用户名: 密码: 验证码:
混联结构并联机床的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并联机床(Parallel Machine Tool)又称为虚拟轴机床(Virtual Axis Machine Tool),是90年代中期问世的数控机床新结构,是机构学理论、机器人技术与数控技术结合的产物,其原型是并联机器人操作机。并联机床与传统五坐标数控机床相比有如下优点:①刚度重量比大②响应速度快③加工精度高④环境适应能力强⑤技术的附加值高。并联机床具有“硬件简单、软件复杂”的特点,是一种技术附加值很高的机电一体化产品,具有广阔的应用前景。本文以四种混联型并联机床为主要研究对象,对混联型并联机床的机型结构设计、位置分析、奇异位形、工作空间、运动学模型、动力学模型、精度分析、刚度分析、灵巧性分析、插补算法、虚拟样机及加工仿真等问题进行了较全面而深入的研究。
     针对传统数控机床和现有并联机床不足之处,借鉴了传统数控机床和现有并联机床的优点,将串联结构与并联结构有机融合,通过机型综合,提出了三种混联结构并联机床的新机型,并申请了发明专利。这三种混联结构并联机床具有结构简单、加工灵活、加工精度高、加工速度快、加工工艺性好、位置与姿态解耦和数控编程方便等优点,可以满足大型具有复杂曲面类零件的多轴联动数控加工的要求。
     采用动平台四个铰心的绝对坐标作为输出变量,用结式消元法对2RPS+2TPS型并联机床进行了位置正解分析,得到了其7次的一元输入输出方程,由此得到了全部位置正解。消元过程中引入了数字-符号方法,将结构参数处理为数值量,将关节变量处理为符号量,将数字、符号推导过程转化为了矩阵运算过程,由于结构参数以数值量的形式出现在方程推导中,降低了符号推导的难度,符号推导不需要复杂的符号处理软件的支持。所得位置正解均满足原始方程且无增根。基于结式消元法分别对1PS+3TPS型、1PT+2TPS型和1PPS+4TPS型并联机床进行了位置正解分析,获得了封闭形式的解析解。论文中给出了混联结构并联机床位置反解的方法。对于以上混联结构并联机床机型,文中均给出了位置分析的数值实例。
     提出了一种求解6-SPS型并联机床主进给机构工作空间的解析方法,该方法以曲面分析为基础,通过分析得到了6-SPS型并联机床主进给机构工作空间
    
     四川大学博士学位论文
    的拓扑逻辑结构图,结合主进给机构的运动特性,得到了主进给机构工作空间
    边界曲面的曲面方程。在此基础上,描绘出了6-SPS型并联机床工作空问边界
    曲面的投影视图及截面曲线图。分析计算结果表明6SPS型并联机床的理论工
    作空间是山3O张曲面片包围而成的闭包。建立了二重八面体变几何析架并联机
    床位置分析的输入输出方程,推导出了其奇异位形判别解析表达式,并用同伦
    连续法对所建立的奇异位形判别方程组进行了求解,得到了奇异位形的全部解。
    由曲面分析方法得到了其工作空间边界曲面的曲面方程,描绘出了二重八面体
    变几何析架并联机床工作空间边界曲面的投影视图及截面曲线图。分析结果表
    明二重八面体变几何析架并联机床的理论工作空间是由6张曲面片包围而成的
    闭包。分别推导出了Znys+ZTPS型、IPS+3TPS型和 IPT+ZTPS型并联机床奇
    异仓形判别的解析表达式,得到了奇异曲面方程,并由边界曲面分析方法得到
    了 lPS+3TPS型和 IPT+ZTPS型并联机床的工作空间,文中给出了以上混联结
    构并联机床奇异位形与工作空间分析的数值实例。
     针对叩旬TPS型并联机床的实际加工要求,提出了灵活度指针。该灵活
    度指针选取为刀尖参考点服务区的面积与服务半球面积的比值。提出了基于曲
    面分析的灵活度计算方法,并分析了结构参数、运动学参数对机床主进给机构
    灵活度的影响。分析计算结果表明:IPS旬TPS型型并联机床的主进给机构灵
    巧性好,可以实现大倾角加工。以r+3TPS型并联机床为对象,提出了一种
    精度建模方法,该方法将精度建模的问题转化对应的“虚拟机构”的运动分析
    问题。建立了 IPS+3TPS型并联机床主进给机构的驱动误差、结构误差及球铰
    间隙误差与刀尖参考点位姿误差之间的关系式。利用空间向量链模型推出了并
    联机床系统位姿误差与主进给机构安装误差立柱尺寸误差及工作台运动误差间
    关系的综合表达式,得到了*+3TPS型并联机床的误差模型,为该型并联机
    床的精度补偿提供了理论基础。文中给出了误差分析的数值实例。建立了
    IPS+3TPS型并联机床刚度分析和弹性动力学分析的有限元模型,研究了参数
    变化对主进给机构刚度和固有频率的影响。计算结果表明:IPS伺TPS型型并
    联机床与6-SPS型井联机床相比,Z方向刚度与之相当而X、Y方向的刚度优
    于后者;加大中间腿的截面积可以大大提高并联机床的刚度。以上研究结果为-
    优化并联机床的结构参数,提高其结构抗震性和切削稳定性奠定了基础。
     推导出了ZRPS+ZTPS型及m+3TPS型并联机床运动学分析的一阶和二阶
    影响系数矩阵,得到了其运动学模型。基于数值-符号运算,采用凯恩动力学方
    程,建立了moTPS型并联机床解析的动力学模型,得到了动力学模型矩阵
    
     一 四I;!大学博士学位论文
Parallel machine tools(PMTs), Which came forth in the middle of l990s, are
    also called virtual axis machine tools(VAMTs). PMT is an aPPlication of spatial
    multi-loop parallel machanism in the field of NC machine tool, is an combination
