用户名: 密码: 验证码:
基于OpenGL的航海模拟器中天体运动仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星空场景的景象生成技术是实现航天器飞行模拟、太空目标的识别与跟踪、天文定位等技术的关键技术之一。星空背景的建模技术在军事、航空航天、遥感测绘、天文航海等领域都有重要的应用价值。在航海模拟器视景系统中增加对星空天体运动的仿真不仅完善了航海模拟器视景系统的功能,提高了三维视景的逼真度,而且为天文航海教学提供了一条新的途径。
     如何计算天体的视位置以及实时绘制星空视景成为航海模拟器中天体运动仿真研究的关键性问题。为此作者在以下几个方面做了重点研究:
     1.建立了天体运动数学模型,采用FK5星表中天体基本数据和航海模拟器中测者经纬度为参数,以实时获取的系统时间为基准,根据天体动力学知识计算指定时刻天体在第二赤道坐标系的视位置。根据球面天文学知识,对上述计算的天体视位置坐标进行转换,得到天体相对于测者空间直角坐标系的三维坐标。
     2.实时绘制星空视景。由数学模型计算得到的星体三维坐标,采用OpenGL底层函数实时绘制星空背景。由太阳和月球之间的相对位置决定月相,设置OpenGL光照和纹理绘制出逼真的三维效果。启用天体运动计时器,实时计算天体视位置,并更新星空视景,实现虚拟场景的实时漫游。最后添加到OpenGvS平台进行编译,实现与与航海模拟器的连接。
     3.在上述研究工作的基础上,简单模拟六分仪测天原理,测定天体的观测高度,经定位模块进行计算得到测者所在经纬度,从而实现航海测天定位的仿真。
     实践证明,该方法实现的星空仿真效果逼真,而且也满足虚拟场景中漫游的实时性要求。
The simulation of celestial scene has been the key problem of flight simulator and automation of astronavigation. The modeling of celestial scene has great value in aeronautics, aviation, remote sensing, and navigation. The use of celestial scene in Shiphandling Simulator can greatly improve the fidelity of 3D scene.
     Therefore, the key task of the research is to compute the position of the celestial bodies and the real-time rendering of the celestial scene. The primary research contents and contributions of this dissertation summarized here are:
     Based on FK5 ephemeris, the paper presented an approach for modeling and simulating the celestial scene in the Shiphandling Simulator. The basic idea of the method is that the coordinates of the celestial bodies in the 2nd Coordinates of Equinoctial System was calculated by the mathematics model which took the system time and the position of observer as the parameter that was obtained dynamically. Then, with a series of coordinates conversion, the star position is converted into the observation coordinate.
     The celestial scene is rendered by the OpenGL function, which is based upon the observation coordinate. It is determined the phase of moon that the relative position between sun and moon. Consequently the celestial scene can be rendered dynamically by using the modeling result. Finally a real-time program of celestial bodies in navigation visual simulation system was built which adopted OpenGVS codes.
     Based on the above technologies, the observation of celestial bodies altitude by sextant is simulated. Then the position of observer can be computed by the altitude.
     It is proved that the method can meet the real-time requirement in the Shiphandling Simulator.
引文
[1]Frederick Wieland,AlexSzabo,Naval Research Labortory,Jone Haynes.Object-Oriented Design of a Scene Generation Simulation.Proceedings of the 1994 Computer Simulation Conference.1995;174-180.
    [2]徐斌等,战场情况模拟及其在sgi onyx/re2实时多媒体环境下的系统实现。中国图像图形学报,1997
    [3]中华人民共和国港务监督局.1978年海员培训、发证和值班标准国际公约,第一版.1997年6月,北京;中国科学技术出版社
    [4]廖河树,大型船舶操纵模拟器的系统组成及分析.中国航海,2003,55(6);8-12.
    [5]金一丞,尹勇,任鸿翔,谭家万等.航海模拟器中的视景系统.大连海事大学学报,2001,27(2);16-21.
    [6]DNV Standard for Certification of Maritime Simulator Systems(NEW),1999.
    [7]杜健,MFC框架开发基于Vega的航海仿真系统视景驱动程序的开发.大连海事大学,硕士论文,2005,3.
    [8]Kennealy J P,CBSD;The Celestial Background Scene Descriptor.Infrared and Submillimeter Space Astronomy,1989,4;171-186
    [9]Nishita T.,Shirai T.,Tadamura K.,Nakamae E.Display of the earth taking into account of atmosphere scattering.Proceedings of the SIGGRAPH'1993,California;Anohcim,1993;175-182.
