用户名: 密码: 验证码:
氯化钾抑制玉米茎腐病发生的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米茎腐病在我国玉米主产区发生严重。它作为一种典型的土传病害,在防治上难度较大,应用一般的化学农药、种子包衣等均难以有效控制该病的发生。有研究发现,钾肥能够显著降低玉米茎腐病的发生率,但是关于钾在抑制玉米茎腐病方面的作用机制尚不清楚。本研究采用12年氯化钾肥长期定位试验研究了氯化钾对茎腐病的抑制效果;结合室内生物培养试验研究了不同钾量级土壤浸提液对主要致病菌禾谷镰刀菌(Fusarium graminearum)生长的影响;利用平板计数法分析了长期施用氯化钾对玉米根际土壤微生物区系的变化。通过钾和氯不同量级的大田试验和氯化钾长期定位试验,进一步比较了氯化钾中钾和氯的抑病作用;结合室内生理生化分析方法研究了钾和氯对玉米各生育时期植株体内糖分分配的影响,并结合抽雄期接种处理探讨了钾对病原菌侵染前后酚类物质代谢的影响。本研究通过水培试验,利用高压液相色谱定量分析了钾对玉米苗期根系分泌物中各组分含量的影响;并结合室内生物培养试验,研究了根系分泌物中糖和酚酸对禾谷镰刀菌生长的影响。采用土培试验,利用透射电镜对接种后寄主与病原菌互作过程中根尖细胞超微结构的变化进行了观察。本文主要从施用氯化钾对土壤微生态和植物生理生化代谢影响的角度,对氯化钾抑制玉米茎腐病发生的机理进行系统研究和深入探讨,取得以下主要研究结果:
     1.在缺钾土壤上,施用氯化钾和硝酸钾均能够显著抑制玉米茎腐病的发生,而氯素的抑病作用不明显。在缺钾条件下,抗病品种(吉单180)较感病品种(吉单327)具有更强的吸钾能力。玉米各生育时期的根、苇和叶部钾素含量均与玉米茎腐病的发生率存在显著负相关关系,茎腐病发生率随着植株体含钾量的提高而显著降低。
     2.室内培养试验发现,一定浓度的氯化钾不能直接抑制禾谷镰刀菌(Fusarium graminearum)的生长,长期施用氯化钾的土壤浸提液对其具有明显的抑制作用。与不施钾处理相比,长期施用氯化钾对玉米生育前期根际土壤细菌数目无明显影响,适量的氯化钾可以显著增加根际土壤放线菌数目和真菌数目,且施钾处理的苗期根际土壤真菌以木霉菌占优势。而且施钾处理与不施钾处理的根际土壤真菌和放线菌数目差异显著时期正是玉米茎腐病病原菌的主要侵染期(生育前期)。说明长期施用氯化钾引起的根际土壤微生物区系的变化可能与病原菌对寄主根系的侵染存在一定的联系。
     3.与缺钾处理相比,在以硝态氮为主要氮源的条件下,氯化钾和硝酸钾能够抑制根系糖的分泌,促进有机酸和酚酸的分泌。缺钾处理导致根系总糖尤其是还原糖的分泌量显著增加,有利于禾谷镰刀菌在体外的生长繁殖,可能由此提高了病原菌与寄主识别的几率,利于病原菌的侵染。阿魏酸是玉米根系分泌的主要酚酸组分,抗病品种吉单180阿魏酸分泌量明显高于感病品种吉单327,且随着钾的供应而大幅度提高。抗病品种绿原酸分泌量明显低于感病品种,供钾导致两个品种根系绿原酸分泌量下降。体外培养试验发现,阿魏酸和绿原酸均能够抑制Fusarium graminearum的生长,但阿魏酸的抑菌效果远远大于绿原酸。这说明钾主要通过阿魏酸分泌量的提高抑制根际禾谷镰刀菌的生长繁殖,从而可能降低其对寄主的侵染几率。
     钾能够促进寄主细胞壁加厚,形成阻止病原菌侵染的第一道屏障;即使在病原菌侵染后,钾也能够刺激寄主细胞迅速分泌降解物质,抑制病原菌的进一步扩展。缺钾则导致寄主细胞内线粒
Stalk rot is one of the most widespread and destructive disease that reduces maize yield and quality. As a kind of soil-borne fungal disease, maize stalk rot is difficult to control by conventional strategies such as the use of synthetic fungicides and fungicidal seed treatment. Many studies confirm that application of potassium is an effective method to reduce the stalk rot incidence of maize. However, little attention has been paid to the mechanisms of suppression of corn stalk rot by potassium. A 12-year long-term field experiment with different rates of potassium chloride (KC1) application was used to investigate the suppression effect of KC1 on stalk rot, the effect of soil extracts on the growth of Fusarium graminearum, the most common stalk rot fungi in this area, and the changes of microflora in rhizosphere with plate counting method. A separate field trial with different rates of potassium and chloride application was conducted to valuate the suppression effects of potassium and chloride from KC1 and study the effects of potassium on the distribution of soluble carbohydrate in plant at the growth stages, and the phenolic metabolism in stalk pith tissue of the second internode above ground after inoculation affected by potassium. Hydroponic experiment was conducted to measure the influence of potassium supply on the root exudates using high performance liquid chromatography, and the effects of sugar and phenolic compounds on the growth of F. graminearum was analyzed with plate culture method. Pot trial under greenhouse condition was carried out to examine the alteration of ultrastructure of seedling root tissue 4 days after inoculation with transmission electron microscope. This paper discussed the possible mechanism of potassium chloride suppressing stalk rot of maize from the aspects of microecology of rhizosphere, and plant physiology and biochemistry affected by potassium chloride. The main results are as following:1. In K-deficiency soil, potassium applied as KC1 and KNO_3 decreased the incidence of maize stalk rot significantly, but chloride applied as CaCl_2 had no obvious effect on reducing the incidence of maize stalk rot compared to the control. Resistant cultivar Jidan180 had a higher potassium uptake capacity than susceptible cultivar Jidan327. The significant negative correlations were found between the stalk rot incidence and the K content in root, stem and ear-leaf of maize at the growth stages.2. KC1 addition to the PDA medium could not directly suppress F. graminearum development. Soil extracts from soil with long-term KC1 treatments suppressed F. graminearum development more significantly, compared with that from the treatment of no KC1 supply. Long-term application of KC1 increased the populations of rhizosphere fungi and actinomyces at the early growth stages. However, there was no significant difference existed in rhizosphere bacteria population among the treatments. The sensitive infection stages of pathogen to maize were consisted with the stages when the significant difference in rhizosphere fungi and actinomyces populations. And at seedling stage, Trichoderma was the fungi dominating in the rhizosphere of maize with long-term KC1 application. Therefore, the change in rhizosphere microflora (especially fungi) perhaps was one of the mechanisms of suppressing maize stalk rot by KC1 application.3. Potassium supply decreased the total amount of sugar exudates and stimulated the release of
