Y., et al. Primary nucleation of lithium carbonate[J]. Front. Chem. Eng. China.2009,3(1):73-77
    [220]Mersmann A., Bartosch K. How to predict the metastable zone[J]. J. Cryst. Growth. 1998,183(1/2):240-250
    [221]Kougoulos E., Jones A.G., Jennings K.H., et al. Use of focused beam reflectance measurement (FBRM) and process video imaging (PVI) in a modified mixed suspension mixed product removal (MSMPR) cooling crystallizer[J]. J. Cryst. Growth. 2005,273(3-4):529-534
    [222]Kougoulos E., Jones A.G., Wood-Kaczmar M.W. Estimation of crystallization kinetics for an organic fine chemical using a modified continuous cooling mixed suspension mixed product removal (MSMPR) crystallizer[J]. J Cryst. Growth.2005,273:520-528
    [223]Swift J.D., Simic K., Johnston R.R.M., et al. A study of the polymer flocculation reaction in a linear pipe with a focused beam reflectance measurement probe [J]. Int J. Miner. Process.2004,73(2-4):103-118
    [224]Negro C., Sanchez L.M., Fuente E., et al. Polyacrylamide induced flocculation of a cement suspension[J]. Chem. Eng. Sci.2006,61(8):2522-2532
    [225]ORourke A.M., MacLoughlin P.F. A comparison of measurement techniques used in the analysis of evolving liquid-liquid dispersions[J]. Chem. Eng. Process.2005,44(8):885-894
    [226]Karen A.M, Alan P.J, Shaelyn H. Characterization of plant suspension cultures using the focused beam reflectance technique[J]. Biotechnol. Lett.2001,23:317-324
    [227]Chen J.F., Zheng C, Chen G.A. Interaction of macro-and micromixing on particle size distribution in reactive precipitation[J]. Chem. Eng. Sci.1996,51(10):1957-1966
    [228]Loste E., Meldrum F.C. Control of calcium carbonate morphology by transformation of an amorphous precursor in a constrained volume[J]. Chem. Commun.2001.0:901-902
    [229]Yu Q., Qu H.D., Song R.Q. The effect of polyacrylamide on the crystallization of calcium carbonate:synthesis of aragonite single-crystal nanorods and hollow vatarite hexagons[J]. J. Cryst. Growth.2006,286(1):178-183
    [230]Sun X.M., Chen X., Deng Z.X, et al. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods[J]. Mater. Chem. Phys.2003.78(1):99-104
    [231]Li X.D., Chang W.C.. Chao Y.J., et al. Nanoscale structural and mechanical characterization of a natural nanocomposite material:the shell of red abalone[J]. Nano Lett. 2004(4):613-617
    [232]Hou K., Gao Z.W., Da M., et al. Oriented growth of urchin-like zinc oxide micro nano-scale structures in aqueous solution[J]. Mater. Res. Bull.2012,47(4):1010-1015
    [233]Chen Z.Y., Li C.F., Yang Q.Q., et al. Transformation of novel morphologies and polymorphs of CaCO3 crystals induced by the anionic surfactant SDS[J]. Mater. Chem. Phys. 2010,123(2-3):534-539
    [234]Angarska J.K., Tachev K.D., Ivanov I.B., et al. Effect of magnesium ions on the properties of foam films stabilized with sodium dodecyl sulfate[J]. J. Colloid Interface Sci. 1997.195 (2):316-328
    [235]Kodamo M., Miura M. The second CMC of the aqueous solution of sodium dodecyl sulfate. Ⅱ. Viscosity and density[J]. Bull. Chem. Soc. Jpn.1972.45:2265-2269
    [236]Hayashi S., Ikeda S. Micelle size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions[J]. J. Phys. Chem.1980,84(7):744-751
    [237]Domlnguez H. Structure of the sodium dodecyl sulfate surfactant on a solid surface in different NaCl solutions[J]. Langmuir.2009,25(16):9006-9011
    [238]时钧,汪家鼎,余国琮等.化学工程手册[M].北京:化学工业出版社,1996:149
    [239]刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002:468
    [240]朱万诚,王王红,陈建峰.超重力反应结晶法合成微细针状碳酸钙研究[J].高校化学工程学报.2002,16(5):560-564
    [241]Tommaso D.D., Leeuw N.H. Structure and dynamics of the hydrated magnesium ion and of the solvated magnesium carbonates; insights from first principles simulations[J]. Phys. Chem. Chem. Phys.2010.12:894-901
    [242]Hao L., Wei H. On-line investigation of anatase precipitation from titanyl sulphate solution[J]. Chem. Eng. Res. Des.2010.88(9):1264-1271
    [243]Hagenson L.C., Doraiswamy L.K. Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system[J]. Chem. Eng. Sci.1998.53:131-148
    [244]丘泰球,张喜梅.超声处理溶液中蔗糖晶体的生长[J].华南理工大学学报(自然科学版).1996,6:107-111
    [245]McCausland L.J., Cains. P.W., MartiL P.D. Use the power of sonocrystallization for improved propertiesfJ]. Chem. Eng. Prog.2001,97(7):56-61
    [246]Lanas J., Alvarez J.I. Dolomitic lime-thermal decomposition of nesquehonite[J]. Thermochim. Acta.2004,421(1-2):123-132
    [247]Choudhary V.R., Pataskar S.G., Gunjikar V.G., et al. Influence of preparation conditions of basic magnesium carbonate on its thermal analysis[J]. Thermochim. Acta. 1994,232(1):95-110
    [248]Khan N., Dollimore D.K., Alexander, et al. The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate[J]. Thermochim. Acta. 2001,367-368:321-333
    [249]Botha A., Strydom C.A. DTA and FT-IR analysis of the rehydration of basic magnesium carbonate[J]. Therm. Anal. Calorim.2003,71 (3):987-995
    [250]Dell R.M., Weller S.W. The thermal decomposition of nesquehonite MgCO3·H2O and magnesium ammonium carbonate MgCO3·(NH4)2CO3·4H2O[J]. Trans. Faraday Soc. 1959,55:2203-2220
    [251]Ballirano P., Vito C., Ferrini V., et al. The thermal behaviour and structural stability of nesquehonite, MgCO3·3H2O, evaluated by in situ laboratory parallel-beam X-ray powder diffraction:New constraints on CO2 sequestration within minerals[J]. J. Hazard. Mater. 2010,178(1-3):522-528
    [252]Vagvolgyi V., Frost R.L., Hales M., et al. Controlled rate thermal analysis of hydromagnesite[J]. J. Therm. Anal. Calorim.2008,92(3):893-897
    [253]Dheilly R.M., Bouguerra A, Beaudoin B, et al. Hydromagnesite development in magnesian lime mortars Mater[J]. Mater. Sci. Eng., A.1999,268(1-2):127-131
    [254]Backlund S., Rundt K., Birdi K.S, et al. Aggregation of sodium dodecyl sulfate in aqueous sodium chloride solutions[J]. Colloid. Polym. Sci.1981,259(11):1105-1110
    [255]Rharbi Y, Chen L.S., Winnik M.A. Exchange mechanisms for sodium dodecyl sulfate micelles:high salt concentration [J]. J. Am. Chem. Soc.2004,126(19):6025-6034

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700