用户名: 密码: 验证码:
壳聚糖止血活性及其生物安全性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖是一种具有止血促愈活性的生物可降解的天然多糖,近年来已成为止血性生物材料的研究热点之一,目前已有多种外用壳聚糖基敷料获批上市。但受限于其在体内的止血效果和生物安全性尚不明确,壳聚糖体内止血材料的开发和应用仍处于起步阶段。本论文旨在在动物体内对壳聚糖的止血能力和生物安全性进行深入系统的评价,为壳聚糖基体内植入型止血敷料的开发奠定研究基础,为其应用提供理论依据,对壳聚糖产业的发展具有重要的理论价值和应用价值。
     为了筛选出具有良好止血活性的壳聚糖并评价其在体内的止血效果,利用试管法对比研究一系列具有不同脱乙酰度(DD)、分子量(Mw)的壳聚糖固体粉末和溶液在体外对兔血凝固时间的影响,利用小鼠断尾法测定不同性质壳聚糖粉末对鼠尾出血时间和出血量的影响,并将据此筛选得的壳聚糖样品应用于兔体内脏器的损伤创口,测定各创口的出血时间和出血量的变化。结果显示:壳聚糖样品的Mw和DD对其体外止血活性影响显著,Mw和DD越高,兔血凝固时间越短,且同等剂量下壳聚糖粉末的促凝血活性优于其溶液;将各壳聚糖粉末样品应用于小鼠断尾创口,出血时间均可缩短53.4%以上,DD为85.32%、Mw为1.22×106的壳聚糖粉末(CS)更可将出血时间缩短74.7%,并将出血量减少86.4%;将该CS粉末应用于动物体内脏器创口,最高可缩短出血时间63.5%、减少出血量72.9%,对体内的多血管实质性脏器(如肝、脾)的出血创口具有显著的止血效果。
     为了探讨CS发挥体内止血活性的可能途径,将其与广泛分布于血管内腔表面的内皮细胞共培养24h,对于细胞合成与分泌的促凝血因子血管性假性血友病因子(vWF)、组织因子(TF)、纤溶酶原活化物抑制剂(PAI)、内皮素(ET-1)和抗凝血因子内皮型一氧化氮合成酶(ENOs)、血栓调节蛋白(TM)、蛋白S(PS)、组织型纤溶酶原活化物(tPA)、组织因子途径抑制因子(TFPI)等mRNA表达量的变化,用RT-PCR和荧光定量分析法进行测定。结果表明:CS对抗凝血因子TFPI、tPA和ENOs的mRNA表达均有一定的抑制作用,高剂量CS(1mg/mL)更可使其表达量分别降低至空白对照组的34.40%、0.77%和9.24%。因此,通过抑制内皮细胞抗凝血因子的合成分泌而使血液加速凝固,可能是CS体内止血的途径之一。
     对于体内止血效果显著的CS的生物安全性,重点从以下几方面进行了研究。
     (1)急性毒性和长期毒性:分别按照2000mg/kg和5000mg/kg的限度剂量于ICR小鼠腹腔注射CS混悬液,观察短期内动物的生存状况和不良反应症状,检查其血液学和组织学变化,以此评价其急性毒性;对小鼠腹腔注射CS混悬液后持续观察90d,根据动物的生存状况、不良反应、血液学和组织学检查结果评价其长期毒性。结果显示:腹腔注射CS混悬液的LD_(50)>5000mg/kg,属于低毒物质;小鼠出现体重和摄食量显著下降、毛发竖立、腹泻、活动量急剧减少等短期临床毒性反应,机体产生对外来物质的急性炎症反应,肝和肾有显著的炎症反应,脾脏因其白髓弥散性增生而显著增大;CS在小鼠体内的长期存在,可引起机体慢性炎症、脾脏持续增大和血小板数量持续增加。
     (2)遗传毒性和细胞毒性:通过Ames实验、小鼠微核实验和精子畸形实验对CS的遗传毒性和致突变作用进行了研究,同时利用MTT法研究了CS对内皮细胞HUVEC增殖率的影响,以此表征其细胞毒性。结果显示:在实验剂量范围内,CS未引起测试菌株或细胞的异常变化,无显著的遗传毒性;CS可促进HUVEC增殖,在0.0625~1mg/mL范围内无细胞毒性。
     (3)生殖毒性、发育毒性和致畸毒性:小鼠分别于交配前和妊娠早期(GD6)腹腔注射CS,观察亲代F0小鼠的生殖参数和交配、受精、妊娠、分娩及哺乳等过程的变化,记录其胚胎形成、发育及子代的生长和畸形状况。结果显示:CS对F0雄鼠的生殖参数未有显著影响,但低剂量CS(125mg/kg)即可引起F0雌鼠黄体数和着床数的显著下降,从而导致活胎数的减少,因此,CS对小鼠生殖毒性的无明显损害作用水平(NOAEL)低于125mg/kg;中剂量CS(500mg/kg)即可引起F0孕鼠消瘦和先兆流产,其活胎数显著减少,但其仔鼠的生长发育未受显著影响,因此,CS对小鼠发育毒性的NOAEL为125mg/kg;同时,各剂量组小鼠畸形率无显著差异,CS的致畸毒性NOAEL大于2000mg/kg。
     综上所述,根据体外和动物体表止血实验筛选得DD为85.32%、Mw为1.22×106的壳聚糖样品CS,其应用于动物体内脏器创口时,可显著缩短出血时间并降低出血量,具有良好的体内止血效果,具有较好的开发和研究前景;首次对作为体内止血材料的壳聚糖样品进行系统的生物安全性评价,结果显示其在小鼠体内的LD_(50)>5000mg/kg,无遗传毒性、细胞毒性和致畸毒性,但是亦可引起一定的临床不良反应,尤其是对雌鼠的生殖和孕鼠的妊娠过程影响较大,该结果对于壳聚糖体内止血敷料的开发和应用具有重要的理论价值和指导意义。
Chitosan is a natural biodegradability polysaccharide with hemostasis and wound healingactivities. It has been a research highlight as a kind of hemostatic biomaterials in recent years,and there are several kinds of topical chitosan-based dressing approved for listing. However,the development and application of chitosan as an implanted hemostatic material are still intheir infancy, which is limited by its unclear hemostatic effect and biological safety in vivo.The purposes of this thesis are to evaluate the hemostatic capacity and biological safety ofchitosan in animals, to lay research foundations for its development and offer academic basesfor its application as an in vivo hemostatic dressing, and this has important theoretical andpractical values in the developments of chitosan industry.
