用户名: 密码: 验证码:
Wnt5a对非小细胞肺癌细胞增殖及侵袭潜能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     肺癌是全球发病率最高的恶性肿瘤,己成为人类因癌症死亡的主要原因。非小细胞肺癌(NSCLC)占新发肺癌病例的75-80%,虽然各种治疗手段不断改善,但其预后依然很差。其主要原因在于肺癌的发病机制、特别是肺癌侵袭转移的机制尚不清楚,弄清肺癌的发病及侵袭转移机制对于预测肺癌患者的预后及提高治疗效果意义重大。
     Wnt5a是Wnt家族中的重要成员之一,既能活化经典的Wnt/β-catenin通路又能活化非经典的Wnt/Ca2+通路,而且Wnt/Ca2+通路与Wnt/β-catenin通路相互作用。文献报道Wnt5a与多种恶性肿瘤关系密切,在肿瘤细胞的增殖、分化及侵袭转移过程中起着重要的作用。但也有研究发现Wnt5a在不同的恶性肿瘤中生物学作用并不一致,有的认识尚存在重大分歧。部分研究认为Wnt5a具有癌基因的特性,在多种恶性肿瘤如恶性黑色素瘤、胃癌中高表达,可促进其发生及侵袭转移,Wnt5a的高表达与这些肿瘤细胞的转移潜能和患者的不良预后密切相关;而有的研究则认为Wnt5a基因具有抑癌基因的特性,可以减少或减缓如白血病、恶性淋巴瘤及结肠癌等的发生及转移。迄今国内外关于肺癌与Wnt5a的关系研究甚少,而且大多停留在肺癌标本中Wnt5a表达水平的检测上,因此有必要对Wnt5a与NSCLC的关系进行深入研究。
     目的
     探讨Wnt5a在NSCLC的表达与病理意义以及对NSCLC细胞增殖及侵袭潜能的影响,为寻找肺癌有效的治疗途径及预后判定指标提供依据。
     方法
     1.应用Northern-blot检测43例NSCLC癌组织中Wnt5a mRNA的表达,同时采用免疫组织化学SP法和Western blot技术检测Wnt5a蛋白的表达,统计分析它们与临床病理特征之间的关系并进行生存分析。
     2.采用基因重组技术,构建人Wnt5a基因正义及RNAi真核表达载体,转染人H157和A549细胞;半定量RT-PCR和Western blot检测细胞转染前后Wnt5a mRNA和蛋白表达的变化。
     3.应用MTT检测细胞的增殖能力;流式细胞仪检测细胞周期;划痕试验检测细胞迁移力的改变;改良Transwell小室法检测细胞侵袭力的变化。
     结果
     1.Wnt5a mRNA在NSCLC癌组织及正常肺组织中的阳性表达率分别为79.1%和45.4%,二者的表达水平也存在差异,前者为0.96±0.65,后者为0.44±0.23,Wnt5a mRNA在NSCLC中表达明显增高,与正常相比具有显著统计学意义(P<0.05=。
     2.Wnt5a mRNA与NSCLC病理分期、细胞分化程度、有无淋巴结转移及组织学类型、是否吸烟有一定关系:Ⅲ~Ⅳ期(1.24±0.47)较Ⅰ~Ⅱ期(0.58±0.71)增高;细胞分化程度低的(1.27±0.46)较分化程度好的(0.65±0.47)也明显增高;有淋巴结转移的(1.10±0.63)较没有淋巴结转移的(0.67±0.66)增高;鳞癌(1.31±0.65)比腺癌(0.58±0.46)增高,吸烟者(1.26±0.56)较非吸烟者(0.57±0.62)增高(P<0.01或P<0.05)。
     3.Wnt5a蛋白水平变化趋势与其mRNA基本一致,二者阳性表达之间存在着显著的正相关(相关系数0.74,P<0.01),Wnt5a mRNA与蛋白的表达具有一致性。
     4.在NSCLC中,Wnt5a阳性患者2年生存率(31.1%,9/29)明显低于Wnt5a阴性患者(71.4%,10/14),差异具有统计学意义(P<0.01)。
     5.分别对重组质粒pcDNA3.1+-XE58和pAVU6-siWnt5a质粒进行酶切鉴定,酶切片段与插入的目的片段大小相一致;进行测序鉴定所得测序结果经分析比对与GeneBank文献报道一致,未见缺失和突变。
     6.未经干预的H157和A549对照组细胞增殖指数分别为37.26%和29.01%;转染正义基因组细胞H157-XE58与A549-XE58增殖指数(62.94%,54.49%)增加;RNAi组细胞H157-siWnt5a与A549-siWnt5a增殖指数下降(20.81%,17.66%),正义基因组细胞增殖指数明显高于对照组及RNAi组细胞,RNAi组细胞增殖指数明显低于对照组。
     7.细胞迁移力和侵袭力的检测:未经干预的H157和A549对照组细胞具有一定的迁移力和侵袭力;正义基因组H157-XE58与A549-XE58细胞转染24h后迁移速度明显加快,划痕区细胞数明显增多(94.1±3.8, 91.1±3.9),细胞迁移距离较远,穿过Matrigel胶的细胞数明显增加(71.3±3.2 , 61.7±3.5) ; RNAi组H157-siWnt5a与A549-siWnt5a细胞的迁移距离明显小于正义基因组及对照组细胞,划痕区细胞数稀少(21.9±2.2,19.6±4.1),细胞迁移不明显,穿过Matrigel胶的细胞数明显减少(22.3±3.2,20.7±3.5)。正义基因组细胞迁移力和侵袭力均明显高于对照组及RNAi组细胞。RNAi组细胞迁移力和侵袭力明显低于对照组。
     结论
     1.Wnt5a在NSCLC中不论是mRNA水平还是蛋白水平均明显增高,且与NSCLC的细胞分化程度、组织类型及TNM分期密切相关,提示Wnt5a可能参与NSCLC的发生发展过程。
     2.体外NSCLC细胞转染人Wnt5a正义基因后细胞增殖能力明显增强,转染RNAi质粒后增殖能力受到显著抑制,初步证实Wnt5a在NSCLC细胞增殖中起着重要作用。
     3.体外NSCLC细胞转染人Wnt5a正义基因后细胞侵袭能力明显增强,转染RNAi质粒后侵袭能力受到显著抑制,初步证实Wnt5a对NSCLC细胞侵袭潜能有显著影响。
     4.Wnt5a可以明显促进NSCLC细胞增殖及侵袭潜能增强,此作用可为特异性siRNA所阻断,Wnt5a有可能作为肺癌基因治疗的靶标或药物治疗的靶点。
     5.Wnt5a表达水平越高,患者预后越差,生存期越短,提示Wnt5a的检测可能作为NSCLC预后的分子指标之一。
     6.成功构建人Wnt5a基因正义及RNAi真核表达载体并建立稳定的转染细胞株,为进一步研究Wnt5a与肺癌的关系提供了实验平台。
