用户名: 密码: 验证码:
光线散射效果的真实感建模与绘制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光线散射效果的真实感模拟一直是计算机图形学研究的热点和难点之一。它在计算机动画、电脑游戏、影视特技、文化宗教、军事仿真、建筑景观设计、休闲旅游、虚拟现实等领域都有非常广泛的应用。本文主要研究雨雾天气的光线散射效果,均匀介质和双层介质的点光源光线散射效果和多光谱光线散射效果。
     本文第一章介绍了光线散射效果真实感模拟的意义及发展历程;并介绍了云、水体等不同介质对光线的散射效果以及点光源光线散射的建模及绘制技术;简述了本文的主要研究内容。
     雨雾场景是一种常见的自然现象,本文第二章提出一种雨雾天气下天空光的光照模型。基于不同降雨量天空中雨雾粒子的分布,模拟了不同时刻、不同光源下的光线散射效果,通过对雨雾天气下光线散射公式的简化,首次实现了雨雾场景中光线散射效果的实时绘制。
     点光源光线散射的研究历来是一个热点。本文第三章通过对传统点光源单散射模型公式的解析简化,实现了复杂的各向异性光源单散射效果的实时计算。基本解决了均匀介质中点光源的光线散射效果实时绘制这一难点。提出了一种多项式近似的方法,实现了双层介质中点光源光线散射效果的实时绘制。
     多光谱光线散射导致各种美丽的光线散射效果。本文第四章通过对彩虹和沙尘暴成因的分析、光学散射特性的研究,表现出不同雨量后的彩虹效果,仿真出各种沙尘天气状况下的光线散射效果。彩虹的绘制效果有较大的改善,并为沙尘天的真实感仿真奠定了基础。
     在论文的最后,作者对全文的研究工作进行了总结,并提出了进一步的研究方向和任务。
Simulation of ray scattering effect has been a hotspot and one of the most difficult tasks in Compute Graphics. It has been found wide application in many domains such as computer animation, computer games, special effects of movie, culture, religion, battlefield simulation, landscaping, architecture, virtual reality, etc. We will study ray scattering effect under the conditions of rain and fog,point light source ray scattering effect in homogeneous and double-layer participating media and multi-spectrum ray scattering effect.
     In chapter one,we introduce the significance and development of the simulation of ray scattering effect. Then we present different kinds of modeling and rendering techniques for those ray scattering effects such as the modeling and rendering of cloud, water, point light source and so on. The main research works of this paper are present at last.
     Rain and fog scene is a normal phenomenon. In chapter two, we propose a model of skylight under rainy and foggy circumstances. Based on properties of particles in different rain intensity, we simulate different ray scattering effect with different time, luminous intensity, simplify the equation of ray scattering effect under the conditions of rain and fog and realize the realistic rain and fog scenes in real time.
     Ray scattering effect of point light source has been a hotspot. In chapter three, through analyzing the conventional equations of single scattering of point light source, we implement real-time rendering of scattering effect due to non-isotropic light source, achieving efficient renderings of ray scattering effect of point light source for real-time applications. We also propose a polynomial approximate method, render the light scattering effect in double-layer participating media in real-time.
     Multi-spectrum ray scattering effect can simulate different atmospheric optical phenomena. In chapter four, by studying cause of rainbow and sandstorm and property of scattering, we realize different rainbow effects after different rain intensity and ray scattering effect in sandstorm.
     At the end of the dissertation, the author sums up all research in this paper, and gives the direction of following research.