     In order to screen a sample with good hemostatic activity and evaluate its hemostaticcapability in vivo, the effects of a series of chitosan powder and solution with different DDand Mw to the coagulation time of rabbit blood in vitro were studied by Lee-White method,and the effects of chitosan powder samples with different properties to the time and theamount of bleeding of mouse tail were investigated by tail cutting method. The samplescreened according to these was applied to the organ wounds of rabbits in vivo, and the timeand amount of bleeding were measured. The results showed that the Mw and DD had greateffects on the hemostatic activity of chitosan, the coagulation time was shorter while the Mwand DD were higher, and the activity of powder was better than the solution at the same dose.All chitosan powder samples could shorten the bleeding time of mouse tail more than53.4%and CS powder, whose DD was85.32%and Mw was1.22×106, could reduce the bleedingtime by74.7%and the amount of bleeding by86.4%. CS powder showed a good hemostaticeffect on the bleeding wounds of substantive organs with rich blood (such as liver and spleen),while the bleeding time could be shortened63.5%and the amount reduced72.9%at most.
     To explore the possible way of CS to play its hemostatic activity in vivo, it wasco-cultured with endothelial cells, which were widely distributed in the vessel lumen surface,for24h. The changes of procoagulant factors (such as vWF, TF, PAI, and ET-1) andanti-coagulant factors (such as ENOs, TM, PS, tPA, and TFPI) synthesized and secreted byendothelial cells were measured by RT-PCR and fluorescence quantitative analysis, whichcould denote the changes of coagulation capability of endothelial cells. The results showedthat CS could inhibited the mRNA expressions of TFPI, tPA, and ENOs, and their expressionamounts in the highest CS group were34.40%,0.77%, and9.24%of control group,respectively. Therefore, CS could promote blood clotting by inhibiting the synthesis andsecretion of anti-coagulant factors, and this might be one way of chitosan to stop the bleedingin vivo.
     The key researches about the biological safety of CS were as follow.
     (1) Acute and chronic toxicity: CS suspension was intraperitoneally injected into ICRmice at2000mg/kg and5000mg/kg, respectively. The survival condition and symptoms ofadverse effects were observed for14days, and hematological and histological tests wereperformed. Then CS suspension was singly injected intraperitoneally into ICR mice and the observation lasted for90days. The survival condition, symptoms of adverse effects,hematological and histological changes were observed to evaluate the chronic toxicity. Theresults showed that the LD_(50)of CS was over5000mg/kg in mice, and it was a less-toxicmaterial. Some adverse effects, such as decreasing of body weight and food consumption,erected hair, serious diarrhea, and sharply reduced movements, were observed. Acuteinflammations of body to strange materials were noted, inflammatory cells were increased inlivers and kidneys, and spleens were enlarged notably for the disseminated hyperplasis ofwhite pulp area. The long-term existence of CS in vivo could induce chronic inflammation ofbody, persistive enlargement of spleen, and continued increasement of platelet.
     (2) Genotoxicity and cytotoxicity: the genotoxicity and mutagenicity of CS were studiedby Ames test, mouse micronucleus test and sperm abnormality test, and the effect of CS to theproliferation of HUVEC was tested by MTT method to denote its cytotoxicity. The resultsproved that CS had no genotoxicity in the test dose range because there were no abnormalalterations of test bacteria or cells. CS could promote the proliferation and have nocytotoxicity in the test dose range (0.0625~1mg/mL).
     (3) Reproductive, developmental and teratogenic toxicity: CS were injected into micebefore mating or on GD6, and the alterations in reproductive parameters, mating, fertilization,gestation, delivery, and lactation of F0mice were observed. The embryogenesis anddevelopment, growth and teratogenic conditions of offspring were recorded. The resultsshowed that there were no influences of CS in reproductive parameters of F0male mice,however, the corpora lutea counts and implantation sites of F0female mice were reducedsignificantly even at125mg/kg, which could lead to the reducing of the numbers of livefetuses. Therefore, the NOAEL of CS in the reproductive toxicity was considered to be lessthan125mg/kg. CS could induce emaciation and threatened abortion in F0mice at500mg/kg,and the numbers of live fetuses were decreased notably. However, the developments of itsoffspring were not affected. Therefore, the NOAEL of CS in the developmental toxicity wasconsidered to be125mg/kg. In addition, there was no difference in the teratogenic rate amongall groups, so the NOAEL of teratogenic toxicity was considered to be more than2000mg/kg.