    organic acids and phenolic acids under nitrate as the main nitrogen source. Potassium significantly increased the ferulic acid content and decreased the chlorogenic acid content. The amount of ferulic acid exudates by root of resistance cultivar was higher than that of susceptible cultivar, while a reverse trend was found in chlorogenic acid. In vitro, the growth of Fusarium graminearum was stimulated by sugar and inhibited by ferulic acid and chlorogenic acid, and the suppression effect of ferulic acid was more effective than chlorogenic acid. The decrease of sugar content and the increase of the amount of ferulic acid in seedling root exudates with potassium supply maybe help reduce the infection probability by F. graminearum. The cell wall of maize root tip with potassium supply became thicker than that without K application. Once the cell of maize root tip with potassium supply was infected, it would secreted material for degrading fungi hypha, and inhibited the rapid development of pathology in host. Mitochondria accumulation which marked the abnormal of respiration was found in the cell of seedling root with K deficiency.4. Potassium stimulated carbohydrate translocation to root and stem, and increased the sugar content after the tasselling stage. Sugar contents in root at the filling stage and those in stem at the dough stage were positively correlated with the resistance to stalk rot. The total soluble sugar content in root or stem could be used as a better indicator of resistance to maize stalk rot compared to the sucrose content and the reducing sugar content. Enhancement of sugar metabolism by potassium was responsible for the resistance to maize stalk rot.5. The initial level of lignin in the susceptible cultivar was higher than that in the resistant cultivar, while the content of induced lignin by inoculation in susceptible cultivar was lower than that in resistant cultivar. Therefore, it was not the initial level of lignin but the induced level of lignin could indicate the resistance to stalk rot. Infection of F. graminearum increased the accumulation of induce lignin and triggered rapid increase in activities of phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), peroxidase (POD) and cinnamyl alcohol dehydrogenase (CAD) in the stalk pith tissue of maize with potassium application, compared with the K-deficiency plant. These results implied that after inoculation, potassium could stimulate the rapid expression of defence genes, increase the activities of defense enzymes, promote the synthesis of inducing soluble phenolic compounds and then enhance the resistance of maize plants against stalk rot.6. The background level of phenolics and the induced phenolics by inoculation in the susceptible cultivar was higher than that in the resistant cultivar. Potassium supply increased the rapid accumulation of induced phenolics and increased the activity of polyphenoloxidase (PPO), stimulated the translation of phenolics compounds to quinone Regardless of inoculation, the concentration of chlorogenic acid increased with the increase of potassium application rates, which was the predominant phenolic compound in maize stalk pith tissue, and chlorogenic acid proved to inhibit the growth of F. graminearum in vitro. The results suggested that chlorogenic acid may play a role in inhibiting the development of F. graminearum in the stalk pith tissue of maizeIn conclusion, the possible mechanisms of potassium chloride suppressing stalk rot of maize could be summarized as follows: 1) KC1 impeded directly the infection of pathology by making the cell wall
    thicker, and decreased indirectly the probability of infection of F. graminearum by changing the root exudates and microflora in rhizosphere. 2) KCl maintained plant physiology vigor higher at the later growth stage by accelerating the transportation of carbohydrate and increasing sugar available to the root and stem tissue after tasselling stage. 3) KCl enhanced the resistance of maize against stalk rot through stimulating the rapid expression of defence genes, furthermore increasing the activities of defense enzymes, and then promoting the synthesis of inducing soluble phenolic compounds after infection by pathology. All of those may contribute to the decrease in incidence of maize stalk rot.
引文
1.柴家荣.尚志强.戴福斌,等.2004.氮磷钾营养与白肋烟叶内有关生化物质的关系.烟草科技,10:31-35.
    2.陈宏宇,李晓鸣,王敬国.2006.抗病性不同大豆品种根面及根际微生物区系的变化Ⅱ.连作大豆(重茬)根面及根际微生物区系的变化.植物营养与肥料学报,12(1):104-108.
    3.陈宏宇,李晓鸣,王敬国.2005.抗病性不同大豆品种根面及根际微生物区系的变化Ⅰ.非连作大豆(正茬)根面及根际微生物区系的变化.植物营养与肥料学报,11(6):804-809.
    4.陈建中,章镇,黄赛芹,等.2003.外源绿原酸对苹果抗病相关酶的影响.果树学报,20(1):67-69.
    5.陈捷,宋佐衡,咸洪泉,等.1995.玉米茎腐病侵染规律的研究.植物保护学报,22(2):117-122.
    6.陈捷,高洪敏,朱有釭,等.1998.玉米茎腐病菌产生的细胞壁降解酶的致病作用.植物病理学报,28(3):221-226.
    7.陈捷.2000.我国玉米穗、茎腐病病害研究现状与展望.沈阳农业大学学报,31(5):393-401.
    8.陈芝兰,何建清,彭岳林,等.2005.施肥对作物根际微生物的影响.土壤肥料,2:35-37,41.
    9.程智慧,李玉红,孟焕文,等.2006.BTH诱导黄瓜幼苗对霜霉病的抗性与细胞壁HRGP和木质素含量的关系.中国农业科学,39(5):935-940.
    10.樊自红,沈瑞祥,周仲铭.1989.过氧化物酶和苯丙氨酸解氨酶与毛自杨抗锈性的关系.植物病理学报,19(2):95-99.
    11.冯芬芬,孙秀华,姜晶春,等.1995.玉米种质对茎腐病的抗性和抗病资源筛选研究.玉米科学,增刊:50-60.
    12.冯洁,陈其英,马存.1990.棉株内阿魏酸和绿原酸含量及其对枯萎病抗性的关系.棉花学报,2(2):81-86.
    13.高卫东,戴法超,林宏旭,等.1996.玉米茎腐(青枯)病的病理反应与优势病原菌演替的关系.植物病理学报,26(4):301-304.
    14.韩丽梅,鞠会艳,杨振明.2005.两种基因型大豆根分泌物对大豆根腐病菌的化感作用.应用生态学报,16(1):137-141.
    15.胡剑,王国英,张晓红,等.2000.玉米感染肿囊腐霉菌后几种酶活性和同工酶谱带的变化.农业生物技术学报,8(4):341-344.
    16.胡剑,王国英.2002.玉米感染肿囊腐霉后寄主—病原物互作的超微结构研究.植物病理学报,32(3):241-246.
    17.纪明山,陈捷,黄国坤,等.2000.玉米抗腐霉菌茎腐病的超微结构的研究.沈阳农业大学学报,31(5):482-486.
    18.纪明山.2001.玉米腐霉菌茎腐病抗性机制.研究植物病理学报,31(4):374-375.
    19.贾志红,孙敏,杨珍平,等.2004.施肥对作物根际微生物的影响.作物学报,30(5):491-495.
    20.蒋玉蓉,房卫平,祝水金,等.2005.陆地棉植株组织结构和生化代谢与黄萎病抗性的关系.作物学报,31(3):337-341.
    21.金继运,何萍.1999.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响.中国农业科学,32(4):55-62.
    22.晋齐鸣,潘顺法,姜晶春.1995.吉林省玉米茎腐病病原菌组成、分布及优势种研究.玉米科学,增:43-46.
    23.孔令晓,罗畔池,刘雪春.1998.玉米茎腐病原菌侵染及发病与玉米生育期的关系.河北农业大学学报,21(1):31-34.
    24.李保聚,李凤云.1998.黄瓜不同抗性品种感染黑星病菌后过氧化物酶和多酚氧化酶的变化.中国农业科学,31(1):86-88.
    25.李红,沙洪林,宋淑云,等.2004.应用足量钾肥和高效种衣剂防治玉米茎腐病的试验研究.吉林农业大学学报,26(4):360-362.
    26.李洪连,袁红霞,王烨,等.1999.根际微生物多样性与棉花品种对黄萎病抗性的关系研究Ⅱ:不同抗性品种根际真菌区系分析及其对棉花黄萎病菌的抑制作用.植物病理学报,29(3):242-246.
    27.李洪连,袁红霞,王烨,等.1998.根际微生物多样性与棉花品种对黄萎病抗性的关系研究Ⅰ:根际微生物数量与棉花品种对黄萎病抗性的关系.植物病理学报,28(4):341-345.
    28.李靖,利容千,袁文静.1991.黄瓜感染霜霉病菌叶片中一些酶活性的变化.植物病理学报,21(4):277-283.
