用户名: 密码: 验证码:
中国大陆非构造负荷地壳形变的区域性特征与改正模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪90年代初以来,GPS空间大地测量学的迅速发展和全面应用,为全球范围各种规模尺度的地壳运动和构造形变观测提供了革命性的手段,使高精度、大范围、全天候、低成本的大地测量变成了现实。为及时把握GPS空间对地观测技术为防震减灾应用带来的机遇,我国先后于1997-2000年和2007-2012年实施了国家重大科学工程“中国地壳运动观测网络”和“中国大陆构造环境监测网络”,在中国大陆及周边建立了由260个连续GPS观测站和2056个非连续GPS观测站构成的高精度、高密度观测网络,为精细而定量地研究中国大陆不同构造区域的现今地壳运动方式和构造形变演化态势提供了至关重要的基础平台。
     近年来,随着GPS星座系统、观测设备、处理软件和全球服务的进一步完善和发展,在正常观测环境和规范测量方式下,基于约24小时的连续静态观测和标准化的GPS数据处理策略,已经实现以“数毫米”量级的精度(水平向优于3mm、垂直向优于6mm)获得站点在全球参考框架下的单日平均坐标。因此,通过对“中国地壳运动观测网络”等工程的各GPS站点进行长年累月的连续观测或间歇性的非连续观测,可获得其高精度坐标位置随时间变化的序列过程。据此,我们不仅能够估计各站点的平均运动速度,而且能够解析其运动变化过程,并直接获取到一系列量值较为显着的非线性变化现象,如同震位移、震后驰豫形变、活动断裂的慢地震滑移等等。但是,当我们关注和地震危险性相关的构造运动或地壳形变时,GPS站点坐标变化时间序列中所包含的一些系统性误差,尤其是一些非构造形变的干扰将不容忽视,因为许多非构造干扰(如时变的大气潮汐、区域海洋潮汐、陆地水负荷等等)所产生的地壳形变或站点位移,往往与构造形变处于同一量级。因此,如何从GPS的坐标变化时间序列中有效地分离和剔除各种非构造形变的影响,使其更好地服务于地震危险性监测与分析,一直是GPS大地测量领域兼具重要科学意义和迫切实际需求的研究课题。
     本论文以非构造负荷形变对中国大陆GPS坐标时间序列的影响为主题,以中国大陆及周边高精度连续GPS观测资料为基础,对不同区域时变大气潮汐、区域海洋潮汐和陆地水负荷所引起的非构造形变特征开展定量研究,并将改正模型应用于中国大陆连续GPS观测站和非连续GPS观测站的坐标变化时间序列中,获得了更加接近真实构造形变的结果,使其更加有效地反映构造形变。具体的研究和探讨主要有以下几个方面:
     (I)归纳总结国内外高精度GPS数据处理优化方法和先进策略,采用美国JPL的GPS前处理软件GIPSY和后处理平差软件QOCA,对中国大陆各区域典型连续GPS观测站数据进行了严密处理,获得了高精度坐标变化时间序列,为进一步分离和研究不同区域非构造形变特征提供了基础数据
     GPS坐标变化时间序列中既包含着一系列随机误差、模型偏差、参数误差,也包含地表负荷(如大气潮汐、区域海洋潮汐及陆地水负荷)引起的非构造形变信息。为了从高精度GPS时间序列中有效获取中国大陆不同区域的非构造负荷形变,我们选取了具有区域代表性的连续GPS观测站,并在严密的数据处理中采用了GIPSY软件的精密单点定位(PPP)策略和基于固定点法则的整网模糊度解算方法(Ambizap),同时,选用了国际上最新的先验对流层延迟模型ECMWF(European Centre for Medium-RangeWeather Forecasts)和对流层投影函数VMF1(Vienna Mapping Function1)、并纳入高阶电离层影响改正,对GPS数据处理的关键模型进行了优化。最后,通过联合平差与地壳形变分析软件QOCA,扣除了GPS时间序列中的构造形变(构造运动速率、地震影响等)及站点异常影响,突出了中国大陆各区域非构造形变。
     (II)分析研究了中国大陆及周边大气潮汐负荷的非构造形变影响,并针对目前国际上通用大气压数据中包含有许多虚假“潮汐分量”信号的实际情况,设计编制了一套20阶的Butterworth低通滤波器,有效地剔除了这种虚假“潮汐分量”的影响,并较好地应用于中国大陆各区域的GPS时间序列中
     大气受到日月引力潮作用和局部热力作用产生大气潮汐和质量的重新分布,由此可引起地壳的非构造负荷形变。基于GPS的高精度观测,可探测和分辨大气负荷形变的存在。大气负荷包含潮汐负荷和非潮汐负荷,总体的大气负荷形变在地球表面的最大量值可达厘米,主要出现在高纬度区域。
     我们的研究表明,对于中国大陆区域,大气潮汐现象所引起的垂向形变通常为亚毫米级,而北向和东向分量仅为垂向分量的1/10左右;其中,半日潮汐(S1)负荷形变振幅具有明显的纬度相关性,即同一纬度负荷形变的振幅基本一致,但相位随经度变化而不同。大气非潮汐负荷形变的计算主要利用实测大气压力资料,并通过格林函数积分获得。然而,考虑到目前国际上的大气压变化数据主要来源于ECMWF和NCEP等气象中心提供的重分析产品,由于模型缺陷、数据噪声和采样率等引起的混频效应,使这些大气压数据中包含有许多虚假的“潮汐分量”信号。理论计算表明,这种虚假的“潮汐分量”会对GPS时间序列产生垂向0.5-1mm、水平向0.1-0.2mm的偏差,使GPS时间序列产生周期为5-6天、半年和整年的多种波动,在GPS时间序列中不容忽视。为此,本文设计了一套阻带频率为1周/每天、阻带衰减为35dB的20阶的Butterworth低通滤波器,有效地剔除了这种虚假“潮汐分量”的影响,并获取了更加可靠的大气非潮汐分量。