    Otheome of mechanism theory robotic technology and numerical control technology,
    the PrototyPe of PMTs is parallel robotic manipulators. PMTs enjoy following
    advdsges over tr8ditional five-coordinates NC machine tools: high stiffness weight
    ratio, high feed speed, high machining precision, high additional technology value et
    ai. PMT has the characteristic of hardWare simple and software complex, is an
    electromechanic product with high additional technology value, has very vast
    aPPlication vistas in industry.
    Aiming at the deficiency of traditional NC machine tool and parallel machine
    tool, the advantages of traditiona NC machine tool and parallel machine tool are
    used fOr reference, three hybrid type PMT, which combine serial structure with
    parallel structUre, are proposed in this dissertation tbIough type synthesis, Invention
    Patents have been aPplied for them. This three hybrid type PMTs possess such
    advantages as: simple structUre, good dexterity high machining precision, high
    machinillg speed, position decouPling wth orientation, easy NC programming et al,
    can meet the need of numerical colltrol machining fOr large pwts with complex
    Wes. Prototype synthsis, displacement analysis, singularity configuration,
    worksPace, kinematic model, dynamic model, dexterity analysis, accuracy analysis,
    stifness analysis, interpolation algorithm, machining simulation are studied deeply
    and systematically for hybrid tyPe PMTs in this dissertation.
    Absolute coordinates of spherical joints on movable platfOrm are chosen as
    unknwn, a direct displacemeat analysis which is based on resultan eliminatiom
    methOd for 2nyS+2TPS tyPe PMTs is presented, the 7th degree inPut-outPul closed
    form equation with one wtwn is obtained, and all of the roots fOr all unknowns
    are gained. Numeric-symbolic technique is introduced in the procedure of resultant
    
    
    elimination, procedure of number-spobol manipulation is transformed into that of
    matrix manipulation. Because joini variables are treated as symbols and all structure
    paramCters are treated as real nuxnbers, the comPlexity of derivation for input-outPut
    eqUaion is reduced. The soluton is verified with a numerical example, its rsults
    withoot extraneous roots agree with the original eqUaions. Forward displacement
    analysis for lPS+3TPS,lPT+2TPS, lPPS+4TPS type PMTs are performed based on
    result elimation method. Closed form solutions for forward displacement of these
    hybrid type PMTs are derived, numerical examples are given for illustration.