    29.李静,夏建国.2005.氮磷钾与茶叶品质关系的研究综述.中国农学通报,21(1):62-65,75.
    30.李淼,檀根甲,李瑶,等.2005.猕猴桃品种中糖分及木质素含量与抗溃疡病的关系.植物保护学报,32(2):138-142.
    31.李荣花,陈捷,高增贵,等.2005.玉米纹枯病抗性与防御酶关系的研究.天津师范大学学报,25(4):32-36
    32.李淑菊,马德华,庞金安,等.2003.黄瓜感染黑星病菌后的生理变化及抗病性的产生.华北农学报,18(3):74-77.
    33.李亚玲,龙书生,郭军战,等.2003.玉米感染禾谷镰刀菌后PAL、POD活性和同工酶谱的变化.西北植物学报,23(11):1927-1931.
    34.夏正俊,顾本康,吴蔼民,等.1994.棉花品种抗黄萎病性与体内生化成分相关分析.植物保护学报,21(4):305-310.
    35.刘素萍,王汝贤,张荣,等.1998.根系分泌物中糖氨基酸对棉花枯萎菌的影响.西北农业大学学报,26(6):30-35.
    36.刘玉瑛,石洁,魏利民.2002.玉米苗期受镰刀菌侵染后几种防御酶活性的变化.河北农业科学,6(3):1-4.
    37.刘芷宇,李良谟,施卫明.1997.根际研究法.江苏省科学技术出版社.
    38.龙书生,李亚玲,段双科,等.2004.玉米苯丙烷类次生代谢与玉米对茎腐病抗性的关系.西北农林科技大学学报(自然科学版),32(9):93-96.
    39.龙书生,李亚玲,张宇宏,等.2003.玉米茎杆糖分含量与玉米对镰刀菌茎腐病抗性的关系.植物保护学报,30(1):111-112.
    40.骆桂芬,崔俊涛,张莉.1997.黄瓜叶片中糖和木质素含量与霜霉病诱导抗性的关系.植物病理学报,27(1):65-69.
    41.马秉元,李亚玲,龙书生,等.1991.陕西省玉米茎腐病综合防治措施研究及示范效果.植物保护学报,18(4):299-304.
    42.马瑞霞,冯怡,李萱.1998.厌氧条件下化感物质对枯草杆菌生长及反硝化作用的影响.化学生态学,2:187-193.
    43.毛爱军,王永健,冯兰香,等.2005.水杨酸诱导辣椒抗疫病生化机制的研究.中国农学通报,21(5):219-222,468.
    44.梅丽艳,郭梅,李志勇.2000.选择性植物营养制剂对玉米茎腐病影响的生物测定.黑龙江农业科学,5: 8-10.
    45.梅丽艳,郭梅,李志勇.2003.钾肥防治玉米青枯病应用技术初步研究.植保技术与推广,23(6):3-5.
    46.冉莹青,利容千,王建波.1997.辣椒感染疫霉菌后几种酶活性及同工酶谱带变化,植物病理学报,27(2):156.
    47.沙爱华,黄俊斌,林兴华,等.2004.水稻白叶枯病成株抗性与过氧化氢含量及几种酶活性变化的关系.植物病理学报,34(4):340-345.
    48.沈瑞清,张萍,白小军,等.2002.微量元素锰锌铜对小麦全蚀病菌抑制效果的室内测定.甘肃农业科技,12:36-37.
    49.施木田.1992.钾对作物抗病性的影响.土壤资源的特性与利用.第四届全国青年土壤科学工作者学术会议论文集,中国土壤学会工作委员会编.北京农业大学出版社,241-247.
    50.史瑞和.1989.植物营养原理.南京:江苏科技出版社.
    51.史振声,张喜华.1994.钾肥对甜玉米籽粒品质和茎杆含糖量的影响.玉米科学,2(1):76-80.
    52.宋凤鸣,郑重.1996.绿原酸和阿魏酸与棉花对枯萎病抗性的关系.浙江农业大学学报,22(3):236-240.
    53.宋佐衡,陈捷,成洪泉,等.1995.土壤因子对玉米茎腐病菌侵染的影响.植物病理学报,25(4):321-324.
    54.孙秀华,孙业杰,张春山.1993.玉米品系对茎腐病抗性鉴定方法研究.吉林农业科学,1:43-46.
    55.孙秀华,孙亚杰,张春山,等.1994.钾、硅肥对玉米茎腐病的防治效果及其理论依据.植物保护学报,21(2):102-102,108.
    56.唐湘如,官春云.2001.施钾对油菜酶活性的影响及其与产量品质的关系.中国农学通报,17(3):4-7.
    57.涂从,袁吕江.土壤钾营养状况对作物根际分泌物的效应研究,西南农业大学学报,1996,18(3):276-280.
    58.汪红,刘辉,袁红霞,等.棉花黄萎病不同抗性品种接菌前后体内酶活性及酚类物质含量的变化.华北农学报,2001,16(3):46-51.
    59.王敬国.微生物与根际中物质循环.北京农业大学学报,1993,19(4):98-105.
    60.王旭东,于振文,王东.2003a.钾对小麦茎和叶鞘碳水化合物含量及子粒淀粉积累的影响.植物营养与肥料学报9(1):57-62.
    61.王旭东,于振文,王东.2003b.钾对小麦旗叶蔗糖和籽粒淀粉积累的影响.植物生态学报,27(2):196-201.
    62.王雅平,吴兆苏,刘伊强.1994.小麦抗赤霉病性的生化研究及其机制的探讨.作物学报,20(3):327-333.
    63.王振华.1997.玉米茎腐病与品种抗性的研究进展.种子,4:41-45.
    64.魏胜林,秦煊南.1996.氮钾水平与多酚氧化酶活性对柠檬流胶病抗性的影响.西南农业大学学报,18(1):6-9.
    65.温瑞,黄梧芳,康绍兰,等.2000.玉米茎腐病研究进展.河北农业大学学报,23(1):53-56.
    66.温瑞,董金皋,王景合.1999.磷、钾、蔗糖对玉米茎腐病的田间防治效果.河北农业科技,3(3):26-27.
    67.吴纯仁.1988.玉米茎腐病(F.monilifome)侵染后茎秆组织诱导木质化的研究.湖北农业科学,2:15-16.
    68.吴纯仁,王拴茂.1989.玉米茎腐病与过氧化物酶活性及同工酶的关系.湖北农业科学,6:10-14.
    69.吴凤芝,孟立君,文景芝.2002.黄瓜根系分泌物对枯萎病菌菌丝生长的影响.中国蔬菜,5:26-27.
    70.吴全安.1989.北京和浙江地区玉米青枯病病原菌的分离与鉴定.中国农业科学,22(5):71-75.
    71.徐晶,陈婉华,孙瑞莲,等.2003.不同施肥处理对湖南红壤中微生物数量及酶活性的影响.土壤肥料,5:8-11.
    72.许光辉,郑洪元.1986.土壤微生物分析方法手册.北京:农业出版社.
    73.徐作珽.1988.玉米茎基腐病苗期抗性鉴定方法研究.山东农业科学,3:46-48.
    74.叶茂炳,徐朗莱,徐雍皋,等.1990.苯丙氨酸解氨酶和绿原酸与小麦抗赤霉病性的关系.南京农业大学学报,13(3):103-107.
    75.于振文,张炜,余松烈.1996.钾营养对冬小麦养分吸收分配、产量形成和品质的影响.22(4):442-447.
    76.袁飞,张春兰,沈其荣.2004.酚酸物质减轻黄瓜枯萎病的效果及其原因分析.中国农业科学,37,(4):545-551.