Background: Lung cancers, which are the highest occurrence ratio in the whole world, are the leading cause of death among all kinds of caners. It has been reported that among the newly occurrence lung caners, 75-80% of them are non-small cell lung cancer (NSCLC). The prognosis of NSCLC is still very poor even with the accumulating improvements therapies, mainly because of the underlying mechanisms, especially that of metastasis, of the occurrence of lung cancers are still unclear. Therefore, it is very important to answer these questions in order to make better prognosis and improve the treatment of NSCLC. Wnt5a is one of the most important members of Wnt family, it activates the classic Wnt/β-catenin pathway as well as the non-classic Wnt/Ca2+ pathway, and these two pathways interact. Studies have shown that Wnt5a is closely related many malignant cancers, plays very important roles in the proliferation, differentiation and metastasis of tumor cells. Studies have also shown that Wnt5a acts differentially among different metastasis tumors. Some of them show this gene processes the characteristics of oncogene, high expression of Wnt5a was detected in most malignant tumors such as melanoma and stomach cancer, and it can promote tumor occurrence and metastasis, thus its high expression is related to the metastasis potential and poor prognosis; however, some other researches argue Wnt5a share the characteristics of anti-oncogenes, it can decrease or delay the occurrence and metastasis of leucocythemia, malignant lymphanode tumors as well as colon tumors. By now most of the studies about the relationship between Wnt5a and lung cancers were focused on the expression of Wnt5a in clinic samples, but the underlying mechanisms are poorly understood.
     Aims: To explore the expression of Wnt5a and role on the proliferation and invasion potentiality in NSCLC, aim at help effective treatment and prognosis of lung cancer.
     Methods:
     1. Tumor tissues of 43 cases of NSCLC were examined by Northern Blot, and the protein expression of these tissues were examined by Western Blot and immunohis- tochemistry. Survival analysis was carried out between the expression and clinical pathological characteristics by statistics.
     2. By gene recombination technique, human Wnt5a gene sense plasmid and its RNAi eukaryotic expression plasmid were constructed, human cell lines of H157 and A549 were transfected, and semi-quantitative RT-PCR and Western Blot were employed to detect the change of Wnt5a mRNA and protein before- and after transfection, respectively.
     3. MTT was used to test the change of cell proliferation; flow cytometry was used to test the changes of cell cycle; nick test was used to examine cell migration, and modified Transwell chamber test was used to examine cell invasion.
     Results:
     1. The positive ratio of Wnt5a mRNA in the tumor tissue of NSCLC and tissue from normal lung was 79.1% and 45.4%, respectively. Difference of expression level also existed: in the former it was 0.96±0.65 and the later was 0.44±0.23. This suggested higher expression of Wnt5a was detected in the NSCLC, statistically significant when compared with normal (P<0.05).