    Method of inverse displacement analysis for hybrid twe PMTS is a1so given.
    An analytical method, which is based on surface analysis, for workspace -
    analysis of 6-SPS type PMTs is proposed in this dissertation. Topological diagram
    of workspace for 6-SPS type PMTs is derived, the equations of workspace
    boundny surfaces for 6-SPS type PMTs are also derived based on the kinematic
    characteristic of the PMTs. The projection and section curve graPhs of workspace
    boundary surfaces for 6-SPS tyPe PMTs are drawn. Results of analysis show that the
    theoretic workspace of 6-SPS trpe PMTs is enveloped by 30 surface patchs. InPut
    and outPut ewtons of disPlacement analysis for double-octahedron variable
    geometry miss PMTs are established, analytical expressions for determining
    singuledty configuration are derived. These analy'tical expressions are solved using
    homotOpy cofitinuation algorithJns, all solotions of singularity configuration are
    obtained. A numerical exarnple of singularity configuration analysis for
    double-octahedron variable geometry trUss PMTs is given., the equations of
    worksPace boundary surfaces for double-octahedron variable geometry truss PMTs
    are derived based on surface analysis method. The projection and section curve
    g
引文
1. Tlusty Jiri, Ziegert John, Ridgeway Shannon. Fundamental comparison of the use of serial and parallel kinematics for machines tools. CIRP. Annals-Manufacturing Technology, 1999, 48(1):351-356
    2. Pritschow G., Tran T.L. Parallel kinematics and PC-based control system for machine tools. IEEE Conference on Decision and Control, 1998, v3 Dec 16-Dec 18, p2605-2610
    3. Zhao J. -W., Chang T. -H., Fan Kuang-Chao. Error analysis of a serial-parallel type machine tool. International Journal of Advanced Manufacturing Technology, 2002, 19(3): 174-179
    4. Chen S. -L., Liu Y. -C. Post-processor development for a six degrees-of-freedom parallellink machine tool. International Journal of Advanced Manufacturing Technology, 2001, 18(4):254-265
    5. Hong K. -S., Kim J. -G., Lee, S. -H. Optimal link design of a parallel machine tool based on manipulability analysis. IEEE International Symposium on Industrial Electronics, 2001, v3 Jun 12-16
    6. Stankoczi Zoltan. Development of a new parallel kinematics machine tool. Periodica Polytechnica, Mechanical Engineering, Technical Univ of Budapest, 1999, 43(2): 147-154
    7. Chen S. -L., You I. -T. Kinematic and singularity analyses of a six DOF 6-3-3 parallel link machine tool. International Journal of Advanced Manufacturing Technology, 2000, 16(11):835-842
    8. Hong Keum-Shik, Kim Jeom-Goo. Manipulability analysis of a parallel machine tool: Application to optimal link length design. Journal of Robotic Systems, 2000, 17(8):403-415
    9. Centea Dan N., Lacheray Herve, Audren Frederic. Development of the TIARA Hexapod-a machine tool based on parallel kinematic structures. American Society of Mechanical Engineers, Manufacturing Engineering Division, MED 10 Nov 14-Nov 19 1999, p 869-878