    77.袁虹霞,李洪连,王烨,等.2002.棉花不同抗性品种根系分泌物分析及其对黄萎病菌的影响.植物病理学报,32(2):127-131.
    78.袁庆华,桂枝.2003.苜蓿褐斑病抗性与几种同工酶的关系.草业学报,12(6):58-63.
    79.张超冲,李锦茂.1990.玉米镰刀菌茎腐病发生规律及防治试验.植物保护学报,17(3):257-261.
    80.黄满凤.1993.钾素营养与植物作物抗逆性.张福锁.环境胁迫与植物营养.北京:北京农业大学出版社,167-173.
    81.张庆平,刘中兴.1994.荞麦根系分泌物对小麦全蚀病菌的抑制及根基微生物种群数量观察.内蒙古农业科技,1:8-9.
    82.张淑香,高子勤,刘海玲.2000.连作障碍与根际微生态研究Ⅲ.土壤酚酸物质及其生物学效应.应用生态学报,11(5):741-744.
    83.张维强,唐秀芝.1993.同工酶与植物遗传育种.北京:北京农业大学版社.
    84.张志良,瞿伟.2003.植物生理学实验指导.北京:高等教育出版社.
    85.章永松,林成永,何念祖.1998.钾对棉籽成分与品质的影响.浙江农业大学学报,24(1):35-38.
    86.章元寿.1996.植物病理生理学.南京:江苏科技出版社.
    87.赵羹梅,张鹏宴,蒋小满.1996.过氧化物酶活性与玉米自交系对丝黑穗病抗性的关系.植物病理学报,26(1):37-39.
    88.郑炳松,蒋德安,翁晓燕,等.2001.钾营养对水稻剑叶光合作用关键酶活性的影响.浙江大学学报(农业与生命科学版)27(5):489-494.
    89.周冀衡,李卫芳,王丹丹,等.2000a.钾对病毒侵染后烟草叶片内源保护酶活性的影响.中国农业科学,33(6):98-100.
    90.周冀衡,程多福,王丹丹,等.2000b.钾素对花叶病毒侵染后烤烟叶片过氧化物酶活性的影响.烟草科技,8:45-48.
    91.朱海英,李人圭.1997.丝瓜果实发育中木质素代谢及有关导管分化的生理生化研究.华东师范大学学报(自然科学版),11:87-94.
    92.朱丽霞,章家恩,刘文高.2003.根系分泌物与根际微生物相互作用研究综述.生态环境,12(1):102-105.
    93.朱祝军,Sattelmacher B and Thoms K.1994.钾局部供应对玉米根系生长和钾吸收速率的影响.植物学报,36(5):358-363.
    94. Alabouvette C. 1986. Fusarium wilt suppressive soils from the chateaurenard region: review of a 10-year study. Agronomy, 6: 273-285.
    95. Alabouvette C, Hoper H, Lemanceau P, et al. 1996. Soil suppressiveness to disease induced by soilborne plant pathogens. In: Stotzky G, Bollag J M. Soil biochemistry. New York, USA: Marcel Dekker, 9: 37-413.
    96. Anterola A M and Lewis N G. 2002. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry, 61, 221-294.
    97. Assabgui R A, Reid L M and Hamilton R I. 1993. Correlation of kernel (E)-ferulic acid content of maize with resistance to Fusarium graminearum. Phytopathology, 83: 949-953.
    98. Bais H P, Weir T L, Perry L G, et al. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57: 233-266.
    99. Belay A, Claassens A S and Wehner F C. 2002. Effect of direct nitrogen and potassium and residual phosphorus fertilizers on soil chemical properties, microbial components and maize yield under long-term crop rotation. Biology and Fertility of Soils, 35: 420-427.
    100. Bell A A. 1981. Biohemial mechanisms of disease resistance. Annual Review of Plant Biology, 32:21-81.
    101. Berg B. 2000. Initial rates and limit values for decomposition of Scots pine and Norway spruce0needle litter: a synthesis for N-fertilized forest stands. Canadian Journal of Forest Research, 30:122-135.
    102. Bhaskar C V, Rao G R, Reddy K B. 2001. Effect of nitrogen and potassium nutrition on sheath rot incidence and phenol content in rice (Oryza sativa L.). Indian Journal of Plant Physiology, 16: 254-257.
    103. Bhaskara Reddy M V, Arul J, Angers P, Couture L. 1999. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. Journal of Agricultural and Food Chemistry 47:1208-1216
    104. Bily A C Reid L M, Taylor J H, et al. 2003. Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: Resistance factors to Fusarium graminearum. Phytopathology, 93: 712-719.
    105. Blum U. 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interaction. Journal of Chemical Ecology, 24: 685-708.
    106. Blum U, Shafer S. 1988. Microbial populations and phenolic acids in soil. Soil Biology and Biochemistry, 20: 793-800.
    107. Borges M F, Resende M L V, Vonpinho R G. 2001. Time of inoculation and inoculum concentration in relation to the expression of corn stalk resistance to Fusarium moniliforme. Fitopatologia Brasileira, 26:715-720.
    108. Bottalico A, Visconti A, Logrieco A, et al. 1985. Occurrence of zearalenols (diastereomeric mixture) in corn stalk rot and their production by associated fusarium species. Applied and Environmental Micribiology. 49: 547-551.
    109. Boudet A M, Kajita S, Grima-Pettenati J. 2003. Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends in Plant Science, 8: 576-581.
    110. Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
    111. Bullock D G, Gascho G J, Sumner. D R. 1990. Grain yield, stalk rot, and mineral concentration of fertigated corn as influenced by N, P, and K rate. Journal of Plant Nutrition, 13: 915-937.
    112. Burpee L L. 1990. The influnce of abiotic factors on biological control of soilborne plant pathogenic fungi. Canada Journal of Plant Pathology, 12, 308-317.
    113. Cahill D M, McComb J A. 1992. A comparison of changes in phenylalanine ammonialyase activity, lignin and phenolic synthesis in the root of Eucalyptus calophylla (field resistant) and E.marginata (susceptible) when infected with Phytophthora cinncmom. Physiological and Molecular Plant pathology, 40:315-332.
    114. Cakmark I. 2005. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168, 521-530.
    115. Campos A D, Ferreira A G, Hampe M M V, et al. 2004. Peroxidase and polyphenol oxidase activity in bean anthracnose resistance. Pesquisa Agropecuaria Brasileira, 39: 637-643.
    116. Chabannes M, Barakate A, Lapierre C, et al. 2001. Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. The Plant Journal, 28: 257-270.
    117. Chaboud A. 1983. Isolation, purification and chemical composition of maize root cap slime. Plant and Soil, 73: 395-402.
    118. Chandra S, Joshi H C, Pathak H, et al. 2002. Effect of potassium salts and distillery effluent on carbon mineralization in soil. Bioresource technology, 83: 255-257.
    119. Chen M and McClure J W. 2000. Altered lignin composition in phenylalanine ammonia lyase inhibited radish seedlings: implication for seed-derived sinopoyl esters as lignin precursors. Phytochemistry, 53: 365-370.
    120. Chen C Q, Belanger, R R, Benhamou N, et al. 2000. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiological and Molecular Plant Pathology, 56: 13-23.
    121. Chong J, Pierrel M A, Atanassova R, et al. 2001. Free and conjugated benzoic acid in tobacco plants and cellcultures. Induced accumulation upon elicitationof defense responses and role as salicylic acid precursors. Plant Physiology, 125: 318-328.
    122. Cook J W, Kettlewell P S, Parry D W. 1993. Control of Erysiphe graminis and septoria tritici on wheat with foliar-applicated potassium chloride. Journal of the Science of Food and Agriculture, 63:126.