     2. There is some degree of relationship between Wnt5a expression and pathological grade, cell differential stage, with- or without lymphonode metastasis and its tissue type, and smoking or not. Higher expression was detectable inⅢ-Ⅳphase(1.24±0.47) compared withⅠorⅡphase(0.58±0.71); in lower differentiation(1.27±0.46) compared with higher differentiation(0.65±0.47); in with lymphanode metastasis(1.10±0.63) compared with non-lymphanode metastasis(0.67±0.66); in squamous cell carcinoma(1.31±0.65) compared with adenocarcinoma(0.58±0.46), and in smokers(1.26±0.56) compared with non-smokers(0.57±0.62)(P<0.01 or 0.05).
     3. The protein expression of Wnt5a in all the tissue was in coincidence with the mRNA expression, showing a significant positive correlation (correlation coefficient: 0.74, P<0.01), which highly suggested a consistency.
     4. In NSCLC patients, two-year surviving ratio in Wnt5a positive patients(31.1%, 9/29) was lower than Wnt5a negative controls (71.4%, 10/14), showing statistically significant(P<0.01).
     5. Restrictive enzyme analysis was carried to identify the recombined plasmid pcDNA3.1+—XE58 and pAVU6-si Wnt5a, the results showed the size of the cutting segment was identical to the inserting target segment; Sequencing analysis showed it was identical to the reported sequence in GeneBank, no missing or mutation was detected.
     6. The proliferation index in untreated H157 cell line and A549 cell line was 37.26% and 29.01%, respectively; it increased in sense-transfected H157-XE58 and A549-XE58 (62.94% and 54.49%, respectively); decreased RNAi treated H157 and A549 cells(20.81% and 17.66%, respectively), suggesting a positive role of Wnt5a in the promoting potential of cell proliferation.
     7. Untreated H157 and A549 cells had some degree of migration and invasion, respectively. Sense-transfection increased the migration after 24h,the number of cells in the nick area increased significantly, and the distance of migration was longer, too; the number of cross Matrigel cells increased (71.3±3.2 and 61.7±3.5 in H157-XE58 and A549-XE58 cells, respectively). However, all the above parameters were obviously inhibited by siRNA treatment.
     Conclusion:
     1. In vivo studies showed an increased expression of both Wnt5a mRNA and protein in NSCLC, furthermore the expression level of Wnt5a was closely related to the cell differentiation, histology and TNM stages of NSCLC. These suggested Wnt5a may play an important role in the occurrenence and progression of NSCLC.
     2. In vitro studies showed the proliferation increased with the overexpression of Wnt5a and the ability can be inhibited by RNAi targeting Wnt5a efficiently in vitro and in vivo. confirmed this gene may play an important role in the proliferateion of NSCLC.
     3. In vitro studies showed the invasion increased with the overexpression of Wnt5a and the ability can be inhibited by RNAi targeting Wnt5a efficiently in vitro and in vivo. confirmed this gene may play an important role in the invasion of NSCLC.
     4. Wnt5a gene may be the target of gene therapy of lung cancer, this open a new field for the clinical application of RNA interference or designer drug to aim directly at the gene.
     5. Higher expression of Wnt5a was related to the poor prognosis and shorter survival, suggesting Wnt5a may be used as one of the prognosis index.
     6. The successful construction of sense plasmids and RNAi eukaryotic expression plasmid provided an experimental platform for further study of the role of this gene .
引文
1. Yang L,Parkin D M,Ferlay J. et al. Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev,2005,14(1):243-50
    2. Ferlay J,Bray F,Pisani P,et a1.GLOBOCAN 2002:Cancer incidence, mortality and prevalence worldwide,version 2.0. IARC CancerBase No.S Lyon:IARC Press,2004.
    3. Niklinski J, Niklinski W, Laudanski J,et al. Prognostic molecular markers in non-small cell lung cancer. Lung Cancer 2001;34:5(2):53-8.
    4. Brundage MD, Davies D, Mackillop WJ. Prognostic factors in non-small cell lung cancer: a decade of progress. Chest: 2002;122(3):1037-57.
    5. Cadigan K M, Liu Y I. Wnt signaling: complexity at the surface. J Cell Sci,2006,119(Pt 3):395-402
    6. Jamora C, Fuchs E. Intercellular adhesion, signaling and the cytoskeleton. Nat Cell Biol, 2002,4(4): E101-108.
    7. Muller T, Bain G, Wang X, et al.. Regulation of epithelial cell migration and tumor formation byβ-catenin signaling. Exp Cell Res, 2002,280(1):119-133.