    10. Kim J., Park F. C., Lee J. M. New parallel mechanism machine tool capable of five-face machining. CIRP Annals-Manufacturing Technology, 1999, 48(1):337-340
    11. Wang J., Tang X., Duan G. Design methodology for a novel planar three degrees of freedom parallel machine tool. IEEE International Conference on Robotics and Automarion, 2001, v3 May 21-26, p2448-2453
    12. Cai G. Q., Wang Q. M., Hu M. A study on the kinematics and dynamics of a 3-DOF parallel machine tool. Journal of Materials Processing Technology, 2001, 111 (1):269-272
    13. Wang Z., Wang Z., Liu W. A study on workspace, boundary workspace analysis and workpiece positioning for parallel machine tools, Mechanism and Machine Theory, 2001, 36(5):605-622
    
    
    14. Huang Tian, Whitehouse D. J., Wang, Jinsong. Local dexterity, optimal architecture and design criteria of parallel machine tools. CIRP Annals-Manufacturing Technology, 1998, 47(1):347-351
    15. Huang T, Wang J S, Whitehouse D J. Closed form solution to the workspace of hexapod based parallel machine tools. ASME Journal Of Mechanical Design, 1999, 121 (1):26-31
    16.汪劲松,黄田.并联机床—机床行业面临的机遇与挑战.中国机械工程,1999,10(10):1103-1107
    17.汪劲松,黄田,杨向东.6-THS型并联机床结构参数设计理论与方法.清华大学学报(自然科学版),1999,39(8):25-29
    18.周延佑,林益耀.发展中的六条腿机床.机械制造.1998,10:4-8
    19.蔡光起,胡明,郭成.机器人化三条腿磨削机床的研制.制造技术与机床,1998,10:4-6
    20.杨向东,李铁民,魏永明.六自由度虚拟轴机床预处理算法研究及系统建造.中国机械工程,1998,9(5):82-86
    21.黄玉美,高峰,史文浩.混联式数控机床的发展.制造技术与机床,2001,8:8-9
    22.赵俊伟,徐振高,范光照.一种串并联型机床及其误差分析.中国机械工程,2001,8(8):861-8647
    23.范守文,徐礼钜,甘泉.一种新型虚拟轴机床的结构设计与位置分析.电子科技大学学报,2001,30(5):464-467
    24.金琼.过约束机构与欠秩并联机器人机构研究.[博士学位论文].南京:东南大学,2001
    25. Paul A. S. Charles, Larnc. Octahedral Machine Tool Frame. United States Patent, Patent Number: 5259710
    26. Paul C. Sheldou, Mequon. Six Axis Machine Tool. United States Patent, Patent Number: 5388935
    27. Taizo Toyama, Kariya, Yoichi Yamakawa. Machine Tool Having Parallel Structure. United States Patent, Patent Number: 5715729
    28.汪劲松,段广洪,唐晓强等.龙门滑块式内外副混合驱动虚拟轴机床结构.中国发明专利,申请号:99109823.4,公开日期:2000.3.8
    29.杨廷力,金琼,刘安心等.用于虚轴机床和机器人等的一类三维平移并联机构.中国发明专利,申请号:01108283.6,公开日期:2001.7.25
    30.蔡光起,胡明,郭成等.一种三自由度并联机器人机构,中国实用新型专利,申请号:97229311.6,公开日期:1999.3.10
    31.赵明杨,李群明,房立金等.一种并联结构数控机床的并联机构,中国发明专利,申请号97116596.3.公开日期:99.3.31
    32.赵明杨,徐志刚,房立金等,一种桁架结构数控机床.中国发明专利,申请号:98121062.7,公开日期:2000.6.21
    
    
    33.高峰,刘辛军.三自由度三轴并联虚拟轴机床.中国发明专利,申请号:00100195.7,公开日期:2000.7.5
    34.高峰,刘辛军.四自由度四轴并联虚拟轴机床.中国发明专利,申请号:00100194.9,公开日期:2000.7.5
    35.高峰,刘辛军等.五自由度五轴并联虚拟轴机床.中国发明专利,申请号:00100193.0,公开日期:2000.7.5
    36.汪劲松,刘辛军,段广洪.两维移动一维转动三轴并联机床结构.中国发明专利,申请号:00105932.7,公开日期:2000.9.27
    37.汪劲松,刘辛军,段广洪,叶佩青.两维移动两维转动四轴并联机床结构.中国发明专利,申请号:00105936.0,公开日期:2000.9.27
    38.高峰,金振林,刘辛军.六自由度虚拟轴机床.中国发明专利,申请号:99122349.7,公开日期:1999.11.3
    39.徐礼钜,范守文,李翔龙.基于混联机构的虚拟轴机床.中国发明专利,申请号:00120604.4,公开日期:2002.7.17
    40.徐礼钜,范守文,徐雪梅.新型混联五自由度虚拟轴机床.中国发明专利,申请号:01107247.4,公开日期:2002.10.23