     In summary, CS, whose DD was85.32%and Mw was1.22×106, screened by in vitro andbody surface hemostatic tests and displayed good hemostatic activity in vivo, which couldsignificantly shorten the bleeding time and reduce the amount of bleeding. So it has a gooddevelopment and research prospect. The biological safety evaluation tests of CS as an internalhemostatic material were performed for the first time, and the results showed that the LD_(50) ofCS in mice was over5000mg/kg, and it had not shown genotoxicity, cytotoxicity orteratogenic toxicity. However, CS could induce some clinical adverse effects, especially in thereproductive process of female mouse and pregnant mouse. These results have importanttheoretical values and practical meaning for the development and application ofchitosan-based implantable hemostatic dressing.
引文
[1] Kumar M N V R. A review of chitin and chitosan applications[J]. Reactive and Functional Polymers,2000,46(1):1-27.
    [2]陈碧琼,孙康.甲壳素和壳聚糖的医药应用及开发近况[J].中国药物化学杂志,2001,11(4):245-249.
    [3] Carre o-Gómez B, Duncan R. Evaluation of the biological properties of soluble chitosan and chitosanmicrospheres[J]. International Journal of Pharmaceutics,1997,148(2):231-240.
    [4] Kurita K. Chitin and chitosan: Functional biopolymers from marine crustaceans[J]. MarineBiotechnology,2006,8(3):203-226.
    [5]蒋挺大.壳聚糖[M].北京:化学工业出版社,2007.
    [6] Saranwong N, Inthanon K, Wongkham W, et al. Surface and protein analyses of normal human cellattachment on PIII-modified chitosan membranes[J]. Nuclear Instruments and Methods in PhysicsResearch Section B: Beam Interactions with Materials and Atoms,2012,272:386-390.
    [7] Hu Y, Du Y, Yang J, et al. Self-aggregation and antibacterial activity of N-acylated chitosan[J].Polymer,2007,48(11):3098-3106.
    [8] Chung Y-C, Wang H-L, Chen Y-M, et al. Effect of abiotic factors on the antibacterial activity ofchitosan against waterborne pathogens[J]. Bioresource Technology,2003,88(3):179-184.
    [9] Du Y, Zhao Y, Dai S, et al. Preparation of water-soluble chitosan from shrimp shell and itsantibacterial activity[J]. Innovative Food Science&Emerging Technologies,2009,10(1):103-107.
    [10] Anitha A, Divya Rani V V, Krishna R, et al. Synthesis, characterization, cytotoxicity and antibacterialstudies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles[J]. CarbohydratePolymers,2009,78(4):672-677.
    [11] Chung Y-C, Chen C-Y. Antibacterial characteristics and activity of acid-soluble chitosan[J].Bioresource Technology,2008,99(8):2806-2814.
    [12] Yao H-T, Huang S-Y, Chiang M-T. A comparative study on hypoglycemic and hypocholesterolemiceffects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats[J]. Food andChemical Toxicology,2008,46(5):1525-1534.
    [13] Liao F, Shieh M, Chang N, et al. Chitosan supplementation lowers serum lipids and maintains normalcalcium, magnesium, and iron status in hyperlipidemic patients[J]. Nutrition Research,2007,27(3):146-151.
    [14] Gades M, Stern J. Chitosan supplementation and fat absorption in men and women[J]. Journal of theAmerican Dietetic Association,2005,105(1):72-77.
    [15] Liu J, Zhang J, Xia W. Hypocholesterolaemic effects of different chitosan samples in vitro and invivo[J]. Food Chemistry,2008,107(1):419-425.
    [16] Zhang J, Liu J, Li L, et al. Dietary chitosan can effectively improve hypercholesterolemia in rats fedhigh-fat diets[J]. Nutrition Research,2008,28(6):383–390.
    [17] Okamoto Y, Yano R, Miyatake K, et al. Effects of chitin and chitosan on blood coagulation[J].Carbohydrate Polymers,2003,53(3):337-342.
    [18] Janvikul W, Uppanan P, Thavornyutikarn B, et al. In vitro comparative hemostatic studies of chitin,chitosan, and their derivatives[J]. Journal of Applied Polymer Science,2006,102(1):445-451.
    [19] Ishihara M, Nakanishi K, Ono K, et al. Photocrosslinkable chitosan as a dressing for wound occlusionand accelerator in healing process[J]. Biomaterials,2002,23(3):833-840.
    [20] Gu R, Sun W, Zhou H, et al. The performance of a fly-larva shell-derived chitosan sponge as anabsorbable surgical hemostatic agent[J]. Biomaterials,2010,31(6):1270-1277.
    [21] Hoekstra A, Struszczyk H, Kivek s O. Percutaneous microcrystalline chitosan application for sealingarterial puncture sites[J]. Biomaterials,1998,19(16):1467-1471.
    [22] Jayakumar R, Prabaharan M, Sudheesh Kumar P T, et al. Biomaterials based on chitin and chitosan inwound dressing applications[J]. Biotechnol Adv,2011,29(3):322-337.
    [23] Valentine R, Athanasiadis T, Moratti S, et al. The efficacy of a novel chitosan gel on hemostasis andwound healing after endoscopic sinus surgery[J]. Amj Rhinol Allergy,2010,24(1):70-75.