    123. Craig J, Hooker A L. 1961. Relation of sugar trends and pith density to Diplodia stalk rot in dent corn. Phytopathology, 51 : 376-382.
    124. Cui Y X, Bell A A, Joost O, et al. 2000. Expression of potential defense response genes in cotton. Physiological and Molecular Plant Pathology, 56:25-31.
    125. Das S, Aggarwal R and Singh D V. 2003. Differential induction of defense related enzymes involved in lignin biosynthesis in wheat in response to spot blotch infection. Indian Phytopathology, 56: 129-133.
    126. De Ascensao A R F D C, Dubery I A. 2003. Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporumf.sp, cubense. Phytochemistry, 63: 679-686.
    127. Del Rio J A, Baidez A G, Botia JM. 2003. Enhancement of phenolic compounds in olive plants (Olea europaea L.) and their influence on resistance against Phytophthora sp. Food chemistry, 83: 75-78.
    128. Dicko M H, Gruppen H, Barro C,et al. 2005. Impact of Phenolic Compounds and Related Enzymes in Sorghum Varieties for Resistance and Susceptibility to Biotic and Abiotic Stresses. Journal of Chemical Ecology, 31: 2671-2688.
    129. Dixon R A and Paiva N L. 1995. Stress-Induced phenylpropanoid metabolism. The Plant Cell, 7: 1085-1097.
    130. Dodd J L. 1980. Grain sink size and predisposition to Zea mays to stalk rot. Phytopathology, 70: 534-535.
    131. Dodd J L. 1977. A photosynthetic stress-translocation balance concept of corn stalk rots. Proc. 32nd Annual Corn and Sorghum Research Conference, 32: 122-130.
    132. Dutta B K and Isaac I. 1979. Effects of inorganic amendments (N, P and K) to soil on the rhizosphere microflora of antirrhinum plants infected with Verticillium dahliaekleb. Plant and Soil, 52: 561-569.
    133. Duzan H M, Mabood F, Zhou X, et al. 2005. Nod factor induces soybean resistance to powdery mildew. Plant Physiology and Biochemistry, 43: 1022-1030.
    134. Elmer W H. 1990. Effect of NaCl on carbohydrates and malate production in asparagus roots and on infection by Fusarium. Phytopathology, 80:1025.
    135. Elmer W H. 1997. Influence of chloride and nitrogen form on Rhizoctonia root and crown rot of table beets. Plant Disease, 81: 635-640.
    136. Elmer W H. 2002. Influence of formononetin and sodium chloride on mycorrhizae and Fusarium crown and root rot of asparagus. Plant Disease, 86:1318-1324.
    137. Elmer W H. 2003. Local and systemic Effects of NaCl on Root Composition, Rhizobacteria, and Fusarium Crown and Root Rot of Asparagus. Phytopathology, 93: 186-192.
    138. Elsas J D, Garbeva P and Salles J. 2002. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation, 13: 29-40.
    139. Engel RE, Eckhoff J, Berg R K. 1994. Grain yield, kernel weight, and disease response of winter wheat cultivars to chloride fertilization. Agronomy Journal, 86: 891-896.
    140. Farrar J F. 1989. Fluxes and turnover of sucrose and fructans in healthy and diseased plants. Journal of Plant Physiology, 134: 137-140.
    141. Filippi M C and Prabhu A S. 1998. Relationship between panicle blast severity and mineral nutrient content of plant tissue in upland rice. Journal of Plant Nutrition, 21:1577-1587.
    142. Fixen P E. 1993. Crop response to chloride. Advances in Agronomy, 50: 107-150.
    143. Franke R, Hemm M R, Denault J W, et al. 2002. Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. The Plant Journal, 30: 47-59.
    144. Gandon C, Bruneteau M, Bruneteau P, et al. 1998. Fungal extracellular polysaccharides and glycoproteins-elicitors of phytoalexin synthesis in carnation. Recent Research Developments in Phytochemistry, 2:73-81.
    145. Gaudet D A, Laroche A, Frick M, et al. 2003. Plant development affects the cold-induced expression of plant defence-related transcripts in winter wheat. Physiological and Molecular Plant Pathology, 62: 175-180.
    146. Gawande V L, Patil JV, Naik P M, et al. 2002. Plant biochemical defense against powdery mildew (Erysiphe polygoni D C) disease in mungbean (Vigna radiate (L.)Wilczek). Journal of plant Biology, 29: 337-341.
    147. Geetha N P, Amruthesh K N, Sharathchandra R G et al. 2005. Resistance to downy mildew in pearl millet is associated with increased phenylalanine ammonia lyase activity. Functional Plant Biology, 32: 267-275.
    148. George T S, Gregory P J, Wood M, et al. 2002. Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize. Soil Biology and Biochemistry, 34: 1487-1494.
    149. Gofner D, Joffro I, Grima PJ, el at. 1992. Purification a rid Characterization of isoforms of cinnamyt alcohol denydroganase from Eucalyptus xylem. Planta, 188: 48-53.
    150. Gogoi R, Singh D V and Srivastava K D. 2001. Phenols as a biochemical basis of resistance in wheat against kernel bunt. Plant Pathology, 50: 470-476.
    151. Goos R J, Johnson B E and Holmes B M. 1987. Effect of potassium chloride fertilization on two barley cultivars differing in common root rot reaction. Canada Journal of Plant Science, 67: 395-401.
    152. Goujon T, Sibout R, Eudes A, et al. 2003. Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiology and Biochemistry, 41: 677-687.
    153. Halpin C, Holt K, Chojecki J, et al. 1998. Brown-midrib maize (bm1)-a mutation affecting the cinnamyl alcohol dehydrogenase gene. The Plant Journal, 14: 545-553.
    154. Handelsman J and Stabb E V. 1996. Biocontrol of soilborne plant pathogens. The Plant Cell, 8:1855-1869.
    155. Heckman J R. 1998. Corn stalk rot suppression and grain yield response to chloride. Journal of Plant Nutrition, 21: 149-155.
    156. Higgins C, Brinkhaus F. 1999. Efficacy of several organic acids against molds. Journal of Applied Poultry Research, 8: 480-487.
    157. Hoper H, Alabouvette C. 1996. Importance of physical and chemical soil properties in the suppressiveness of soils to plant disease. European Journal of Soil Biology, 32: 41-58.
    158. Howard D D, Chambers A Y, Newman M A. 1999. Reducing sudden death syndrome in soybean by amending the soil with chloride. Communications in Soil Science and Plant Analysis, 30: 545-555.
    159. Howard D D, Chambers A Y, Brawley P W. 1992. Fertilization effects on soybean sudden death syndrome. Better Crops, 77: 14-15.
    160. Huber D M. 1989. The role of nutrition in the take-all disease of wheat and other small grains. In: Engelhard A W, eds. Soilborne Plant Pathogens: Management of diseases with macro- and microelements. APS Press, Minnesota, USA, 46-74.
    161. Ivanov S, Miteva L, Alexieva V, et al. 2005. Alterations in some oxidative parameters in susceptible and resistant wheat plants infected with Puccinia recondita f.sp, tritici. Jounal of Plant Physiology, 162: 275-279.
    162. Jones D L. 1998. Organic acids in the rhizosphere-a critical review. Plant and Soil, 205: 25-44.
    163. KadarI, Gulyas F, Gaspar L, et al. 2000. Mineral nutrition of maize (Zae mays.L)on chernozem soil I. Novenytermeles, 49:371-388.
    164. Kandan A, Commare R R, Nandakumar R, et al. 2002. Induction of phenylpropanoid metabolism by Pseudomonas fluorescens against tomato spotted wilt virus in tomato. Folia Microbiologica, 47:121-129.