    41.徐礼钜,范守文,李翔龙.两维移动三维转动五轴虚拟轴机床.中国发明专利,申请号:01128904.x
    42. http://www.isd.mel.nist.gov/documents/wavering/PKM_Final.pdf
    43. http //www.nottingham.ac.uk/schoo14m/research/amt/PKM.htm
    44. http://www.ad.siemens.de/mc/en/index4e9a.html
    45. http//www.dimec.unige.it/PMAR/ROBOTparalleli/perSITO/PKMfor%20plastic.html
    46. http://imel,snu.ac.kr/ecl ipse/EMO_Eclipse/EMO_Eclipse. html
    47. Fuan Wen, Chonggao Liang. Displacement Analysis of the 6-6 Stewart Platform Mechanisms. Mechanism and Machine Theory, 1994, 29(4):547-557
    48. Sreenivasan S V, Waldron K J. Closed-form Direct Displacement Analysis of a 6-6 Stewart Platform. Mechanism and Machine Theory, 1994, 29(6):855-864
    49. Ku Der-Ming. Direct displacement analysis of a Stewart platform mechanism Mechanism & Machine Theory, 1999, 34(3):453-465
    50. Kong X., Gosselin C. M. Generation and forward displacement analysis of two new classes of analytic 6-SPS parallel manipulators. Journal of Robotic Systems, 2001, 18(6): 295-304
    51. Han Lin, Liao Qizheng, Liang Chonggao. Forward displacement analysis of one kind of general 5-5 parallel manipulators. Mechanism and Machine Theory, 2000, 35(2):271-289
    52. Xu L J, Tian G Y, Duan Y. Inverse kinematic analysis for triple-octahedron variable-geometry truss manipulators. Journal of Mechanical Engineering Science, 2001,
    
    
    53.梁崇高,荣辉.一种Stewart平台型机械手位移正解.机械工程学报.1991.27(2):26-30
    54.文福安,李静宜,梁崇高“一般6-6型平台并联机器人机构位置正解”机械科学与技术.1993.1:41-47
    55.范守文,徐礼钜,周肇飞.基于数字-符号法的空间4自由度并联机构位置正解.机械工程学报,2002,38(9)
    56. Hunt K H. Structural Kinematics of In-Parallel-Actuated Robot-Arms. Journal of Mechanism Transmissioms and Automation in Design, 1983, 105:705-712
    57.赵铁石,高英杰,杨铁林,混合型四自由度并联平台机构及其位置分析.光学精密工程,2000,8(1):21-24
    58. Fallahi B., Lai H Y., Naghibi R. A Study of the Workspace of Five-Bar Closed Loop Manipulator Manipulator. Mechanism and Machine Theory, 1994, 29(5): 759-765
    59. Gosselin C M., Angeles J. The Optimun Kinematic Design of a Planar 3-DOF Parallel Manipulator. ASME Journal of Mechanism Transmission And Automation In Design, 1988, 110:35-41
    60. Pennock G R., Kassner D J. The Workspace of a General Geometry Planar 3-DOF Platform-Type Manipulator. ASME Journal of Mechanical Design, 1993, 115:269-276
    61. Masofy O. And Wang J. Workspace Evalution of Stewart Platforms. ASME, 1992, DE-Vol. 45:337-346
    62. V. Arun, Babu Padmanabhan, Kirshnan Kolady. Determination of The Workspace of The 3-DOF Double Octahedral Variable Geometry Truss Manipulator. ASME, 1992, DE-Vol. 45: 493-500
    63. J. A. Nahon, Podhorodeski R. P. Workspace analysis and optimization of a novel 3-DOF parallel manipulator. International Journal of Robotics and Automation, 2000, 15(4): 178-188
    64. Bonev Ilian A., Ryu Jeha. New approach to orientation workspace analysis of 6-DOF parallel manipulators. Mechanism and Machine Theory, 2001, 36(1): 15-28
    65. Bonev Ilian A., Ryu Jeha. Geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators. Mechanism and Machine Theory, 2001, 36(1): 1-13