    [24] Ribeiro M P, Espiga A, Silva D, et al. Development of a new chitosan hydrogel for wound dressing[J].Wound Repair Regen,2009,17(6):817-824.
    [25] Muzzarelli R a A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone[J].Carbohydrate Polymers,2009,76(2):167-182.
    [26] Park C J, Clark S G, Lichtensteiger C A, et al. Accelerated wound closure of pressure ulcers in agedmice by chitosan scaffolds with and without bFGF[J]. Acta Biomaterialia,2009,5(6):1926-1936.
    [27] Zheng Y, Yi Y, Qi Y, et al. Preparation of chitosan-copper complexes and their antitumor activity[J].Bioorganic&Medicinal Chemistry Letters,2006,16(15):4127-4129.
    [28] Qi L, Xu Z. In vivo antitumor activity of chitosan nanoparticles[J]. Bioorganic&Medicinal ChemistryLetters,2006,16(16):4243-4245.
    [29] Xu Y, Wen Z, Xu Z. Chitosan nanoparticles inhibit the growth of human hepatocellular carcinomaxenografts through an antiangiogenic mechanism[J]. Anticancer Res,2009,29(12):5103-5109.
    [30] Maeda Y, Kimura Y. Antitumor effects of various low-molecular-weight chitosans are due toincreased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma180-bearing mice[J].Journal of Nutrition,2004,134(4):945-950.
    [31] Anraku M, Fujii T, Furutani N, et al. Antioxidant effects of a dietary supplement: Reduction of indicesof oxidative stress in normal subjects by water-soluble chitosan[J]. Food and Chemical Toxicology,2009,47(1):104-109.
    [32] Feng T, Du Y, Li J, et al. Enhancement of antioxidant activity of chitosan by irradiation[J].Carbohydrate Polymers,2008,73(1):126-132.
    [33] Anraku M, Kabashima M, Namura H, et al. Antioxidant protection of human serum albumin bychitosan[J]. International Journal of Biological Macromolecules,2008,43(2):159-164.
    [34] Anraku M, Fujii T, Kondo Y, et al. Antioxidant properties of high molecular weight dietary chitosanin vitro and in vivo[J]. Carbohydrate Polymers,2011,83(2):501-505.
    [35] Xia W, Liu P, Zhang J, et al. Biological activities of chitosan and chitooligosaccharides[J]. FoodHydrocolloids,2011,25(2):170-179.
    [36] Vandevord P J, Matthew H W T, Desilva S P, et al. Evaluation of the biocompatibility of a chitosanscaffold in mice[J]. Journal of Biomedical Materials Research,2002,59(3):585-590.
    [37] Kim H, Tator C H, Shoichet M S. Chitosan implants in the rat spinal cord: Biocompatibility andbiodegradation[J]. Journal of Biomedical Materials Research Part A,2011,97A(4):395-404.
    [38]邵健,杨宇民,徐秉洳.甲壳素和壳聚糖在生物医学方面的应用[J].南通医学院学报,1997,17(1):145-146.
    [39] D. A.Development of bioactive polysaccharide based tissue engineered aortic valvep[D]. Detroit;Wayne State University,2006.
    [40] Hk N, Sp M, W P, et al. Application of chitosan for improvement of quality and shelf life of foods: areview[J]. Journal of food science,2007,72(5):87-99.
    [41]杨新超,赵祥颖,刘建军.壳聚糖的性质、生产及应用[J].食品与药品,2005,7(8A):59-62.
    [42] Peniche C, Argüelles-Monal W, Goycoolea F M. Chitin and Chitosan: Major Sources, Properties andApplications[M]. Monomers, Polymers and Composites from Renewable Resources. Amsterdam;Elsevier.2008:517-542.
    [43] Rinaudo M. Chitin and chitosan: Properties and applications[J]. Progress in Polymer Science,2006,31(7):603-632.
    [44]张正生,薛绍玲.甲壳素/壳聚糖的应用研究进展[J].科技信息(科学教研),2007,21):328-329.
    [45] Abdou E S, Nagy K S A, Elsabee M Z. Extraction and characterization of chitin and chitosan fromlocal sources[J]. Bioresource Technology,2008,99(5):1359-1367.
    [46] Hirano S, Itakura C, Seino H, et al. Chitosan as an ingredient for domestic animal feeds[J]. Journal ofAgriculture and Food Chemistry,1990,38:1214-1217.
    [47] Li Q, Dunn E T, Grandmaison E W, et al. Applications and properties of chitosan[J]. Journal ofBioactive and Compatible Polymers,1992,7(4):370-397.
    [48] Hirano S. Chitin biotechnology applications[J]. Biotechnology Annual Review,1996,2:237-258.
    [49] Ishii T, Okahata Y, Sato T. Mechanism of cell transfection with plasmid/chitosan complexes[J].Biochimica et Biophysica Acta (BBA)-Biomembranes,2001,1514(1):51-64.
    [50]陈煜,窦桂芳,罗运军,等.甲壳素和壳聚糖在伤口敷料中的应用[J].高分子通报,2005,1:94-100.
    [51] Ong S-Y, Wu J, Moochhala S M, et al. Development of a chitosan-based wound dressing withimproved hemostatic and antimicrobial properties[J]. Biomaterials,2008,29(32):4323-4332.
    [52] Kang P-L, Chang S J, Manousakas I, et al. Development and assessment of hemostasis chitosandressings[J]. Carbohydrate Polymers,2011,85(3):565-570.