引文
[1] Blinn J F. Light reflection functions for simulation of clouds and dusty surfaces. Computer Graphics, 1982, 16(3): 21-29
    [2] Kajiya J, Herzen B. Ray tracing volume densities. Computer Graphics, 1984, 18(3): 165-174
    [3] Max N L. Atmospheric illumination and shadows. Computer Graphics, 1986, 20(4): 117-124
    [4] Nishita T, Nakamae E. A shading model for atmosphere scattering considering luminous intensity distribution of light sources. Computer Graphics, 1987, 21(3): 303-310
    [5] Kaneda K, Okamoto T, Nakamae E, et a1. Photorealistic image synthesis for outdoor scenery under various atmospheric condition. The Visual Computer, 1991, 7(5): 247-258
    [6] Nishita T, Shirai T, Tadamura K, et al. Display of the earth taking into account atmospheric scattering. Computer Graphics, 1993, 27(4): 175-182
    [7] Nishita T, Nakamae E. Method of displaying optical effects within water using accumulation-buffer. In: Proceedings of SIGGRAPH'94. Orlando, 1994, 373-380
    [8] Jackèl D, Walter B. Modeling and rendering of the atmosphere using mie-scattering. Computer Graphics Forum, 1997, 16(4): 201-210
    [9] Dobashi Y, Kaneda K, Yamashita H, et al. A simple, efficient method for realistic animation of clouds. In: Proceedings of SIGGRAPH'00. New York, 2000, 19-28
    [10] 刘世光, 王章野, 宫正, 等. 宝光现象的真实感建模及绘制.自然科学进展, 2006, 16(9): 1153-1159
    [11] Dobashi Y, Yamamoto T, Nishita T. Interactive rendering method for displaying shafts of light. In: Proceedings of the Pacific Graphics'00. Hong Kong, 2000, 31-37
    [12] Harris M J, Lastra A. Real-time cloud rendering. Computer Graphics Forum, 2001, 20(3): 76-84
    [13] Dobashi Y, Nishita T, Yamamoto T. Interactive rendering of atmospheric scattering effects using graphics hardware. In: Proceedings of the Graphics Hardware. Barcelona, 2002, 99-108
    [14] Riley K, Ebert D, Kraus M, et al. Efficient rendering of atmospheric phenomena.In: EuroGraphics Symposium on Rendering. Sweden, 2004, 375-386
    [15] Willis P J. Visual simulation of atmospheric haze. Computer Graphics Forum, 1987, 6(1):35-42
    [16] Preetham A J, Shirley P, Smits B E. A practical analytic model for daylight. In: Proceedings of SIGGRAPH'99. Los Angeles, 1999, 91-100
    [17] Narasimhan S, Nayar S. Vision and the atmosphere. IJCV, 2002, 48(3): 233-254
    [18] Sun B, Ramamoorthi R, Narasimhan S G, et al. A practical analytic single scattering model for real time rendering. Computer Graphics, 2005, 24(3): 1040-1049
    [19] Rushmeier H E, Torrance K E. The zonal method for calculating light intensities in the presence of a participating medium. Computer Graphics, 1987, 21(4): 293-302
    [20] Bhate N, Tokuta A. Photorealistic volume rendering of media with directional scattering. In: Third EuroGraphics Workshop on Rendering. Bristol, 1992, 227-245
    [21] Max N L. Efficient light propagation for multiple anisotropic volume scattering. In: Fifth EuroGraphics Workshop on Rendering. Darmstadt, 1994, 87-104
    [22] Languenou E, Bouatouch K, Chelle M. Global illumination in presence of participating media with general properties. In: Fifth EuroGraphics Workshop on Rendering. Darmstadt, 1994, 69-85
    [23] Stam J, Fiume E. Depicting fire and other gaseous phenomena using diffusion processes. In: Proceedings of SIGGRAPH'95. Los Angeles, 1995, 129-136
    [24] Nishita T, Dobashi Y, Nakamae E. Display of clouds taking into account multiple anisotropic scattering and sky light. Computer Graphics, 1996, 30(4):379-386
    [25] Jensen H W, Christensen P H. Efficient simulation of light transport in scenes with participating media using photon maps. In: Proceedings of SIGGRAPH'98. Orlando, 1998, 311-320
    [26] Perez F, Sillion F X, Pueyo X. Acceleration of monte carlo path tracing in general environments. In: Proceedings of Pacific Graphics'00. Hong Kong, 2000, 71-82
    [27] Perez F, Marti?n I, Pueyo X. High quality final gathering for hierarchical monte carlo radiosity for general environments. In: Advances in Modelling, Animation and Rendering. Springer, 2002, 425-437