    8. Lange C, Mix E, Rateitschak K.et al. Wnt signal pathways and neural stem cell differentiation. Neurodegener Dis,2006,3(1-2):76-86
    9. Nestor T H, Masckaucha n, Dritan Agalliu, et al.Wnt5a Signaling Induces Proliferation and Survival of Endothelial Cells In Vitro and Expression of MMP-1 and Tie-2. Mol Bio Cell, 2006 17,(12):5163–5172
    10. Kurayoshi M, Oue N, Yamamoto H, et al..Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 2006,66(21):10439-48
    11. Dejmek J, Dejmek A, Safholm A, et al.Wnt-5a protein expression in primary dukes B colon cancers identifies a subgroup of patients with good prognosis[J].Cancer Res,2005,65(20):9142-9146.
    12. Li C, Hu L, Xiao J.et al.Wnt5a regulates Shh and Fgf10 signaling during lung development. Dev Biol,2005,287(1):86-97
    13. Iozzo RV, Eichstetter I, Danielson KG. Aberrant expression of the growth factor Wnt-5a in human malignancy [J].Cancer Res,1995,55 (16):3495-3499.
    14. Huang CL, Liu D, Nakano J, et al. Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor--an expression in non-small-cell lung cancer. J Clin Oncol,2005,23(34):8765-73
    15. Weeraratna A T, Jiang Y, Hostetter G. et al. Wnt5a signalling directly affects cell motility and invasion of metastatic melanoma. [J] Cancer Cell,2002(1):279-288.
    16. Blanc E, Goldschneider D, Douc Rasy S. et al. Wnt-5a gene expression in malignant human neuroblasts. Cancer Lett,2005,228(1-2):117-23
    17. Liang H, Chen Q, Coles AH, et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell, 2003,4:349-360.
    18. Mikels A J, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol,2006,4(4):e115
    19. Clark CC, Cohen IR, Iozzo RV, et al. Molecular cloning of the human proto-oncogene Wnt-5A and mapping of the gene (WNT5A) to chromosome 3p14-p21.Genomics,1993,18 (2):249-260
    20. Wang H Y, Malbon C C. Wnt signaling, Ca2+, and cyclic GMP: visualizing Frizzled functions. [J] Science, 2003,300(5625):1529-30
    21. Varma R R, Hector S M, Clark K.et al. Gene expression profiling of a clonal isolate of oxaliplatin-resistant ovarian carcinoma cell line A2780/C10. Oncol Rep,2005, 14(4): 925-32
    22. Bachmann I M, Straume O, Puntervoll H E.et al. Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res,2005,11(24 Pt 1):8606-14
    23. Taki M, Kamata N, Yokoyama K.et al. Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. [J] Cancer Sci, 2003, 94(7):593-597
    24. Stanbrough M, Bubley G J, Ross K. et al.Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res,2006,66(5):2815-25
    25. Howng SL,Wu CH,Cheng TS, et al. Differential expression of Wnt genes,beta-catenin and E-cadherin in human brain tumors.Cancer Lett.2002,183 :95-101
    26. Dejmek J, K Leandersson, J Manjer, et al. Expression and signaling activity ofWnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res,2005, 11:520-528
    27. Crnogorac-Jurcevic T, Efthimiou E, Capelli P, et al. Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene, 2001,20: 7437-7446
    28. Ripka S, Konig A, Buchholz M, et al.WNT5A - target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis. 2007 Jan 16; [Epub ahead of print]
    29. Dejmek J, Safholm A, Kamp Nielsen C, et al.Wnt-5a/Ca2+-Induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-Casein Kinase 1αsignaling in human mammary epithelial cells. Mol Cell Bio, 2006,26(16):6024-36
    30. Pukrop T, Klemm F, Hagemann T, et al. Wnt5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci U S A, 2006;103:5454-9
    31. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibitsβ-catenin–TCF signaling depending on receptor context. PLoS Biol ,2006,4(4):e115:0570-0582
    32. Ma L, Wang Hy. Suppression of cyclic GMP-dependent protein kinase is essential to the Wnt/cGMP/Ca2+ pathway. J BIOL CHEM,2006,281(41): 30990-31001
    33. Nelson W J, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. [J] Science,2004, 303(5663):1483-1487
    34. Ma L, Wang Hy. Suppression of cyclic GMP-dependent protein kinase is essential to the Wnt/cGMP/Ca2+ pathway. J BIOL CHEM,2006,281(41): 30990-31001
    35. Good PD, Krikos AJ, Li SX, Engelke DR, et al. Expression of small;therapeutic RNAs in human cell nuclei.[J] Gene Ther,1997(4):45-54
    36. Anne R. Ungar, Gregory M. Kelly, Randall T Moon. Wnt4 affects morphogenesis when misexpressed in the zebrafish embryo. Mechanisms of Devel, 1995,52:153-164
    37. Strathdee CA, McLeod MR, Hall JR. Efficient control of tetracyclineresponsive gene expression from an autoregulated bi-directional expression vector. Gene,1999,229:21-9
    38. Filipowicz W, Jaskiewicz L, Kolb FA, et al. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol,2005,15(3):331-341
    39. Pham JW, Sontheimer EJ. Molecular requirements for RNA-induced silencing complex assembly in the Drosophila RNA interference pathway. J Biol Chem,2005,280(47):39278-39283
    40. Ling,-X;Li,-F. silencing of antiapoptotic survivin gene by multiple approaches of RNA interference technology. Biotechniques.2004,36(3): 450-4, 456-60.