    66. Merlet J. -P. Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries. International Journal of Robotics Research, 1999, 18(9):902-916
    67.李长友,李德锡.机器人操作手工作空间中的奇异曲面.机器人,1988,2(2):13-19
    68.李国栋,陈宁新.机器人工作空间的界限面及其位置奇异曲面的代数求解方法.机器人,1988,2(6):25-31
    69.范守文,徐礼钜.6-SPS并联机器人工作空间的边界曲面分析方法,机械科学与技术,2001,21(1):66-68
    
    
    70. Clement M. Gosselin, Angeles J. Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Trans. on Robotics and Automation, 1990, 6(3):281-290
    71. St-Onge Boris Mayer, Gosselin Clement M. Singularity analysis and representation of the general Gough-Stewart platform. International Journal of Robotics Research, 2000, 19(3):271-288
    72. Clement M. Gosselin, Jaouad Sefrioui. Determinafion of The Singularity Loci of Spherical Three-Degree-of-Freedom Parallel Manipulators. ASME, 1992, DE-Vol. 45, 329-336
    73. Di Gregorio R. Analytic formulation of the 6-3 fully-parallel manipulator's singularity determination. Robotica, 2001, 19(6):663-667
    74. Choudhury Prasun, Ghosal Ashitava. Singularity and controllability analysis of parallel manipulators and closed-loop mechanisms. Mechanism and Machine Theory, 2000, 35(10): 1455-1479
    75. Wang J., Gosselin C. M. Kinematic analysis and singularity loci of spatial four-degree-offreedom parallel manipulators using a vector formulation. ASME Journal of Mechanical Design, 1998, 120(4):555-558
    76. Xu Yong-Xian, Kohli D., Weng Tzu-Chen. Direct differential kinematics of hybrid-chain manipulators including singularity and stability analyses. ASME Journal of Mechanical Design, 1994, 116(2):614-621
    77.徐礼钜,范守文.一种混联型虚拟轴机床奇异位形分析的解析法.四川大学学报(工程科学版),2002,34(2):9-12
    78.徐礼钜,范守文.机器人奇异曲面及工作空间界限面分析的数字-符号法.机械科学与技术.2000,19(6):861-863
    79.张玉茹.机器人机构与闭环机构的运动特性研究.北京航空学院博士学位论文,1987
    80.范守文,徐礼钜.一种新型并联机床的运动学分析及受力分析.组合机床与自动化加工技术,2002,No7
    81.马万太,林志航.刚性球头铣刀切削力模型.机械科学与技术,1998,17(3):422-424
    82. Vukobratovic M., Kireanski N. Real-Time Dynamics of Manipulation Robots. Spring-Verlag, 1984
    83. Vukobratovic M., Kircanski N. A Method for Computer-Aided Construction of Analytical Models of Robotic, Manipulators. Internafonal Conference on Roboties, 1984, p519-528
    84. Chen Y., Li L. An Improved Analytical Model Algorithm of Robotic Dynamics. ASME Design Automation Conferenee, 1989, Montreal, Canada
    85. Fan Shou Wen, Xu LiJu, Chen Yong. Numeric-Symbolic Approach for Dynamic Modelling of Robotic Manipulators. ASME Design Automation Conference, Arizona, U. S. A., 1992
    86. Xu LiJu, Fan ShouWen, Chen Yong. Analyfieal Model Algorithm for Dynamics of Robotic Manipulators. 机械工程学报(英文版), 1995, 18(2): 168-171
    
    
    87. Xu LiJu, Fan ShouWen, Chen Yong. A Numeric-Symbolic Approach for Kinematics and Dynamics of Robotic Manipulators. Mechanisms and Machine Theory, 1995, 30(5): 645-652
    88. Xu LiJu., Fan ShouWen, Li Hong. Analytical model method for dynamics of N-celled tetrahedron-tetrahedron variable geometry truss manipulators. Mechanism and Machine Theory, 2001, 36(11):1271-1279