    [53] Hanna J R, Giacopelli J A. A review of wound healing and wound dressing products[J]. The Journalof Foot and Ankle Surgery,1997,36(1):2-14.
    [54] Devlieghere F, Vermeulen A, Debevere J. Chitosan: antimicrobial activity, interactions with foodcomponents and applicability as a coating on fruit and vegetables[J]. Food Microbiology,2004,21(6):703-714.
    [55] Li Y, Chen X G, Liu N, et al. Physicochemical characterization and antibacterial property of chitosanacetates[J]. Carbohydrate Polymers,2007,67(2):227-232.
    [56] Okushi T, Yoshikawa M, Otori N, et al. Evaluation of symptoms and QOL with calcium alginateversus chitin-coated gauze for middle meatus packing after endoscopic sinus surgery[J]. Auris, nasus,larynx,2012,39(1):31-37.
    [57] Deng C, He L, Zhao M, et al. Biological properties of the chitosan-gelatin sponge wound dressing[J].Carbohydrate Polymers,2007,69(3):583-589.
    [58] Wedmore I, Mcmanus J G, Pusateri A E, et al. A special report on the chitosan-based hemostaticdressing: experience in current combat operations[J]. Journal of Trauma,2006,60(3):655-658.
    [59] Kilbourne M, Keledjian K, Hess J R, et al. Hemostatic Efficacy of Modified Amylopectin Powder in aLethal Porcine Model of Extremity Arterial Injury[J]. Annals of Emergency Medicine,2009,53(6):804-810.
    [60] Brown M A, Daya M R, Worley J A. Experience with Chitosan Dressings in a Civilian EMSSystem[J]. Journal of Emergency Medicine,2009,37(1):1-7.
    [61] Acheson E M, Kheirabadi B S, Deguzman R, et al. Comparison of hemorrhage control agents appliedto lethal extremity arterial hemorrhages in swine[J]. Journal of Trauma,2005,59(4):865-875.
    [62] Kheirabadi B S, Scherer M R, Estep J S, et al. Determination of efficacy of new hemostatic dressingsin a model of extremity arterial hemorrhage in swine[J]. The Journal of Trauma-Injury, Infection, andCritical Care,2009,67(3):450-460.
    [63] Achneck H E, Sileshi B, Jamiolkowski R M, et al. A comprehensive review of topical hemostaticagents-Efficacy and recommendations for use[J]. Annals of Surgery,2010,251(2):217-228.
    [64] Silverstein M E, Chvapil M. Experimental and clinical ex-periences with collagen fleece as ahomeostaticagent[J]. The Journal of Tranma,1981,21(5):388.
    [65]马军阳,陈亦平,李俊杰,等.甲壳素/壳聚糖止血机理及应用[J].北京生物医学工程,2007,26(4):442-445.
    [66] Azab A K, Orkin B, Doviner V, et al. Crosslinked chitosan implants as potential degradable devicesfor brachytherapy: in vitro and in vivo analysis[J]. Journal of Controlled Release,2006,111(3):281-289.
    [67] Muzzarelli R a A. Chitin[M]. Oxford, UK:Pergamon Press,1977.
    [68] Kim Y H, Pavcnik D, Kakizawa H, et al. Thrombus formation after percutaneous catheterization andmanual compression of the femoral artery in heparinized sheep[J]. CardioVascular and InterventionalRadiology,2010,33(2):321-329.
    [69] Fludger S, Bell A. Tourniquet Application in a Rural Queensland HEMS Environment[J]. Air MedicalJournal,2009,28(6):291-293.
    [70] Hirsch J, Reddy S, Capasso W, et al. Non-invasive hemostatic closure devices:“Patches and pads”[J].Techniques in Vascular and Interventional Radiology,2003,6(2):92-95.
    [71] Englehart M S, Cho S D, Tieu B H, et al. A novel highly porous silica and chitosan-based hemostaticdressing is superior to HemCon and gauze sponges[J]. Journal of Trauma,2008,65(4):884-892.
    [72] Sambasivan C N, Cho S D, Zink K A, et al. A highly porous silica and chitosan-based hemostaticdressing is superior in controlling hemorrhage in a severe groin injury model in swine[J]. The AmericanJournal of Surgery,2009,197(5):576-580.
    [73] Muzzarelli R a A, Muzzarelli C. Chitosan chemistry: Relevance to the biomedical sciences [M].Polysaccharides I. Berlin; Springer Berlin Heidelberg.2005:151-209.
    [74]李继平,杨冬雪.止血性壳聚糖的制备及其凝血效果的研究[J].辽宁化工,2007,36(5):289-291.
    [75] Yang J, Tian F, Wang Z, et al. Effect of chitosan molecular weight and deacetylation degree onhemostasis[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2008,84B(1):131-137.
    [76] Wu Y, Hu Y, Cai J, et al. Coagulation property of hyaluronic acid–collagen/chitosan complex film[J].Journal of Materials Science: Materials in Medicine,2008,19(12):3621-3629.
    [77] Edwards J V, Howley P, Prevost N, et al. Positively and negatively charged ionic modifications tocellulose assessed as cotton-based protease-lowering and hemostatic wound agents[J]. Cellulose,2009,16(5):911-921.
    [78] Baldrick P. The safety of chitosan as a pharmaceutical excipient[J]. Regulatory Toxicology andPharmacology,2010,56(3):290-299.