    [10]Jensen H.W.,Durand F.,Michael M.S.A Physically Based Night Sky Model.Los Angels;Proceedings of SIGGRAPH'2001,2001;399-4081.
    [11]Dobashi Y.,Yamamoto T.,Nishita T.Interactive rendering of atmospheric scattering effects using graphics hardsare.Proceedings of the ACM.SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware,Los Angles;Eurographics Association,2002;99-107.
    [12]http;//www.transas.com/products/simulators/sim_products/navigational/components/visualizatio n/default.asp.
    [13]立男.星空红外点源建模研究.航天机电集团二院207所,硕士论文,2002,3.
    [14]康金兰,刘玉庆.基于Vega的星空模拟方法研究.电子科技.2005,186(3);45-48.
    [15]刘世光,王章野,王长波,彭群生.航天器飞行场景的真实感生成.计算机学报. 2005,28(1);68-74.
    [16]王桂如,刘利强.一种求恒星视位置的新算法.应用科技.2006,33(2);36-39.
    [17]施朝健,王捷.舟山航海学校船桥模拟器及有关技术.上海海运学院学报,1996,17(1);49-52.
    [18]解翠.基于Web的航海训练环境中关键技术的研究.大连海事大学,博士论文,2005,9.
    [19]禹海全,郝永生,姚志敏等.对三种常用视景仿真软件的功能比较.计算机仿真,2006,23(2);174-175.
    [20]FrickeW,Schwan H,Lederle T.Veroeff Astron Rechen-Inst Heidelberg,1988,32;16-75
    [21]郭禹.瀚海学.大连;大连海事大学出版社,2005.
    [22]王文武,王辉,孙枫.恒星视位置的长期计算法.哈尔滨工程大学学报,1998,19(6);35-41.
    [23]夏一飞,黄大衣.球面天文学,南京;南京大学出版社,1995.
    [24]王安国,贾传荧,孙鹏.航用恒星视位置高精度计算,交通运输工程学报,2004,4(4);117-120.
    [25]林饮畅,陈玲强.快速计算自塞尔日数和恒星视位置,测绘学报,1997,26(3);268-274.
    [26]李亚斌,刘丹,金一丞.航海模拟器中太阳视运动轨迹的算法.大连海事大学学报,2002,28增刊;47-50.
    [27]谈小生,葛成辉.太阳角的计算方法及其在遥感中的应用.国土资源遥感,1995,24(2);48-57.
    [28]周文艳,杨维廉.月球星历的计算方法及比较.航天器工程,2002,11(4);22-28.
    [29]中国科学院紫金山天文台.中国天文年历,北京;科学出版社,2002,2006.
    [30]中国科学院紫金山天文台.航海天文历.北京;科学出版社,2002.
    [31]OpenGL Architecture Review Board.OpenGL Programming Guide.北京;人民邮电出版社,2005.
    [32]Mason Woo,Jackie Neider OpenGL Programming Guide.Addison Wesley Longman,Inc.2001.
    [33]汤彬,伍建青.使用MFC的OpenGL编程技术.实验室研究与探索,2004,23(9);23-26
    [34]张汉清.基于OpenGL的月球探测器可视化仿真.西北工业大学学报,2007,3.
    [35]Stanish E M.JPL Planetary and lunar ephemeredes.San Francisco;NASA Report,1999.
    [36]齐新战,卫翔,候春龙.基于OpenGVS的三维视景仿真技术应用.科技创业月刊,2004,第6期;20-21.
    [37]刘毅,诸昌钤,杨宁学.基于OpenGVS的实时三维应用程序开发.现代计算机,2004,179(1);94-96.
    [38]Quantum 3D Inc.OpenGVS Programming Guide Version 4.4.USA,2001.
    [39]郑长伟,刘高攀,郭齐胜.基丁OpenGVS4.3的光照效果研究.计算机仿真.2005,22(7);198-200.
    [40]王韬,郭玲,史迎春,周献中.基于OpenGVS的虚拟仪表实现.计算机仿真.2006,23(3);257-258.
    [41]王德明,徐士进,周会群.基于OpenGVS虚拟庐山之实现.计算机应用与软件.2006,23(8);96-99.
    [42]李志洪.六分仪的垂直观测与天体高度精度.航海技术.1998,3;37-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700