     (III)通过对比多种全球海洋潮汐模型在中国海域的差异性,提出采用高分辨率区域海洋潮汐模型进行潮汐负荷形变的改正,可有效避免GPS时间序列中长周期的非构造形变虚假信号。并通过对目前卫星测高资料的分析,说明当下海洋非潮汐改正的实用效果尚不可靠,需进一步提高海洋非潮汐模型精度
     中国大陆东濒太平洋、南临印度洋,海岸线蜿蜒悠长,海水的潮汐变化和非潮汐变化均会引起沿海及内陆一定范围的非构造形变。由于几种全球海洋潮汐模型在中国海域的分辨率不同,我们发现纳入高分辨率的区域海洋潮汐模型,可对沿海GPS站垂向M2潮汐波产生平均量值达1.1mm的改善,最大的改正值可达5mm;若不考虑高分辨率的区域海洋潮汐模型,则会在GPS时间序列中产生“虚假”的长周期信号;而对于海洋非潮汐负荷形变,我们基于目前高精度卫星测高资料对沿海区域GPS观测站时间序列进行海洋非潮汐负荷形变改正后,仅少数站点的时间序列有所改善,究其原因在于目前的卫星测高资料仍不能完全满足高精度海洋非潮汐负荷形变计算和改正的要求。考虑到海洋非潮汐形变的最大振幅小于1mm,因此,我们建议在GPS数据处理和时间序列分析中,可暂不考虑海洋非潮汐负荷形变的影响。
     (IV)结合GRACE时变重力场和全球陆地水资料NCEP的各自优势,尝试研究了一种数据同化方法,获得了中国大陆兼顾时-空分辨率的陆地水负荷时变资料,并据此计算了不同区域的陆地水迁徙负荷形变。在此基础上,分析评估了该方法对GPS时间序列的改正的效果
     陆地水负荷所产生的地壳形变,在所有非构造形变中量值最为显着。中国大陆不同区域的陆地水负荷形变差异,可达厘米量级。GRACE时变重力场和全球陆地水资料(NCEP)为目前计算陆地水负荷形变最重要的基础资料,两者均能反映陆地水的短期变化。其中,GRACE时变重力场不仅反映土壤湿度影响,而且还反映地表水和地下水影响,因而具有较高的精度,但存在时间分辨率较低的问题。全球陆地水资料(NCEP)提供0-2m深度范围的土壤湿度和积雪负荷,具有较高的时间分辨率,但不包含地表和地下水资料。针对两种资料各自的长短优劣,我们尝试研究了一种数据同化方法:以GRACE资料为主,以NCEP作为陆地水短时变化的有效补充,使陆地水负荷资料兼具GRACE在长时间尺度上的高精度和NCEP在短时间尺度上高分辨。基于同化结果,我们就中国大陆不同区域进行了验证分析,并利用小波分析方法讨论了陆地水迁徙负荷形变与GPS时间序列在低频分量的相关性及改善程度。结果表明,当陆地水迁徙负荷形变量大于GPS观测噪声时,改正效果明显。而对于信噪比较小的区域,改正效果较差甚至负面。
     (V)以连续GPS观测资料和GRACE同化资料为基础,采用支持向量回归方法(SVR)联合反演区域非构造负荷形变模型,并针对中国大陆地表水变化显着性差异较大的两个典型区域,验证分析了该方法对连续GPS和流动GPS观测站时间序列的改善效果
     高精度GPS可直接探测到地表的非构造负荷形变,但往往包含有站点局域干扰和环境模型误差等方面的影响;而基于地球物理模型亦可获得各种地表负荷所引起的“理论形变”,但地球物理模型参数的精度缺陷和输入资料的时空分辨率可能导致理论计算结果的偏差。为此,我们尝试以连续GPS观测资料作为基本观测量,以GRACE同化资料为约束,采用SRV (Support Vector Regressing)方法联合反演区域非构造负荷形变。在滇西地区和陇中黄土高原区域实际应用和效果验证表明:联合反演方法兼顾了GPS和GRACE资料的特点,并纳入了物理意义明确的模型约束,可避免对连续GPS的单一依赖,且联合反演结果能明显改善非连续GPS观测的时间序列。
Since the early1990s the space geodetic technology GPS has been developed rapidlyand widely applied to various fields. As a revolutionary tool for detecting crustalmovement and tectonic deformation on various scales all over the world, the GPS is veryconvenient for surveying with high accuracy, large scope, all-weather and low cost. Totimely grasp the opportunity of application of GPS to monitoring the earth for earthquakeprevention and disaster reduction, the national major scientific