    41. Amarzguioui M, Rossi JJ, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett. 2005,579(26):5974一5981
    42. Rosell R, Cecere F, Cognetti F. et al. Future directions in the second-line treatment of non-small cell lung cancer. Semin Oncol,2006,33(1 Suppl 1):S45-51
    43. Mocellin S, Provenzano M. RNA interference: learning gene knock-down from cell physiology. J Transl Med, 2004, 2 (1): 39
    44. Reynolds A, Leake D, Boese Q, et al. Ratinal siRNA design for RNA interference. Nat Biotechnol,2004,22(3):326-30
    45. Ding y, Lawrence CE. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids. Res,2003,31(24):7280-301
    46. Lipardi C, Wei Q, Paterson B M. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell, 2001,107:297-307
    47. Rumi M, Ishihara S, Aziz M, et al. RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector. Biochem Biophys Res Commun. 2006,13;339(2):540-547
    48.萨如布鲁克J,拉塞尔D W著.分子克隆实验指南[M ].第3版.黄培堂等译.北京:科学出版社,2002:884
    49. Nakanishi M, Noguchi A. Confocal and probe microscopy to study gene transferctian mediated by cationic liposomes with a cationic cholesterol deriveative. Adv Drug Deliv Rev. 2001,52(3):197-207
    50. Comelis S, Vandenbranden M, Ruysschaert J M. Role of intracellular cationic liposome-DNA complex dissociation in transfection mediated by cationic lipids. DNA Cell Biol, 2002,21(2):91-97
    51. Dalby B, Cates S, Harris A, et al. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods. 2004,33(2):95-103
    52. Cummings M,Siitonen T, Higginbottom K, et al. p53-mediated downregulation of Chklabrogates the DNA damage-induced G2M checkpoint in K562 cells,resulting in increased apoptosis. Br J Haematol,2002,116(2): 421-8
    53. Bargonetti J,Manfredi JJ. Multiple roles of the tumor suppressor p53. Curr Opin Oncol, 2002,14:86-91
    54. Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene, 2005,24(17):2899-908
    55. Rosell R, Cecere F, Cognetti F.et al. Future directions in the second-line treatment of non-small cell lung cancer. Semin Oncol,2006,33(1 Suppl 1):S45-51
    56. Nakopoulou L, Mylona E, Papadaki I. et al. Study of phospho-beta-catenin subcellular distribution in invasive breast carcinomas in relation to their phenotype and the clinical outcome. Mod Pathol,2006,19(4):556-63
    57. Wong TT, Daniels JT, Crowston JC, et al.MMP inhibition prevents human lens epithelial cell migration and contraction of the lens capsule.Br J Ophthalmol. 2004,88(7):868一872
    58. Xiang-Ming Xu, Da Wang, Qi Shen, et al.RNA-mediated gene silencing of the RON receptor tyrosine kinase alters oncogenic phenotypes of human colorectal carcinoma cells.Oncogene,2004,23(52): 8464-8474
    59. Chang CC,Shih JY,Jeng YM, et al.Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis.J Natl Cancer Inst. 2004; 96(5): 364-375
    60. Pukrop T, Klemm F, Hagemann T, et al. Wnt5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci U S A 2006;103:5454–9
    1. Rijsewijk F, Schuermann M, Wagenaar E, et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell. 1987 ;50 (4):649-657.
    2. Cadigan K M, Liu Y I. Wnt signaling: complexity at the surface. J Cell Sci,2006,119(Pt 3):395-402
    3. Lange C, Mix E, Rateitschak K. et al. Wnt signal pathways and neural stem cell differentiation. Neurodegener Dis,2006,3(1-2):76-86
    4. Ma L, Wang Hy. Suppression of cyclic GMP-dependent protein kinase is essential to the Wnt/cGMP/Ca2+ pathway. J BIOL CHEM,2006,281(41): 30990-31001
    5. Povelones M, Howes R, Fish M. et al. Genetic evidence that Drosophila frizzled controls planar cell polarity and Armadillo signaling by a common mechanism. Genetics,2005,171(4):1643-54
    6. Liu T, DeCostanzo AJ, Liu X, et al. G protein signaling from activated rat frizzled-lto the beta-catenin -Lef-Tcf. Science 2001;292:1718-1722.