    165. Kang, Z and Buchenauer H. 2000. Ultrastructural and immunocytochemical investigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum. Physiological and Molecular Plant Pathology, 57:255-268.
    166. Karamanos R E, Harapiak J T, Flore N A. 2003. Application of seed-row potash to barley (Hordeum vulgare L.) grown on soils with high "available" potassium levels. Canadian Journal of Plant Science, 83:291-303.
    167. Keiko Y, Hiroshi I, Noriyuki U, et al. 2005. Organic acids and water-soluble phenolics produced by Paxillus sp 60/92 together show antifungal activity against Pythium vexans under acidic culture conditions, Mycorrhiza, 15: 17-23.
    168. Kettlewell P S, Bayley G L and Domleo R L. 1990. Evaluation of late-season foliar application of potassium chloride for disease control in winter wheat. Journal of Fertilizer Issue, 7:17-23.
    169. Kettlewell P S, Blouin P and Boulby G L. 1992. Evaluation of potassium chloride solution against leaf diseases in barley. Annal Appield Biology, 120: 18-19.
    170. Kettlewell P S, Cook J W and Parry D W. 2000. Evidence for an osmotic mechanism in the control of power mildew disease of wheat by foliar-applicated potassium chloride. European Journal of Plant Pathology, 106: 297-300.
    171. Knudsen I M B, Debosz K, Hockenhull J, et al. 1999. Suppressiveness of organically and conventionally managed soils towards brown foot rot barley. Applied Soil Ecology, 12: 61-72.
    172. Koch K E. 1996. Carbohydrate modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular, 47: 509-540.
    173. Koening R T and Pan W L. 1996. Chloride enhancement of wheat responses to ammonium nutrition. Soil Science Society of America Journal. 60: 468-505.
    174. Kofalvi S A and Nassuth A. 1995. Influences of wheat streak mosaic virus infection on phenylpropanoid metabolism and the accumulation of phenolics and lignin in wheat. Physiological and Molecular Plant Pathology, 47: 365-377.
    175. Kraffczyk I, Trolldenier G and Beringen H. 1984. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biology and Biochemistry, 16: 315-322.
    176. Krishnamurti G S R and Huang P M. 1992. Dynamics of potassium chloride-induced mangnase release in different soil orders. Soil Science Siciety of America Journal, 56:1115-1123.
    177. Larkin R P and Fravel D R. 2002. Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology, 92:1160-1166.
    178. Larkin R P, Hopkins D L, Martin F N. 1996. Suppression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology, 86: 812-819.
    179. Ledencan T, Simic D, Brkic I, et al. 2003. Resistance of maize inbreds and their hybrids to Fusarium stalk rot. Czech Journal of Genetics and Plant breeding, 39: 15-20.
    180. Leser C and Treutter D. 2005. Effects of nitrogen supply on growth, contents of phenolic compound sand pathogen (scab) resistance of apple trees. Physiologia Plantarum, 123: 49-56.
    181. Li, L and Steffens J C. 2002. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 215: 239-247.
    182. Liljeroth E, Van Veen J A and Miller H J. 1990. Assimilate translocation to the rhizosphere of two wheat lines and subsequent utilization by rhizosphere microorganisms at two soil nitrogen concentrations. Soil Biology and Biochemistry, 22: 1015-1021.
    183. Lockwood J L. Relation of energy stress to behaviour of soilborne plant pathogens and to disease development. In: Hornby D. Biological Control of Soil-borne Pathogens. CAB International, Wallingford, England, U.K. 1990. 197-214.
    184. Lozovaya V V, Lygin A V, Li S, et al. 2004. Biochemical response of soybean roots to Fusarium solani f,sp. glycines infection. Crop Science, 44: 819-826.
    185. Malusa E, Russo M A, Mozzetti C. 2006. Modification of secondary metabolism and flavonoid biosynthesis under phosphate deficiency in bean roots. Journal of Plant Nutrition, 29: 245-258.
    186. Mann R L, Kettlewell, P S, Jenkinson P. 2004. Effect of foliar- applied potassium chloride on septoria leaf blotch of winter wheat. Plant pathology, 53, 653-659.
    187. Marschner P, Crowley D and Yang C H. 2004. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil, 261: 199-208.
    188. Martinez C, Bu'ee M, Janneau A, et al. 2001. Effects of a fraction from maize root exudates on haploid strains of Sporisorium reilianum f. sp. Zeae. Plant and Soil, 236: 145-153.
    189. Matern U, Grimmig B and Kneusel RE. 1995. Plant cell wall reinforcement in the disease-resistance response: molecular composition and regulation. Canadian Journal of Botany, 73: 511-517.
    190. Mauch-Mani B and Slusarenko A J. 1996. Production of salicylic acid Precursors is a major function of phenylalanine ammonia-lyase in the resistance of arabidopsis to peronospora parasitica. The Plant Cell, 8: 203-212.
    191. Mayr U, Michalek S and Treutter D. 1997. Phenoliccompounds of apple and their relationship to scab resistance. Journal of Phytopathology, 145: 69-75.
    192. Mazzolalt M and Cook R J. 1991. Effects of fungal root pathogens on the population dynamics of biocontrol strains of fluorescent pseudomonades in the wheat rhizosphere. Applied and Environmental Microbiology, 57: 2171-2178.
    193. McKeehen J D, Busch RH and Fulcher R G. 1999. Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to fusarium resistance. Journal of Agricultural and Food Chemistry, 47: 1476-1482.
    194. McNabnay M, Dean B B and Bajema R W. 1999. The effect of potassium deficiency on chemical, biochemical and physical factors commonly associated with black spot development in potato tubers. American Journal of Potato Research, 76:53-60.
    195. Mcspadden Gardener B B and Weller D M. 2001. Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Applied and Environmental Microbiology, 67: 4414-4425.
    196. Melgar J C, Abney T S and Vierling R A. 2006. Peroxidase activity in soybeans following inoculation with Phytophthora sojae. Mycopathologia, 161:37-42.
    197. Melo G A, Shimizu M M and Mazzafera P. 2006. Polyphenoloxidase activity in coffee leaves and its role in resistance against the coffee leaf miner and coffee leaf rust. Phytochemistry, 67: 277-285.
    198. Mitchell A L and Walters D R. 2004. Potassium phosphate induces systemic protection in barley to powdery mildew infection. Pest Management Science, 60:126-134.
    199. Mitchell J L, Hall J L and Barber M S. 1994. Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat leaves. Plant Physiology, 104, 551-556.
    200. Modafar C E and Boustani E E. 2001. Cell wall-bound phenolic acid and lignin contents in date palm as related to its resistance to Fusarium oxysporum. Biologia Plantarum, 44(1): 125-130.
    201. Moerschbacher B M, Flott B E, Noll U, et al. 1989. On the speceficity of an elicitor preparation from stem rust which induces lignification in wheat leaves. Plant Physiology and Biochemistry, 27:305-314.
    202. Moerschbacher B M, Noll U, Gorrichon L, et al. 1990. Specific inhibition of lignification breaks hypersensitive resistance of wheat to stem rust. Plant Physiology, 93: 465-470.
    203. Moersohbacher B M, Noll U M, Flott B E, et al. 1988. Lignin biosynthetic enzyme in stem rust infected resistant and susceptible near-isoenic wheat lines. Physiological and Molecular Plant Pathology, 33: 33-46.
    204. Mohammadi, M, Kazemi, H. 2002. Changes in peroxidase and polyphenol activity in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science, 162:491-49.