project “ObservationalNetwork for Crustal Movement of China” and “Monitoring Network for ContinentalTectonic Environment of China” have been implemented in our country from1997to2000and2007to2012, respectively. The observation network, which is of high-accuracy andhigh-density, consisting of260continuous GPS stations and2056non-continuous GPSstations built around China mainland, has become an important infrastructure platform fordetecting the present crustal movement with high accuracy and analyzing the evolutionprocess of tectonic deformation quantitatively.
     In recent years, with further optimization and development of the GPS constellationsystem, observation devices, data processing software and IGS (International GNSSService), given the data with continuous24hours under well observation circumstance andstandard measurement mode, it is possible to achieve daily coordinates of the station inglobal reference framework with an accuracy of several millimeters by using the routineGPS data processing(the accuracy can be better than3mm and6mm in horizontal andvertical direction respectively). By using years of continuous observation data ornon-continuous observation data of different GPS stations from CMONOC and otherprojects, one can get the GPS time series with high-accuracy. Based on these time series,one can not only estimate the velocity of each station, but can also analyze obviousnon-linear variations, such as co-seismic displacement, post-earthquake relaxationdeformation, and slow slip earthquakes of active faults. However, when the study focuseson the tectonic movement or crustal deformation related with the possibility of occurrenceof earthquakes, some systematic errors in GPS site coordinate time series cannot beignored, especially some non-tectonic deformation, because crustal deformation or sitedisplacement caused by non-tectonic load, such as time-varying atmospheric tide, regionalocean tide, and land water migration, always has the same magnitude as tectonicdeformation. Therefore, it is an important issue how to effectively separate and eliminatevarious non-tectonic deformation from GPS time series, so as to better serve detections andanalysis of earthquake risks.