    7. Martin J, Seidensticker and Jürgen Behrens. et al. Biochemical interactions in the wnt pathway.[J] Bioch Biophy Acta (BBA) - Mol Cell Res,2000,1495(2):168-182
    8. Nelson W J, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. [J] Science,2004, 303(5663):1483-1487
    9. Robert K, Magnus K D. The Wnt signaling pathway in solid childhood tumors. [J] Cancer Letters,2003, 198(2):123-138
    10. Takada R, Hijikata H, Kondoh H. et al. Analysis of combinatorial effects of Wnts and Frizzleds on beta-catenin/armadillo stabilization and Dishevelled phosphorylation. Genes Cells,2005,10(9):919-28
    11. Polakis P. Wnt signaling and cancer. Genes Dev. 2000: 14 (15):1837-1851.
    12. Huang M, Wang Y, Sun D. et al. Identification of genes regulated by Wnt/beta-catenin pathway and involved in apoptosis via microarray analysis. BMC Cancer,2006,6:221
    13. Nakopoulou L, Mylona E, Papadaki I. et al. Study of phospho-beta-catenin subcellular distribution in invasive breast carcinomas in relation to their phenotype and the clinical outcome. Mod Pathol,2006,19(4):556-63
    14. Itoh K, Brott B K, Bae G U. et al. Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. J Biol,2005;4(1):3
    15. Takada R, Hijikata H, Kondoh H. et al. Analysis of combinatorial effects of Wnts and Frizzleds on beta-catenin/armadillo stabilization and Dishevelled phosphorylation. Genes Cells,2005,10(9):919-28
    16. Adnan Ali, Klaus P, and James R W. Glycogen synthase kinase-3: properties, functions, and regulation. Chem Rev,2001,101,2527-2540.
    17. Ramsay R G, Ciznadija D, Sicurella C. et al. Colon epithelial cell differentiation is inhibited by constitutive c-myb expression or mutant APC plus activated RAS. DNA Cell Biol,2005,24(1):21-9
    18. Dierick H, Bejsovec A. Cellular mechanisms of wingless/Wnt signa trransduction. Current Topics in Development in biology, 1999, 43: 152-190.
    19. Wang HY, Malbon CC. Wnt signaling, Ca2+, and cyclic GMP:visualizeing Frizzled Functions. [J] Science, 2003, 300(5625):1529-1530
    20. Mericskay M, Kitajewski J, Sassoon D. Wnt5a is required for proper epithelial -mesenchymal interactions in the uterus. [J] Development, 2004,131(9):2061-2072
    21. Finley K R,Tennessen J,Shawlot W. The mouse secreted frizzled-related protein 5 gene is expressed in the anterior visceral endoderm and foregut endoderm during early post-implantation development. [J] Gene Expr Patterns,2003, 3(5):681-684
    22. Topol L, Jiang X, Choi H. et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. [J] J Cell Biol, 2003,162(5):899-908
    23. Habas R, Dawid IB. Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol,2005,4(1):2
    24. Sheldahl L C, Slusarski D C, Pandur P. et al. Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. [J] J Cell Biol, 2003,161(4):769-77
    25. Saitoh T,Mine T,Katoh M. Frequent up-regulation of WNT5A mRNA in primary gastric cancer. [J] Int J Mol Med, 2002,9(5):515-9
    26. Ishitani T, Kishida S, Hyodo Miura J. et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. [J] Mol Cell Biol, 2003,23(1):131-9
    27. Katoh M. WNT/PCP signaling pathway and human cancer (review). Oncol Rep,2005,14(6):1583-8
    28. Yang Y. Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis. [J] Birth Defects Res, 2003, 69(4):305-17
    29. Ivana M, Kristi C, Sharon M. et al. Drosophila nemo is an essential gene involved in the regulation of programmed cell death. [J] Mechanisms of Develop -ment, 2002,119(1):9-20
    30. Kim G H, Han J K. JNK and ROKalpha function in the noncanonical Wnt/RhoA signaling pathway to regulate Xenopus convergent extension movements. Dev Dyn,2005,232(4):958-68
    31. Hallikas O, Palin K, Sinjushina N. et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell,2006, 124(1):47-59
    32. Rosso S B, Sussman D, Wynshaw Boris. et al. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci,2005,8(1):34-42
    33. Safholm A, Leandersson K, Dejmek J. et al.A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem,2006,281(5):2740-9
    34. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibitsβ-catenin–TCF signaling depending on receptor context. PLoS Biol ,2006,4(4):e115:0570-0582
    35. Ma L, Wang Hy. Suppression of cyclic GMP-dependent protein kinase is essential to the Wnt/cGMP/Ca2+ pathway. J BIOL CHEM,2006,281(41): 30990-31001
    36. Wu M, Herman M A. A novel noncanonical Wnt pathway is involved in the regulation of the asymmetric B cell division in C. elegans. Dev Biol,2006,293(2):316-29
    37. Matsui T, Raya A, Kawakami Y. et al. Noncanonical Wnt signaling regulates midline convergence of organ primordia during zebrafish development. Genes Dev,2005, 19(1):164-75
    38. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999:398 (6726):422-426.