    [79] Kim S-K, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides(COS): A review[J]. Carbohydrate Polymers,2005,62(4):357-368.
    [80] Fischer T H, Bode A P, Demcheva M, et al. Hemostatic properties of glucosamine-based materials[J].Journal of Biomedical Materials Research Part A,2007,80A(1):167-174.
    [81] Park P-J, Je J-Y, Jung W-K, et al. Anticoagulant activity of heterochitosans and their oligosaccharidesulfates[J]. European Food Research and Technology,2004,219(5):529-533.
    [82] Suwan J, Zhang Z, Li B, et al. Sulfonation of papain-treated chitosan and its mechanism foranticoagulant activity[J]. Carbohydrate Research,2009,344(10):1190-1196.
    [83] Drozd N N, Sher A I, Makarov V A, et al. Comparison of Antithrombin Activity of the PolysulphateChitosan Derivatives in In Vivo and In Vitro System[J]. Thrombosis Research,2001,102(5):445-455.
    [84] Harish Prashanth K V, Tharanathan R N. Chitin/chitosan: modifications and their unlimitedapplication potential—an overview[J]. Trends in Food Science&Technology,2007,18(3):117-131.
    [85] Il’ina A V, Levov A N, Mestechkina N M, et al. The production of nanoparticles based on sulfatedpolysaccharides and a study of their anticoagulant activity[J]. Nanotechnologies in Russia,2009,4(3-4):244-252.
    [86]王鸿利.出血、凝血与止血(1)--正常止血、凝血和纤溶机制[J].外科理论与实践,2000,5(1):U1-U3.
    [87] Benesch J, Tengvall P. Blood protein adsorption onto chitosan[J]. Biomaterials,2002,23(12):2561-2568.
    [88] Rao S B, Sharma C P. Use of chitosan as a biomaterial: studies on its safety and hemostaticpotential[J]. Journal of Biomedical Materials Research,1997,34(1):21-28.
    [89] Hattori H, Amano Y, Nogami Y, et al. Hemostasis for Severe Hemorrhage with PhotocrosslinkableChitosan Hydrogel and Calcium Alginate[J]. Annals of biomedical engineering,2010,38(12):3724-3732.
    [90] Chou T-C, Fu E, Wu C-J, et al. Chitosan enhances platelet adhesion and aggregation[J]. Biochemicaland Biophysical Research Communications,2003,302(3):480-483.
    [91] Klokkevold P R, Fukayama H, Sung E C, et al. The effect of chitosan (poly-N-Acetyl Glucosamine)on lingual hemostasis in heparinized rabbits[J]. Journal of Oral and Maxillofacial Surgery,1999,57(1):49-52.
    [92]杨健,田丰,陈世谦,等.壳聚糖结构和分子量对凝血作用的研究[J].中国生物医学工程学报,2005,24(3):286-290.
    [93] Suzuki Y, Miyatake K, Okamoto Y, et al. Influence of the chain length of chitsan on complementactivation[J]. Carbohydrate Polymers,2003,54(4):465-469.
    [94] Sumpio B E, Riley J T, Dardik A. Cells in focus: endothelial cell[J]. The International Journal ofBiochemistry&Cell Biology,2002,34:1508-1512.
    [95] Lijnen H R, Collen D. Endothelium in hemostasis and thrombosis[J]. Progress in CardiovascularDiseases,1997,39(4):343-350.
    [96]李冰,封桂英.几丁糖的生物学性能及其在口腔颌面外科领域的应用[J].承德医学院学报,2006,23(1):59-61.
    [97] Km V, Mm M, Rj H, et al. In vitro degradation rates of partially N-acetylated chitosans in humanserum[J]. Carbohydrate Research,1997,299(1-2):99-101.
    [98]吴勇,王勤涛,吴织芬,等.壳聚糖屏障膜机械性能与降解性能的研究[J].临床口腔医学杂志,2004,20(5):279-281.
    [99]曹宗顺,卢凤琦,王凤山,等.壳聚糖膜的降解性研究[J].生物医学工程学杂志,1995,12(4):364-366.
    [100] Onishi H, Machida Y. Biodegradation and distribution of water-soluble chitosan in mice[J].Biomaterials,1999,20(2):175-182.
    [101] Azab A K, Doviner V, Orkin B, et al. Biocompatibility evaluation of crosslinked chitosan hydrogelsafter subcutaneous and intraperitoneal implantation in the rat[J]. Journal of Biomedical Materials ResearchPart A2007,83(2):414-422.
    [102]刘静娜.壳聚糖降脂作用及机理研究[D].无锡;江南大学,2008.
    [103] Shimoda J, Onishi H, Machida Y. Bioadhesive characteristics of chitosan microspheres to the mucosaof rat small intestine[J]. Drug Development and Industrial Pharmacy,2001,27(6):567-576.
    [104] Minami S, Oh-Oka M, Okamoto Y, et al. Chitosan-inducing hemorrhagic pneumonia in dogs[J].Carbohydrate Polymers,1996,29:241-246.
    [105] Dodane V, Vilivalam V D. Pharmaceutical applications of chitosan[J]. Pharmaceutical Science&Technology Today,1998,1(6):246-253.
    [106]程东,韩晓英,冯宁,等.壳聚糖的毒性研究[J].现代预防医学,2005,32(8):890-892.
    [107]石玲,胡利平,浦锦宝,等.壳聚糖的安全性研究[J].中国海洋药物,2000,73(1):25-28.