     In this thesis, the effect of non-tectonic load deformation on GPS time series aroundChina is discussed firstly. Then the characteristics of deformation induced by time-varyingatmospheric tide, regional ocean tide, and land water load are analyzed quantitativelybased on high-accuracy continuous GPS observation data. At last correction tonon-tectonic load deformation from GPS continuous and non-continuous time series ofChina is made by using different geophysical models. The specific contents are concernedwith following several aspects:
     I. By deducing and summarizing the optimized method and advanced strategy inGPS data processing, the GPS data processing software GIPSY and post-processingbalancing software QOCA from JPL are adopted to process continuous GPS data ofdifferent area around China in order to acquired the GPS time series withhigh-accuracy, which provides a foundation for further separation and analysis ofcharacteristics of non-tectonic deformation in different areas.
     Not only the biases from random errors, model biases and parameter errors,but alsonon-tectonic deformation caused by time-varying surface loads, such as atmospheric tide,regional ocean tide, land water load, can affect GPS time series. To effectively getnon-tectonic deformation of different areas around China from high-accuracy GPS timeseries, this work selected some typical regional continuous GPS stations, and used precisepoint positioning (PPP) of GPSY software and Ambiguity resolution for the whole network(Ambizap) based on principal of fixed point in GPS data processing. Meanwhile, in orderto optimize the key model of GPS data processing, the international advanced prioritroposphere delay model ECMWF (European Centre for Medium-Range WeatherForecasts)and troposphere projection function VMF1(Vienna Mapping Function1) areemployed, and the higher-order ionosphere model is adopted to correct the ionosphereeffect in GPS data processing. Ultimately, tectonic deformation (like the rate of tectonicmovement, seismic influence and etc) and site abnormal effect of each site are eliminatedby using QOCA (Quasi-Observation Combination Analysis). Thus, non-tectonicdeformation of each area around China is highlighted.
     II. Effects of atmosphere tide load on non-tectonic deformation around Chinahave been analyzed and studied. Considering partial “tide” atmosphere component inatmosphere pressure data, which are commonly used all over the world, a low passfilter with20orders is designed to eliminate this effect and well adopted in GPS timeseries around China.
     Ocean water redistribution, which is originated from sun/lunar gravitation tides andlocal thermodynamic processes, will lead to non-tectonic load deformation. Based on high-accuracy GPS time series, one can observe and detect the atmosphere loaddeformation. The atmospheric load contains tidal load and non-tidal load. The maximumvalues of atmospheric load deformation on the earth can reach centimeters, which mainlyappears in high-latitude areas.
     The study shows that the vertical deformation induced by atmosphere tide is ofsubmilimeter level around China, while the north and east component are smaller,equivalent to10percent of vertical component. Among them, amplitude of loaddeformation induced by semidiurnal tidal (S1) is related with latitude, i.e., amplitudes ofload deformations of same latitude are identical, but the phases are different with longitude.This work mainly integrates atmosphere pressure data with Green Function to computenon-tectonic atmosphere load deformation. Nevertheless, current international atmospherepressure data are mainly from re-analysis products provided by different weather centers(ECMWF and NCEP). Due to complicated signals related with model defect, noise andsampling rate, these atmosphere pressure data contain partial "tide" atmosphere in it.Theoretical calculation shows that this kind of partial "tide" atmosphere will lead to biasesin GPS time series with the magnitude of0.5-1mm and0.1-0.2mm in vertical andhorizontal direction, respectively, thus generating spurious signal in GPS time series withperiod of5to6days and seminal and annual, which can not be ignored in the GPS dataprocessing. To this end, a low pass filter Butterworth with the order of20is designed;which has a cutoff frequency of1week/day and a stop-band attenuation of35dB. Byadopting this filter, the partial "tide" atmosphere can be effectively eliminated, thusatmosphere non-tide component can be acquired with good reliability.
     III. By comparing the differences of several global ocean tide models aroundChina’s seas, a regional ocean tide model with high spatial resolution is adopted tocorrect tide load deformation, which is an effective way to eliminate spuriousnon-tectonic deformation signal of long-period in GPS time series. Meanwhile, byanalyzing the current satellite altimetry data, this work concludes that non-tide oceanloading deformation is not reliable enough now and accuracy of the non-tide oceanmodel needs to be enhanced further.