    39. Zhang X, Gaspard JP, Chung DC. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res. 2001:61 (16):6050-6054.
    40. Koh TJ, Bulitta CJ, Fleming JV, et al. Gastrin is a target of the beta-catenin/TCF-4 growth-signaling pathway in a model of intestinal polyposis. J Clin Invest.2000:106 (4):533-539.
    41. Watson SA, Smith AM. Hypergastrinemia promotes adenoma progression in the APC(Min-/+) mouse model of familial adenomatous polyposis. Cancer Res. 2001:61 (2):625-631.
    42. Boon EM, van der Neut R, van de Wetering M, et al.. Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res. 2002:62(18):5126-5128.
    43. Marchenko GN, Marchenko ND, Leng J, et al. Promoter characterization of the novel human matrix metalloproteinase-26 gene: regulation by the T cell factor-4 implies specificexpression of the gene in cancer cells of epithelial origin. Biochem J. 2002;363(Pt 2):253-262.
    44. Conacci-Sorrell ME, Ben-Yedidia T, et al. Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancerand its expression enhances motility and confers tumorigenesis. Genes Dev. 2002 ,16(16):2058-2072.
    45. Li T,Wang S, Xie Y. et al. Homologous feeder cells support undifferentiated growth and pluripotency in monkey embryonic stem cells. Stem Cells,2005,23(8):1192-9
    46. Listyorini D, Yasugi S. Expression and function of Wnt5a in the development of the glandular stomach in the chicken embryo. Dev Growth Differ,2006,48(4):243-52
    47. Kispert A,Vainio S,Shen L. et al. Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. [J]Development,1996, 122(11):3627-37
    48.吕威力,贾心善.Wnt一1在大鼠气管干细胞早期增殖分化过程中的表达。解剖学报,2006,37(2):168一171
    49. Graham N A, Asthagiri A R. Epidermal growth factor-mediated T-cell factor/lymphoid enhancer factor transcriptional activity is essential but not sufficient for cell cycle progression in nontransformed mammary epithelial cells. [J] J Biol Chem,2004, 279(22):23517-22354
    50. Eblaghie M C, Song S J, Kim J Y. et al. Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos. [J] J Anat, 2004, 205(1):1-13
    51. Liua Y, Haiyan J , Howard C. Role for ETS domain transcription factors Pea3/Erm in mouse lung development. [J] Dev Biol, 2003,261(1):10-24
    52. Shannon J M, Hyatt B A. Epithelial-mesenchymal interactions in the developing lung. [J] Annu Rev Physiol, 2004, 66:625-45
    53. Chi L, Zhang S, Lin Y. et al. Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. [J] Development, 2004, 131(14):3345-3356
    54. Li C,Xiao J,Hormi K. et al.Wnt5a participates in distal lung morphogenesis. [J] Dev Biol,2002,248(1):68-81
    55. Li C, Hu L, Xiao J. et al. Wnt5a regulates Shh and Fgf10 signaling during lung development. [J] Dev Biol, 2005, 487(1):86-97
    56. Bradley RS,Brown AMC. A soluble form of Wnt-1 with mitogenic activity on mammary epithelial cells. Mol Cell Biol.1995,15(8):4616-4622.
    57. Alonso L,Fuchs L. Stem cells in the skin:waste not,Wnt not【J].Genes Dev. 2003,17(10):1189-2000
    58. Takahashi M, Tsunoda T, Seiki M. et al. Identification of membrane-type matrix metalloproteinase-1 as a target of theβ-catenin/Tcf4 complex in human colorectal cancers. [J] Oncogene,2002,21(38):5861-5867
    59. Taki M, Kamata N, Yokoyama K. et al. Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. [J] Cancer Sci, 2003,94(7):593-597
    60. Hiroko O, Johan M K, Yoshikazu O. et al. APC mutations are infrequent but present in human lung cancer. [J] Cancer Letters, 2004,207(2):197-203
    61. Hommura F, Furuuchi K, Yamazaki K, et al. Increased expression ofβ-catenin predicta better prognosis in non-small cell lung carcinomas.Cancer2002; 94: 752-758.
    62. Sunaga N, Kohno T. KolligsFT, et al. Constitutive activation of the Wntsignaling pathway by CTNNBI(β-catenin ) mutations in a subset of human lung adenocarcinoma. Genes Chromosomes Cancer 2001;30:316-321.
    63. Shigemitsu K, Sekido Y, Usami N, et al. Genetic alteration of theβ-catenin gene(CTNNB 1)in human lung cancer and malignant mesothelioma and identification of a new 3p21.3 homozygous deletion.Oncogene 2001;20: 4249-4257.
    64.周清华,车国卫,覃扬等.nm23-H 1基因逆转肺癌转移表型及其分子机制的实验研究.中国肺癌杂志,2003; 6 (2): 141-143.