    [108]赵玉清,郑兆艳,王冰,等.壳聚糖/壳寡糖系列功能食品的安全性评价[J].食品科学,2003,24(8):248-250.
    [109] Tanaka Y, Tanioka S, Tanaka M, et al. Effects of chitin and chitosan particles on BALB/c mice byoral and parenteral administration[J]. Biomaterials,1997,18(8):591-595.
    [110] Illum L. Chitosan and its use as a pharmaceutical excipient[J]. Pharmaceutical Research,1998,15(9):1326-1331.
    [111] Schipper N G M, Olsson S, Hoogstraate J A, et al. Chitosans as absorption enhancers for poorlyabsorbable drug2: mechanism of absorption enhancement[J]. Pharmaceutical Research,1997,14(7):923-929.
    [112] Sy C, Mk J, Jw N. Influence of molecular weight on oral absorption of water soluble chitosans[J].Journal of Controlled Release,2005,102(2):383-394.
    [113] Chen X, Liu C, Meng X, et al. Preparation and biocompatibility of chitosan microcarriers asbiomaterial[J]. Biochemical Engineering Journal,2006,27(3):269-274.
    [114] Richardson S C W, Kolbe H V J, Duncan R. Potential of low molecular mass chitosan as a DNAdelivery system-biocompatibility, body distribution and ability to complex and protect DNA[J].International Journal of Pharmaceutics,1999,178(2):231-243.
    [115] Huang M, Khor E, Lim L-Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles:effects of molecular weight and degree of deacetylation[J]. Pharmaceutical Research,2004,21(2):344-353.
    [116] Mi F-L, Shyu S-S, Wu Y-B, et al. Fabrication and characterization of a sponge-like asymmetricchitosan membrane as a wound dressing[J]. Biomaterials,2001,22(2):165-173.
    [117] Koide S S. Chitin-chitosan: Properties, benefits and risks[J]. Nutrition Research,1998,18(6):1091-1101.
    [118]田昆仑,李东红,刘良明,等.壳聚糖及其水溶性衍生物的细胞毒性研究[J].现代临床医学生物工程,2002,8(6):422-424.
    [119]曹晶,孙淑爱,卢凤琦.壳聚糖的生物学评价[J].中国公共卫生,2005,21(3):332.
    [120] Mao S, Shuai X, Unger F, et al. The depolymerization of chitosan: effects on physicochemical andbiological properties[J]. International Journal of Pharmaceutics,2004,281(1-2):45-54.
    [121]刘宗军,孟晟,秦永文,等.壳聚糖和磷脂化壳聚糖涂层膜对血管内皮细胞生长和血液相容性的影响[J].第二军医大学学报,2007,28(1):19-22.
    [122] Lee K Y, Ha W S, Park W H. Blood compatibility and biodegradability of partially N-acylatedchitosan derivatives[J]. Biomaterials,1995,16:1211-1216.
    [123]庄炤霞,林志勇,卢凤琦,等.壳聚糖膜生物降介与组织反应的实验研究[J].口腔材料器械,1997,6(4):178-180.
    [124] Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylatedderivatives[J]. Biomaterials,1997,18(7):567-575.
    [125] Alonso M J, Sanchez A. The potential of chitosan in ocular drug delivery[J]. Journal of Pharmacyand Pharmacology,2003,55(11):1451-1463.
    [126]商旭敏,金中秋,周和政,等.壳聚糖膜在兔眼巩膜瓣下的降解及对眼内压的影响[J].第三军医大学学报,2007,29(4):338-341.
    [127]丁勇,徐锦堂,吴春云,等.壳聚糖植入兔角膜的生物学反应[J].暨南大学学报(医学版),2003,24(4):28-32.
    [128] Aspden T, Illum L, Skaugrud The effect of chronic nasal application of chitosan solutions on ciliabeat frequency in guinea pigs[J]. International Journal of Pharmaceutics,1997,153(2):137-146.
    [129] Haffejee N, Du Plessis J, Muller D G, et al. Intranasal toxicity of selected absorption enhancers[J].Pharmazie,2001,56(11):882-888.
    [130]李树品,于克学,李洪晶.壳聚糖的安全性及其生理活性[J].山东食品科技,1999,5:22-23.
    [131]贾文英,景毅,程琳,等.壳聚糖的遗传毒性研究[J].透析与人工器官,2001,12(2):44-46.
    [132] Ohe T. Antigenotoxic activities of chitin and chitosan as assayed by sister chromatid exchange[J].The Science of the Total Environment,1996,181(1):1-5.
    [133] Keong L C, Halim A S. In vitro models in biocompatibility assessment for biomedical-grade chitosanderivatives in wound management[J]. International Journal of Molecular Sciences,2009,10(3):1300-1313.
    [134]杨巨才,刘丽萍,杨丙全.云南白药治百病[M].北京:北京科学技术出版社,2003.
    [135]杨谢兰,卢玉波,刘熙,等.云南白药粉在宫颈冷刀锥切术中的临床应用[J].中国实验方剂学杂志,2012,18(19):299-301.
    [136]叶剑锋,严伟民,甘卓慧,等.云南白药对大鼠血小板聚集及膜糖蛋白表达的影响[J].中国现代应用药学,2004,21(2):100-103.
    [137] Wang W, Bo S, Li S, et al. Determination of the Mark-Houwink equation for chitosans with differentdegrees of deacetylation[J]. International Journal of Biological Macromolecules,1991,13(5):281-285.