     With a long coastline, China faces the Pacific Ocean in the east and Indian Ocean inthe south. Both the tidal and non-tidal variations of oceans will lead to non-tectonicdeformation around China’s seas, especially in coastal areas. Because several global oceantide models have different spatial resolutions in Chinese seas, it is found that a regionalocean tide model with high spatial resolution is incorporated, the coastal GPS verticaldeformation induced by M2tide wave will be improved by a magnitude of1.1mm on average, and the maximal correction value can reach5mm. If this regional ocean tidemodel with high spatial resolution is not taken into consideration, then spuriouslong-period signal will be generated in GPS time series. And as for ocean non-tidal loaddeformation, only few costal GPS time series can be improved if ocean non-tidal loaddeformation from GPS time series is corrected based on currently high-accuracy satellitealtimetry. It is the reason that currently satellite altimetry data is still not accurate enough,thus elimination of ocean non-tidal load deformation in GPS time series is still on the way.In view of maximum amplitude of ocean non-tidal deformation is lower than1mm; thisthesis suggests ignoring ocean non-tidal load deformation currently when performing GPSdata processing and time series analysis.
     IV. Combining respective advantages of the GRACE time-varying gravity fieldand global land water data NCEP, this work attempts to design a kind of dataassimilation method and get the land water data around China. This method has theadvantage in both time and space resolution. Based on the above, the land watermigration load deformation of different regions is computed. Then, analysis andevaluation of this method in GPS time series are performed.
     The magnitude of crustal deformation induced by land water is very considerableamong all values of non-tectonic deformation. The magnitude of deformation differenceinduced by land water load can reach centimeters around China. The GRACE time-varyinggravity field and global land water model (NCEP)are currently most important data forstudying land water load deformation. Both of them can reflect short-term variation of landwater. Among them, the GRACE time-varying gravity field contains not only snow/soilhumidity but also surface water and ground water variation. Thus it is of higher accuracy.But GRACE has disadvantage of low time resolution. The global land water model(NCEP)can provide soil humidity and snow load in a depth range from0to2meter andis of higher time resolution, but not includes surface water and ground water data.According to the advantage and disadvantage of these two kinds of data, this work tries todesign a data assimilation method by taking NCEP as effective complementation forGRACE in short term, in this way the land water load data with advantages ofhigh-accuracy of GRACE on a long-time scale and high resolution of NCEP on short timescale can be jointly employed. Based on the assimilation result, this thesis analyzes thecharacteristics of land water deformation over China. And by adopting the wave analysismethod, it discusses the correlation between land water load deformation and GPS timeseries, and then analyzes the improvement of GPS time series corrected by the simulationresult in low frequency component. The results show that when the land water load deformation is larger than GPS noise, the correction coefficient is larger. But for the regionwith lower SNR (signal noise ratio), the correction coefficient is smaller, even negative.
     V. Based on continuous GPS observation data and GRACE assimilation data,this work adopts the Support Vector Regression (SVR) to jointly invert the regionalnon-tectonic load deformation model, and this method is validated by analyzing theimprovement of continuous GPS and non-continuous GPS time series correctednon-tectonic load deformation based on the assimilation results in two typical regionswith larger significant differences of surface water variations over China.
     High-accuracy GPS can directly detect the surface non-tectonic load deformation, butit usually also contains deformation from local effects and environment model errors andother factors. Based on the geophysical model,"theoretical deformation" induced byvarious kinds of surface loads can also be acquired, but the poor accuracy of thegeophysical model and time-space resolution of input data may lead to deformation biases.To solve this problem, this work tries to take the continuous GPS observation data as basicobservations and GRACE assimilation data as a prior constraint, and adopts SVR (SupportVector Regressing) to jointly invert the regional non-tectonic load deformation model. Theapplication and validation in western Yunnan and the Longzhong plateau area areperformed. The result shows that the joint inversion method can utilize advantages of bothGPS and GRACE data, with a prior constraint from the known physical model, which doesnot solely originate from continuous GPS. The joint inversion results can obviouslyimprove the time series of continuous and non-continuous GPS stations.