    65. Huang CL, Liu D, Nakano J, et al. Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor--an expression in non-small-cell lung cancer. J Clin Oncol,2005,23(34):8765-73
    1. Clark CC, Cohen IR, Iozzo RV, et al. Molecular cloning of the human proto-oncogene Wnt-5A and mapping of the gene (WNT5A) to chromosome 3p14-p21.Genomics,1993,18 (2):249-260
    2. Vincan E. Frizzled/WNT signalling: the insidious promoter of tumour growth and progression. [J] Front Biosci, 2004,1(9):1023-34
    3. Wang H Y, Malbon C C. Wnt signaling, Ca2+, and cyclic GMP: visualizing Frizzled functions. [J] Science, 2003,300(5625):1529-30
    4. Liu G, Bafico A, Aaronson S A. The mechanism of endogenous receptor activation functionally distinguishes prototype canonical and noncanonical Wnts.[J] Mol Cell Biol,2005,25(9):3475-82
    5. Kuhl M. The WNT/calcium pathway: biochemical mediators, tools and future requirements. [J] Front Biosci, 2004,1(9):967-74
    6. Prieve M G, Moon R T. Stromelysin-1 and mesothelin are differentially regulated by Wnt-5a and Wnt-1 in C57mg mouse mammary epithelial cells. [J] BMC Dev Biol, 2003, 3(1):2
    7. Gavin BJ, McMahon JA, McMahon AP Expression of multiple novel Wnt-1 /int小related genes during fetal and adult mouse development. Genes Dev,1990,4(12): 2319-2332.
    8. Danielson KGS Pillarisetti J, Iozzo RV, et al. Characterization of the complete genomic structure of the human WNT-SA gene, functional analysis of its promoter, chromosomal mapping, and expression in early human embryogenesis. J Biol Chem,1995, 270(52):31225-31234.
    9. Yamaguchi TP, Bradley A, McMahon AP, et al. A WntSa pathway underlies outgrowth of multiple structures in the vertebrate embryo. Dev,1999,126:1211-1223.
    10. Li C, Hu L, Xiao J. et al.Wnt5a regulates Shh and Fgf10 signaling during lung development. Dev Biol,2005,287(1):86-97
    11. Li C,Xiao J,Hormi K. et al.Wnt5a participates in distal lung morphogenesis. [J] Dev Biol,2002,248(1):68-81
    12. Yang Y, Topol L, Wu T, et al. Wnt5a and Wnt5b exhibit distinct activities incoordinating chondrocyte proliferation differentiation. Dev,2003, 130(5):1003-1015.
    13. Iozzo R V, Eichstetter I, Danielson K G. Aberrant expression of the growth factor Wnt-5A in human malignancy. [J] Cancer Res, 1995,55(16):3495-3499
    14. Lendeckel U, Arndt M, Frank K. et al. Modulation of WNT-5A expression by actinonin: linkage of APN to the WNT-pathway? [J] Adv Exp Med Biol, 2000,477:35-41
    15. Taki M, Kamata N, Yokoyama K. et al. Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. [J] Cancer Sci, 2003, 94(7):593-597
    16. Howng SL,Wu CH,Cheng TS, et al. Differential expression of Wnt genes,beta-catenin and E-cadherin in human brain tumors.Cancer Lett.2002,183 :95-101.
    17. Weeraratna, A.T., Jiang, Y., Hostetter, G. et al. 2002. Wnt5a signalling directly affects cell motility and invasion of metastatic melanoma. [J] Cancer Cell , 2002(1): 279–288.
    18. Jonsson, M., Smith, K. and Harris, A.L. Regulation of Wnt5a expression in human mammary cells by protein kinase C activity and the cytoskeleton. [J] Br. J. Cancer 1998,78: 430–438
    19. Kurayoshi M, Oue N, Yamamoto H, et al.Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 2006,66(21):10439-48
    20. Huang CL, Liu D, Nakano J, et al. Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor--an expression in non-small-cell lung cancer. J Clin Oncol,2005,23(34):8765-73
    21. Ripka S, Konig A, Buchholz M, et al.WNT5A - target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis. 2007 Jan 16; [Epub ahead of print]
    22. Liang H, Chen Q, Coles AH, et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell, 2003,4:349-360.
    23. Olson, D.J. and Gibo, D.M. Antisense wnt-5a mimics wnt-1-mediated C57MG mammary epithelial cell transformation. [J] Exp. Cell Res. 1998,241:134–141.
    24. Dejmek J, Dejmek A, Safholm A, et al. Wnt-5a protein expression in primary dukes B colon cancers identifies a subgroup of patients with good prognosis[J].CancerRes,2005,65(20):9142-9146.
    25. Leris A C,Roberts T R,Jiang W G,et al. WNT5A expression in human breast cancer.[J] Anticancer Res, 2005,25(2A):731-4
    26. Pukrop T, Klemm F, Hagemann T, et al. Wnt5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci U S A 2006;103:5454–9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700