    89. Fenton R. G, Xi F. Determination of Robot Joint Velocities Using The Algebra of Rotations. Eight World Congress On The Machines and Mechanism. Prague, Czechoslovakia, 1991: 1189-1192
    90.李兵,王知行,李建生.基于凯恩方程的新型并联机床动力学研究.机械科学与技术,1999,18(1):41-43
    91.高山,徐礼钜,林光春.6-SPS并联机器人动力学解析模型.四川大学学报(工程科学版),1998,2(2):34-39
    92.刘鲁源,刘畅,王欣东.机器人反向动力学方程的并行计算,自动化学报,20(6):687-692
    93.范守文,徐礼钜.一种新型并联机床的动力学解析模型.第十三届全国机构学学术讨论会议,杭州,2002.8
    94. Ropponen T, Arai T. Accuraey analysis of a modified stewart platform manipulator, IEEE International Conference on Robotics and Automation. 1995. 521-524
    95. Kim K., Kim M. K. Volumetric accuracy analysis based on generalized geometric error model in multi-axis machine tools. Mechanism & Machine Theory, 1991, 26(2): 207-219
    96. Moriwaki Toshimichi, Sugimura Nobuhiro, Miao Yong. Analytical approach for accuracy design of machine tools (2nd report, design of kinematic accuracy for shape generating motions based on accuracy of product surfaces). Transactions of the Japan Society of Mechanical Engineers, 1993, 59(5):2564-2569
    97. Kreng V. B., Liu C. R., Chu C. N. Kinematic model for machine tool accuracy characterisation. International Journal of Advanced Manufacturing Technology, 1994, 9(2):79-86
    98.玛琳,黄田,王洋.面向制造的并联机床精度设计.中国机械工程,1999,10(10):1114-1117
    99.余晓流,王启义,赵明杨.基于测量数据反演并联机床非线性误差模型.机械工程学报,2001,37(2):38-42
    100.乔俊伟.6-SPS并联平台位置姿态误差分析.机械科学与技术,2001,20(1):58-59
    101. B. S. El-Khasawneh, P. M. Ferreira. Computation of stiffness and stiffness bounds for parallel link manipulators. International Journal of Machine Tools & Manufacture, 1999, 39:321-342
    102. Huang D. T. -Y., Lee J. -J. On obtaining machine tool stiffness by CAE techniques. International Journal of Machine Tools and Manufacture, 2001, 41 (8): 1149-1163
    
    
    103. Rebeck Erik, Zhang Guangming. Method for evaluating the stiffness of a hexapod machine tool support structure. International Journal of Flexible Automation and Integrated Manufacturing, 1999, 7(3): 149-165
    104.李兵,王知行,袁剑雄.新型并联机床的刚度计算模型.机械设计,1999,3:14-16
    105.李兵,王知行,刘文涛.新型并联机床的固有特性研究.机械设计,1999,9:13-15
    106. Yang D C H, Lai Z C. On the Dexterity of Robotic Manipulators-Service angle. ASME Journal of Mechanisms Transmissions and Automation in Design, 1985, 107(3):262-270
    107. Saxena Vivek, Liu Dongming, Daniel Cecil M. Simulation study of the workspace and dexterity of a Stewart platform based machine tool. ASME, Dynamie Systems and Control Division (Publication) DSC, v61 Nov 16-21, 1997, p617-623
    108. Roberts R. G. The dexterity and singularities of an underactuated robot. Journal of Robotic Systems, 2001, 18(4):159-169
    109.黄田,汪劲松.Stewart并联机器人局部灵活度与各向同性条件解析.机械工程学报,1999,35(5):41-46
    110. Zhou L., Lin Y. -J. An effective global gouge detection in tool-path planning for freeform surface machining. International Journal of Advanced Manufacturing Technology, 2001, 18(7): 461-473