引文
Andersen, O. B. The DTU10Gravity filed and Mean sea surface [R], Second internationalsymposium of the gravity field of the Earth (IGFS2), Fairbanks, Alaska,2010
    Antonov, J. I., D. Seidov, T. P. Boyer et al. World Ocean Atlas2009, Volume2: Salinity.S. Levitus, Ed., NOAA Atlas NESDIS69[Z]. Washington: U.S. Gov.Printing Office,2010, pp184.
    Allinson C R, Clarks P J.Edwards S J et al. Stability of direct GPS estimates of ocean tideloading [J].Geophys. Res. Lett,2004,(31), L15603.
    AVISO, SSALTO/DUACS User Handbook: SLA and ADT Near-Real and Delayed Timeproduct[C],2012-02-06
    Bertiger W.,Desai S.,Haines B.,et al. Single receiver phase ambiguity resolution with GPSdata [J].J.Geodesy,2010,(84),327-337.
    Bock Y.,Nikolaidis R. M.,Jonge P. J.,et al.Instantaneous geodetic positioning at mediumdistance with the Global Positioning System[J].J Geophys Res,2000,105(28):223-228.
    Boehm, J., A. Niell, P. Tregoning,et al. Global Mapping Function (GMF): A new empiricalmapping function based on numerical weather model data [J], Geophys. Res. Lett.,2006(33), L07304, doi:10.1029/2005GL025546.
    Boehm, J., R. Heinkelmann, and H. Schuh. Short note: A global model of pressure andtemperature for geodetic applications [J], J. Geod,2007,(81),679–683, doi:10.1007/s00190-007-0135-3.
    Bruinsma, S., J. Lemoine, R. Biancale, et al. CNES/GRGS10-day gravity field models(release2) and their evaluation [J]. Adv. Space Res.,2010,(45),587–601,doi:10.1016/j.asr.2009.10.012.
    Blewit G. An automatic editing algorithm for GPS data Geophysics [J].Res Lett,1990,17(3):199-202
    Blewitt G. Carrier phase ambiguity resolution for the global positioning system applied togeodetic baselines up to2000km [J].J. Geophys. Res.,1989,94(B8):10187-10203.
    Blewitt G. Fixed Point Theorems of GPS Carrier Phase Ambiguity Resolution and TheirApplication to Massive Network Processing: Ambizap [J], J Geophys Res.,2008,113(B12410):1-16.
    Blewitt G,Clarke P. Inversion of Earth s changing shape to weigh sea level in staticequilibrium with surface mass redistribution[J].J.Geophys.Res.,2003,108(B6),2311
    Blewitt G. Se1f_consistency in reference frames, geocenter definition and surface loadingof the solid Earth [J]. J.Geophys.Res,2003,108(B2),2103
    Calais E., L. Dong, M. Wang, et al.Continental deformation in Asia from a combined GPSsolution [J].Geophys. Res. Lett.,2006,33, L24319:1-6.
    Carl Wunsch, Patrick Heimbach, Rui M. Ponte. The Global general circulation of theocean estimated by the ECCO-Consortium, oceanography,2008,22(2):88-103
    Chambers DP. Observing seasonal steric sea level variations with GRACE and satellitealtimetry [J]. J Geophys Res (Oceans),2006,111(C10):C3010.doi:10.1029/2005JC002914
    Chen, J. L., C. R. Wilson, and B. D. Tapley. Satellite gravity measurements confirmaccelerated melting of Greenland Ice Sheet [J], Science,2006,(313),1958–1960,doi:10.1126/science.1129007.
    Chen, J. L., C. R. Wilson, B. D. Tapley, et al.2005drought event in the Amazon Riverbasin as measured by GRACE and estimated by climate models [J], J. Geophys. Res.,2009,(114), B05404, doi:10.1029/2008JB006056.
    Cheng, M., and B. D. Tapley. Variations in the Earth’s oblateness during the past28years[J], J. Geophys. Res.,2004,(109), B09402, doi:10.1029/2004JB003028.