    205. Morkunas I, Marczak L, Stachowiak J, et al. 2005. Sucrose-induced lupine defense against Fusarium oxysporum. Sucrose-stimulated accumulation of isoflavonoids as a defense response of lupine to Fusariurn oxysporurn. Plant Physiology and Biochemistry, 43: 363-373.
    206. Muhammad I, Adams M A and Islam M. 1999. Mineral content and nutritive value of native grasses and the response to added phosphorus in a Pilbara rangeland. Tropical Grasslands, 33:193-200.
    207. Muller M, Sierotzki H and Gessler C. 1994. Are phenolics and enzymeinhibitors involved in resistance of apple against Venturia inaequalisIn: Norwegian Journal of Agricultural Science (Integrated Control of PomeFruit Diseases), 17: 395-398.
    208. Munkvold, G P, McGee D C and Carlton W M. 1997. Importance of different pathways for maize kernel infection by Fusarium moniliforme. Phytopathology, 87: 209-217.
    209. Munkvold G. 2002.Corn ear molds and mycotoxins. Integrated crop management, published by the Department of Entomology, Iowa State University, Ames, Iowa. Oct. 21. http://www.ent.iastate.edu.
    210. Munkvold G P. 2003.Epidemiology of Fusarium diseases and their mycotoxins in maize ears. European Journal of Plant Pathology, 109:705-713.
    211. Nardi S, Concheri G, Pizzeghello D, et al. 2000. Soil organic matter mobilization by root exudates. Chemosphere, 41:653-658
    212. Neumann G and Romheld V. 2000. The release of root exudates as affected by the plant physiological status. In: Pinton R, Varani Z, Nannipieri P. The Rhizosphere: Biochemistry and organic substances at the soil-plant interface. New York, Basel: Marcel Dekker, p41-93.
    213. Nicholson R L, Hammerschmidt R. 1992. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30: 369-389.
    214. Orober M, Siegrist J and Buchenauer H. 2002. Mechanism of phosphate-induced disease resistance in cucumber. European Journal of Plant Pathology, 108:345-353.
    215. Osaki.M, Shinano T and Tadano T. 1993. Effect of nitrogen, phosphorous, or potassium deficiency on the accumulation of ribulose-1, 5-bisphosphate carboxlase/oxygenase and chlorophyll in several field crops. Soil Science and Plant Nutrition, 39: 417-425.
    216. Oyarzun P J, Gerlagh M and Zadoks J C. 1998. Factors associated with soil receptivity to some fungal root rot pathogens of peas. Applied Soil Ecology, 10:151-169.
    217. Park S, Takano Y, Matsuura H, et al. 2004. Antifungal compounds from the root and root exudate of Zea mays. Bioscience, Biotechnology, and Biochemistry, 68:1366-1368.
    218. Perrenoud S. 1990. Potassium and Plant Health. International Potash Institute. Basel, Switzerland.
    219. Petkovsk M M, Usenik V and Stampar F. 2003. The role of chlorogenic acid in the resistance of apples to apple scab (Venturia inaequalis (Cooke) G. Wind. Aderh.). Zbornik Biotehniske fakultete Univerze v Ljubljani. Kmetijstvo, 81: 233-242.
    220. Pettigrewa W. 1999. Potassium deficiency increases specific leaf weights and leaf glucose levels in field-grown cotton. Agronomy Journal, 91: 962-968.
    221. Quirino B F, Reiter W D and Amasino R D. 2001. One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence associated. Plant Molecular Biology 46: 447-457.
    222. Rakshit S, Mishra S K, Dasgupta S K, et al. 1999. Differential induction of chitinase in powdery mildewresistant and susceptible lines of pea (Pisum sativum L.) in response to powdery mildew infection. Annals of Agricultural Research, 20: 103-108.
    223. Ramanathan A, Vidhasekaran P and Samiyappan R. 2000. Induction of defense mechanisms in greengram leaves and suspension cultured ceils by Macrophomina phaseolina and its elicitors. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 107: 245-257.
    224. Ramputh A, Teshome A, Bergvinson D J, et al. 1999. Soluble phenolic content as an indicator of sorghum grain resistance to Sitophilus oryzae (Coleoptera: Curculionidae). Journal of Stored Products Research, 35: 57-64.
    225. Rat-Morris E, Amiot M J, Tacchini M, et al. 1996. Phenolic composition of apple leaves, prior to infestation, associated with the resistance of the apple In: Vercauteren J, Cheze C, Dumon M, et al. Polyphenols Communications.18th international conference on polyphenols. Bordeaux, Secretariat du Groupe Polyphenols, 355-356.
    226. Reid, L M, Spaner D, Mather D E, et al. 1993. Resistance of maize hybrids and inbreds following silk inoculation with three isolates of Fusarium graminearum. Plant Disease, 77:1248-1251.
    227. Rengel D, Graham R and Pedler J. 1994. Time course of biosynthesis of phenolics and lignin in roots of wheat genotypes differing in manganese efficiency and resistance to take-all fungus. Annals of Botany, 74: 471-477.
    228. Rengel Z, Graham R D and Pedler J F. 1994. Time-course of biosynthesis of phenolics and lignin in roots of wheat genotypes differing in manganese efficiency and resistance to take-all fungus. Annals of Botany, 74: 471-477.
    229. Reuveni M and Reuveni R. 1995. Efficacy of foliar sprays of phosphates in controlling powdery mildew in field-grown nectarine, mango trees and grapevines. Plant Protection, 14:311-314.
    230. Reuveni M and Reuveni R. 1998. Foliar applications of mono-potassium phosphate fertilizer inhibit powdery mildew development in nectarine trees. Canada Journal of Pathology, 20: 253-258.
    231. Reuveni M, Agapov V and Reuveni R. 1995. Induced systemic protection to powdery mildew in cucumber by phosphate and potassium fertilizers: effects of inoculum concentration and post-inoculation treatment. Canada Journal of Pathology, 17:247-251.
    232. Reuveni M, Agapov V and Reuveni R. 1995. Suppression of cucumber powdery mildew (Sphaerotheca fuliginea) by foliar sprays of phosphate and potassium salts. Plant Pathology, 44:31-39.
    233. Reuveni M, Agapov V and Reuveni R. 1996. Controlling powdery mildew caused Sphaerotheca fuliginea in cucumber by foliar sprays of phosphate and potassium salts. Crop Protection, 15: 49-53.
    234. Reuveni M, Harpaz M and Reuveni R. 1988. Integrated control of powdery mildew on field-grown mango trees by foliar sprays of mono-potassium phosphate fertilizer, sterol inhibitor fungicides and the strobilurin Kreoxym-methyl. European Journal of Plant Pathology, 104: 853-860.
    235. Reuveni M, Oppenheim D and Reuveni R. 1988. Integrated control of powdery mildew in apple trees by monopotassium phosphate fertilizer and sterol inhibitor fungicides. Crop Protection, 17: 563-568.
    236. Reuveni R and Reuveni M. 1998. Foliar fertilizer therapy-a concept in integrated pest management. Crop Protection, 17:111-118.
    237. Reuveni R, Dor G and Reuveni M. 1998. Local and systemic control of powdery mildew (Levillula taurica) on pepper plants by foliar spray of mono-potassium phosphate. Crop Protection, 17: 703-709.
    238. Reuveni R, Dor Y, Raviv M, et al. 2000. Systemic protection against Sphaerotheca fuliginea in cucumber plants exposed to phosphate through hydroponic systems and its control by foliar spray of mono-potassium phosphate fertilizer. Crop Protection, 19: 355-361.
    239. Reuveni R, Reuveni M and Agapov V. 1996. Foliar sprays of NPK fertilizers induce systemic protection against Puccinia sorghi and Exserohilum turcicum and growth enhancement in maize. European Journal of Plant Pathology, 102: 339-348.