    111. Vosniakos G., Papapanagiotou P. Multiple tool path planning for NC machining of convex pockets without islands. Robotics and Computer-Integrated Manufacturing, 2000, 16(6):425-435
    112. Lee Yuan-Shin. Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining. Computer Aided Design, 1998, 30(7):559-570
    113. Hu Y. N., Tse W. C, Chen Y. H. Tool-path planning for rough machining of a cavity by layer-shape analysis. International Journal of Advanced Manufacturing Technology, 1998, 14(5):321-329
    114. Rao N., Ismail F., Bedi S. Tool path planning for five-axis machining using the principal axis method. International Journal of Machine Tools & Manufacture, 1997, 37(7):1025-1040
    115.杨向东,李鸿,汪劲松.五自由度作业要求下Stewart平台的运动特性.清华大学学报,1998,38(11):53-57
    116.李铁民,汪劲松,杨向东,段广洪.基于Stewart平台数控机床的轨迹规划研究.中国机械工程,1999,10(10):1118-1120
    117.周凯,陆启建,虚拟轴机床刀具运动轨迹的直接控制.仪器仪表学报,2000,21(1):
    118. Suzuki Hiroshi, Kuwano Yoshimasa, Goto Katsuyuki. Development of the CAM system for 5-axis controlled machine tool. Journal of the Japan Society for Precision Engineering, 1994, 60(6): 832-836
    119.魏永明,叶佩青,李铁民,杨向东.虚拟轴机床CNC系统的软件设计及系统特点.制造技术与机床,1999
    
    
    120.徐礼钜,范守文,倪田荣.新型并联机床的运动学建模与CNC系统设计.机床与液压,2002,No8
    121.范守文,徐礼钜.面向新型并联机床的插补原理与方法研究.第5届海内外青年设计与制造科学会议,大连,2002
    122.周凯.虚拟轴数控机床的虚实映射联动控制.中国机械工程,1998,9(3):16-19
    123.周济,周艳红,周云飞.自由曲面的CNC直接插补加工技术,高技术通讯,1998,11:30-35
    124.单岩,谭建荣.基于MODM模型的曲面NC加工刀轨行距计算.机械工程学报,2001,37(11):36-41
    125. S S Yeh, P L Hsu. The speed-controlled interpolator for machining parametric curves. Computer Aided Design, 1999, 31 (3):349-357
    126. Fleisig R. V., Spence A, D. Constant feed and reduced angular acceleration interpolation algorithm for multi-axis machining. Computer Aided Design, 2001, 33(1): 1-15
    127. Lo Chih-Ching, CNC machine tool surface interpolator for ball-end milling of free-form surfaces. International Journal of Machine Tools and Manufacture, 2000, 40(3):307-326
    128. Lo Ch. -Ch., Hsiao Ch. -Y. CNC machine tool interpolator with path compensation for repeated contour machining. Computer Aided Design, 1998, 30(1):55-62
    129. Yang Daniel C. H., Golub Alex D. Preeision trajectory generation for CNC milling of arbitrary contours and surfaces. International Journal of Machine Tools & Manufacture, 1994, 34(7): 1005-1018
    130.王忠华,汪劲松,杨向东.VAMTIY虚拟轴机床数控系统直线和园弧插补仿真研究.中国机械工程,1999,10(10):1121-1123
    131.胡自化,张平.三次B样条曲线恒速进给实时插补算法的研究。制造技术与机床,2000,(8):31-33
    132.王洋,倪雁冰,黄田.并联机床插补算法与原理性插补误差预估.机械工程学报.37(6):15-18
    133. Onosato M, Iwata K. Development of a virtual manufacturing system by integrating product models and factory models. Annals of the CIRP, 1993, 42:475-478.
    134.汪劲松,朱煜,张华.并联机床虚拟产品设计系统及基本框架研究,计算机集成制造系统.2001.7(5):57-62
    135.范守文,徐礼钜,甘泉.新型混联虚拟轴机床加工仿真系统的设计与实现.机械科学与技术,2002(5)
    136.黄真,孔令富,方跃法,并联机器人机构学理论及控制.北京:机械工业出版社,1997
    137.杨廷力.机械系统基本理论—结构学、运动学、动力学.北京:机械工业出版社,1996
    138.施法中.计算机辅助几何设计与非均匀有理B样条.北京:北京航空航天大学出版社,1994
    139.毕承恩,丁乃建,现代数控机床.北京:机械工业出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700