    [138] Hirai A, Odani H, Nakajima A. Determination of degree of deacetylation of chitosan by1H NMRspectroscopy[J]. Polymer Bulletin,1991,26:87-94.
    [139]陈奇.中药药理研究方法学[M].北京:人民卫生出版社,2000.
    [140]蔡维霞,梁亮,计鹏,等.人脐静脉血管内皮细胞体外培养的方法研究[J].中国修复重建外科杂志,2011,25(2):134-138.
    [141] Jiang Z, Tang X, Xiao R, et al. Dengue virus regulates the expression of hemostasis-relatedmolecules in human vein endothelial cells[J]. Journal of Infection,2007,55(2):e23-e28.
    [142] Chen L. Dengue virus induces thrombomodulin expression in human endothelial cells and monocytesin vitro[J]. Journal of Infection,2009,58(5):368-374.
    [143] Orbe J, Montes R, Zabalegui N, et al. Evidence that heparin but not hirudin reduces PAI-1expressionin cultured human endothelial cells[J]. Thrombosis Research,1999,94:137-145.
    [144] Royo T, Mart Nez-González J, Vilahur G, et al. Differential intracellular trafficking of vonWillebrand factor (vWF) and vWF propeptide in porcine endothelial cells lacking Weibel–Palade bodiesand in human endothelial cells[J]. Atherosclerosis,2003,167(1):55-63.
    [145] Fischer L J, Mcilhenny S, Tulenko T, et al. Endothelial Differentiation of Adipose-Derived StemCells: Effects of Endothelial Cell Growth Supplement and Shear Force[J]. Journal of Surgical Research,2009,152(1):157-166.
    [146] Zhao R-Z, Chen X, Yao Q, et al. TNF-α induces interleukin-8and endothelin-1expression in humanendothelial cells with different redox pathways[J]. Biochemical and Biophysical Research Communications,2005,327(4):985-992.
    [147]姜霞,田凤石.血管内皮细胞在凝血机制中的作用研究进展[J].中国心血管杂志,1999,4(2):113-116.
    [148]张广森,葛鸣.血管内皮细胞表面在调节凝血、纤溶及血管张力方面的多重作用[J].国外医学:生理病理科学与临床分册,1991,1:10-12.
    [149]郭南山.内皮功能研究进展[J].广东医学,2001,22(11):990-992.
    [150]郭建友,霍海如,姜廷良.内皮细胞功能及其异质性研究的进展[J].中国临床药理学与治疗学,2005,10(10):1081-1085.
    [151]安英男,高航.血管内皮细胞抗栓功能相关研究[J].南昌大学学报(医学版),2010,50(7):126-128.
    [152]邵慧珍.内皮细胞的杭栓、促栓作用与临床[J].血栓与止血,1995,2(2):93-94,76.
    [153]袁伯俊,廖明阳,李波.药物毒理学实验方法与技术[M].北京:化学工业出版社,2007.
    [154]中华人民共和国国家质量监督检验检疫总局. GB/T16886.11-1997医疗器械生物学评价第11部分:全身毒性试验[S].北京:中国标准出版社,1997.
    [155] Oecd. OECD Guideline for testing of chemicals425: Acute oral toxicity–Up-and-Down-Procedure(UDP)[S]. Paris, France:OECD,2006.
    [156] Oecd. OECD Guideline for testing of chemicals452: Chronic toxicity studies [S]. Paris,France:OECD,1981.
    [157]中华人民共和国国家质量监督检验检疫总局. GB/T16886.1-2001医疗器械生物学评价第1部分:评价与试验[S].北京:中国标准出版社,2001.
    [158]中华人民共和国国家质量监督检验检疫总局. GB/T16886.3-1997医疗器械生物学评价第3部分:遗传毒性、致癌性和生殖毒性试验[S].北京:中国标准出版社,1997.
    [159] Oecd. OECD Guideline for testing of chemicals471: Bacterial reverse mutation test[S]. Paris,France:OECD,1997.
    [160] Oecd. OECD Guideline for testing of chemicals474: Mammalian erythrocyte micronucleus test[S].Paris, France:OECD,1997.
    [161] Oecd. OECD Guideline for testing of chemicals483: Mammalian spermatogonial chromosomeaberration test[S]. Paris, France:OECD,1997.
    [162] Oecd. OECD Guideline for testing of chemicals415: One-generation reproduction toxicity study[S].Paris, France:OECD,1983.
    [163] Oecd. OECD Guideline for testing of chemicals414: Prenatal developmental toxicity study [S]. Paris,France:OECD,2001.
    [164] Blaszkowska J. Prenatal toxicity of Ascaris pepsin inhibitor in mice[J]. Reproductive Toxicology,2008,25(2):263-270.
    [165]宁玲玲,戴长亮,谭嵘,等.乙醛在小鼠酒依赖性行为中的作用研究[J].生命科学研究,2008,4:343-346.
    [166]吴纯启,王爱平,廖明阳,等.大鼠出生前接触苯妥英和(或)褪黑素对学习记忆的影响[J].中国药理学与毒理学,2005,1:29-34.
    [167] Zhou K, Xia W, Zhang C, et al. In vitro binding of bile acids and triglycerides by selected chitosanpreparations and their physico-chemical properties[J]. LWT-Food Science and Technology,2006,39(10):1087-1092.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700