    [28] Premoze S, Ashikhmin M, Tessendorf J, et al. Practical rendering of multiplescattering effects in participating media. In: EuroGraphics Symposium on Rendering. Sweden, 2004, 363-374
    [29] Hegeman K, Ashikhmin M, Premoze S. A Lighting model for general participating media. In: Proceedings of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. Washington DC, 2005,117-124
    [30] Gardner Y G. Visual simulation of clouds. Computer Graphics, 1985, 19(3): 297-303
    [31] Ebert D S. Volume modeling with implicit function: A cloud is born. In: Proceedings of SIGGRAPH'97. New York, 1997, 147-155
    [32] Miyazaki R, Yoshida S, Dobashi Y, et al. A method for modeling clouds based on atmospheric fluid dynamics. In: Proceedings of Pacific Graphics'01. San Diego, 2001, 363-372
    [33] Miyazaki R, Dobashi Y, Nishita T. Simulation of cumuliform clouds based on computational fluid dynamics. In: Proceedings of EuroGraphics'02. Saarbrücken, 2002, 405-410
    [34] Max N, Schussman G, Miyazaki R, et al. Diffusion and multiple anisotropic scattering for global illumination in clouds. Journal of WSCG, 2004, 12(1): 277-293
    [35] Fournier A, Reeves W T. A simple model of ocean waves. Computer Graphics, 1986, 20(4): 75-84
    [36] Peachey D. Modeling waves and surface. Computer Graphics, 1986, 20(4): 65-74
    [37] Tessendorf J. Simulating ocean water. In: SIGGRAPH'99 Course Note, Simulating Natural Phenomena. Los Angeles, 1999, 1-18
    [38] Nakamae E, Kaneda K, Okamoto T, et al. A lighting model aiming at drive simulators. Computer Graphics, 1990, 24(4): 395-404
    [39] Kaneda K, Yuan G, Tomoda Y, et al. Realistic visual simulation of water surfaces taking into account radiative transfer. In: Proceedings of CAD/Graphics'91. Hang Zhou, 1991, 25-30
    [40] Premoze S, Ashikhmin M. Rendering natural waters. In: Proceedings of Pacific Graphics 2000. Hong Kong, 2000, 23-30
    [41] Watt M. Light-water interaction using backward beam tracing. Computer Graphics, 1999, 24(4): 377-385
    [42] Iwasaki K, Dobashi Y, Nishita T. An efficient method for rendering underwater optical effects using graphics hardware. Computer Graphics Forum, 2002, 21(4):1-11
    [43] Lafortune E P, Willems Y D. Rendering participating media with bidirectional path tracing. In: Proceedings of the Seventh EuroGraphics Workshop on Rendering. New York, 1996, 91-100
    [44] Lecocq P, Michelin S, Kemeny A, et al. Real time lighting simulation in presence of fog: Applications for driving simulation. In: Proceedings of the Driving Simulation Conference'02. Paris, 2002, 101-104
    [45] 柳有权. 基于物理的计算机动画及其加速技术的研究: [中科院软件所博士论文]. 北京: 中科院软件所, 2005, 10-13
    [46] Klassen R V. Modeling the effect of atmosphere on light. Computer Graphics, 1987, 6(3):215-237
    [47] Nishita T, Nakamae E. Continuous tone representation of three-dimensional objects illuminated by sky light. Computer Graphics, 1986, 20(3): 125-132
    [48] 吴春明,钱徽,朱淼良.一个绘制大气介质效果的软件框架.电子学报, 2004, 32(5):735-739
    [49] 吴春明,钱徽,朱淼良.大气效果绘制的若干问题研究.电子学报, 2005, 33(8): 1403-1406
    [50] Best AC. The size distribution of raindrops. Quarterly Journal of the Royal Meteorological, 1950, 76(16): 16-36
    [51] 姜忠,石广玉,陈焕森.北京市 1998-2001 年大气气溶胶粒子数浓度分析.气候与环境研究, 2003, 8(4): 495-502
    [52] Laven P. Simulation of rainbows, coronas and glories using mie theory and the debye series. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 42(3):257-269
    [53] 于金辉, 尹小勤, 彭群生.卡通动画雨模型.软件学报, 2002, 13(9): 1881-1886
    [54] 罗维佳, 都金康, 谢顺平. 基于粒子系统的三维场地降雨实时模拟. 中国图像图形学报, 2004, 9(4): 495-500
    [55] Adam J A. The mathematical physics of rainbows and glories. Physics Reports, 2002, 356(1): 229-365
    [56] Musgrave F K. Prisms and rainbows: A dispersion model for computer graphics. In: Proceedings of Graphics Interface '89. London, 1989, 227-234
    [57] Walter B. Simulation and visualization of atmospheric light phenomena induced by light scattering. Systems Analysis Modeling Simulation, 2000, 42(2):289-298
    [58] Brewer C. How to render a real rainbow. In: NVIDIA Technical Report. Santa Clara, 2004, 88-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700