    240. Rice-Evans C A, Miller N J and Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends in Plant Science, 2: 152-159.
    241. Rolland F, Moore B and Sheen J. 2002. Sugar sensing and signaling in plants. The Plant Cell, 14: 185-205.
    242. Rosler J, Krekel F, Amrhein N, et al. 1997. Maize phenylalanine ammonia-lyase has tyrosine ammonia lyase Activity. Plant Physiology, 113: 175-179.
    243. Ruan J, Wu X and Hardter R. 1999. Effects of potassium and magnesium nutrition on quality components of different types of tea. Journal of the Science of Food and Agriculture, 79: 47-52.
    244. Ruiz J M, Garcia P C and Rivero R M. 1999. Response of phenolic metabolism to the application of carbendazim plus boron in tobacco. Physiologia Plantarum, 106:151-157.
    245. Rupe J C, Widick J D, Sabbe W E, et al. 2000. Effect of chloride and soybean cultivar on yield and the development of sudden death syndrome, soybean cyst nematode, and southern blight. Plant Disease, 84: 669-674.
    246. Sanjay K, Rana N S, Saini S K, et al. 2002. Effect of phosphorus and potassium application on growth, yield and quality of sugarcane. Indian Journal of Sugarcane Technology, 17:41-42.
    247. Sanogo S and Yang X B. 2001. Relation of sand content, pH, and potassium and phosphorus nutrition to the development of sudden death syndrome in soybean. Canada Journal of Plant Pathology, 23: 174-180.
    248. Sarniguet A, Lucas P and Lucas M. 1992a. Relation between take-all, Soil conduciveness to the disease, populations of fluorescent pseudomonads and nitrogen fertilizers. Plant and Soil, 145:17-28.
    249. Sarniguet A, Lucas P and Lucas M. 1992b. Soil conduciveness to take-all of wheat: influence of nitrogen fertilizers on the structure of populations of fluorescent pseudomonads. Plant and Soil, 145: 29-36.
    250. Scher F M and Baker R. 1982. Effect of pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium Wilt pathogens. Phytopathology, 72: 1567-1573.
    251. Shafer S R and Blum U. 1991. Influence of Phenolic acids on microbial populations in the rhizosphere of cucumber Journal of Chemical Ecology, 17: 369-389.
    252. Sharama S R, Kolte S J. 1994. Effect of soil-applied NPK fertilizers on severity of black spot disease (Alternaria brassicae) and yield of oilseed rape. Plant and Soil, 167:313-320.
    253. Shiraishi T, Yamaoka N, Kunoh H. 1989. Association between increased phenylalanine ammonia-lyase activity and cinnamic synthesis and the induction of temporary inaccessibility caused by Erysiphe graminis primary germ tube penetration of the barley leaf. Physiological and Molecular Plant Pathology, 34: 75-83.
    254. Siddiqui I A and Shaukat S S. 2002. Phenol-mediated suppression of soil-borne root-infecting fungi in mungbean. Phytopathologia Mediterranea, 41: 1-6.
    255. Singh U P, Bahadur A, Singh D P, et al. 2003. Non-pathogenic powdery mildews induce resistance in pea (Pisum sativum) against Erysiphe pisi. Journal of Phytopathology, 151:419-424.
    256. Siranidou E, Kang Z and Buckenauer H. 2002. Studies on symptom development, phenolic compounds and morphological defence responses in wheat cultivars differing in resistance to fusarium head blight. Journal of Phytopathology, 150: 200-208.
    257. Terry L A, Joyce D C and Adikaram N K B. 2004. Preformed antifungal compounds in strawberry fruit and flower tissues. Postharvest Biology and Technology, 31: 201-212.
    258. Thipyapong P, Hunt M D and Steffens J C. 2004. Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta, 220:105-117.
    259. Thipyapong P, Joel D M and Stefens J C. 1997. Differential expression turnover of the tomato polyphenol oxidase gene family during vegetative and reproducive development Plant physiology, 113: 707-718.
    260. Tinline R D, Ukrainetz H and Spurr D T. 1993. Effect of fertilizers and of liming acid soils on common root rot in whear and chloride on the disease in wheat and barley. Canada Journal of Pathology, 15: 65-73.
    261. Trivedi M, Tiwari R K and Dhawan O P. 2006. Genetic parameters and correlations of collar rot resistance with important biochemical and yield traits in opium poppy (Papaver somniferum L.). Journal of applied genetics, 47(1): 29-38.
    262. Turner S M, Newman E I and Camlpbell R. 1985. Microbial population of ryegrass root surfaces: influence of nitrogen and phosphorus supply. Soil Biology and Biochemistry, 17:711-715.
    263. Turtola S, Manninen A M, Holopainen J K, et al. 2002. Secondary metabolite concentrations and terpene emissions of Scots pine xylem after long-term forest fertilization. Journal of Environmental Quality, 31: 1694-1701.
    264. Vance C P, Kirk T K and Sherwood R T. 1980. Lignification as a mechanism of disease resistance. Annual Review of Phytopathology, 18: 259-288.
    265. Walker T S, Bais H P and Grotewold E. 2003. Root exudation and rhizosphere biology, Plant Physiology, 132: 44-51.
    266. Warren J M, Allen H L and Booker F L. 1999. Mineral nutrition, resin flow and phloem phytochemistry in loblolly pine. Tree Physiology, 19: 655-663.
    267. Way H M, Kazan K, Mitter N, et al. 2002. Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiological and Molecular Plant Pathology, 60: 275-282.
    268. Weller D M and Cook R J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology, 73: 463-469.
    269. White P J, Broadley M R. 2001. Chloride in soils and its uptake and movement within the plant. Annals of Botany, 88: 967-988.
    270. Widstrom N W, Carr M E, Bagby M O, et al. 1988. Distribution of sugar and soluble solids in the maize stalk. Crop Science, 28: 861-863.
    271. Williams J and Smith S G. 2001. Correcting potassium deficiency can reduce rice stem diseases. Better Crops. 85: 7-9.
    272. Wurms K V, George M P and Lauren D R. 2005. Involvement of phenolic compounds in host resistance against Botrytis cinerea leaves of the two commercially important kiwifruit (Actinidia chinensis and A. deliciosa) cultivars. New Zealand Journal of Crop and Horticultural Science, 31:221-233.
    273. Wyrambik D and Grisebach H.1975. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell suspension cultures. Europen Journal of Biochemistry.59: 9-15.
    274. Yamada S, Osaki M, Shinano T, et al. 2002. Effect of potassium nutrition on current photosynthesized carbon distribution to carbon and nitrogen compounds among rice, soybean, and sunflower. Journal of Plant Nutrition, 25: 1957-1973.
    275. Yang D E, Zhang C L, Zhang D S, et al. 2004a. Genetic analysis and molecular mapping of maize (Zea mays L.) stalk rot resistant gene Rfg1. Theoretical and Applied Genetics, 108:706-711.
    276. Yang X E, Liu J X, Wang W M, et al. 2004b. Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes. Journal of Plant Nutrition, 27: 837-852.
    277. Yoshida S, Ito M, Nishida I, et al. 2002. Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defense responses in Arabidopsis thaliana. The Plant Journal, 29: 427-437.
    278. Yurina T P, Yurina E V, Karavaev V A, et al. 1997. Effect of mineral nutrition on wheat resistance to powdery mildew. The Russian Journal of Plant Physiology, 44: 64-67.
    279. Zhao D L, Oosterhuis D M and Bednarz C W. 2001. Influence of potassium deficiency on photosynthesis chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, 39:103-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700