    Cheng, Y., and O. B. Andersen. Improvement in global ocean tide model in shallow waterregions [C], Poster, SV.1-6845pp., OST-ST Meeting on Altimetry for Oceans andHydrology, Lisbon,2010
    Collilieux, X., Z. Altamimi, D. Coulot, et al. Impact of loading effects on determination ofthe International Terrestrial Reference Frame [J], Adv. In Space Res.2010,(45):144-154, doi:10.1016/j.asr.2009.08.024
    Collin F, Warrant R (1995). Application of wavelet Transformation for GPS cycle slipcorrection and comparison with kalman filtering [J].manuscripta geodaetica,1995(20):161-172
    Crowley JW, Mitrovica JX, Bailey RC, Tamisiea ME, Davis JL.Annual variations inwaterstorage and precipitation in the Amazon Basin[J]. Journal of Geodesy,2008,82(1):9-13. Doi:10.1007/s00190-007-0153-1
    Dach, R., B hm, J., Lutz, S., et al. Evaluation of the impact of atmospheric pressureloading modeling on GNSS data analysis [J]. J. Geodesy,2011,85(2),75–91.
    Darwin, G.H. On variations in the vertical due to elasticity of the Earth's surface [J], Phil.Mag.,1882,5(14):409-427.
    Davis J L,Elosegui P,Mitrovica J X,et a1. Climate driven deformation of the solid Earthfrom GRACE and GPS [J].Geophysics Research Letter,2004,(31):L24605
    Dibarboure G., M-I.Pujol, F.Briol, et al. Jason-2in DUACS: first tandem results andimpact on processing and products [J]. Marine Geodesy,2010,115(30):120-138
    Dong D.,Bock Y.Global positioning system network analysis with phase ambiguityresolution applied to crustal deformation studies in California[J].Journal ofGeophysical Research,1989,94(B4):3949-3966.
    Dong, D., P. Fang, Y. Bock, et al. Anatomy of apparent seasonal variations fromGPS-derived site position time series [J]. J. Geophys. Res.,2002,107(B4),2075,doi:10.1029/2001JB000573.
    Dong D N,Fang P,Bock Y,et al. Spatiotemporal filtering using principal componentanalysis and Karhunen-Love expansion approaches for regional GPS network analysis[J]. J Geophy Res,2006.111:B03405?:1-16.
    D. Eriksson and D. S. MacMillan. Continental Hydrology Loading Observed by VLBIMeasurements [J]. Jornal of Geodesy,2012,103(10):174-183
    Danchick, R.J. Navy Navigation satellite system status, In: Proc [C], position location andnavigation symposium1988, Orlando, Florida, USA.1998, P21-24
    Dong D,Herring T A,King R W. Estimating regional deformation from a combination ofspace and terrestrial geodetic data[J],Journal of Geodesy,1998,72(4):200-214.
    Egbert, G. D., and S. Y. Erofeeva. Efficient inverse modeling of Barotropic Ocean tides [J].J.Atmos. Ocean. Tech.,2002,(19),183–204.
    Farell W E. Deformation of the earth by surface loads. Review of geophysics and spacephysics,1972,10(3):761-797
    Fei-peng Zhang, Gerd Gendt, Mao-rong Ge. GPS data processing at GFZ for monitoringthe vertical motion of global tide gauge benchmarks [R], scientific technical report,2007.
    Fu, Y., J. T. Freymueller, and T. van Dam. The effect of using inconsistent ocean tidalloading models on GPS coordinate solutions [J], J. Geod,2012,(in press),doi:10.1007/s00190-011-0528-1.
    Fu, Y, and J. T. Freymueller. Seasonal and long-term vertical deformation in the NepalHimalaya constrained by GPS and GRACE measurements [J], J. Geophys. Res,2012,117, B03407
    Gan W,Svarc J L,Savage J C,et a1. Strain accumulation across the Eastern California ShearZone at latitude36degrees30’N[J].Journal of GeophysicsRes,2000,105(B7):16229-16236.
    Gan W, Zhang P, Shen Z K et al. Present-day crustal motion within the Tibetan Plateauinferred from GPS measurements[J], J Geophysics Res,2007,112(B08416):1-14
    Gan W., Prescott W.H. Crustal deformation rate in central and eastern U.S. inferred fromGPS [J].Geophys. Res. Lett.,2001,28(19):3733-3736.
    Garcia, H. E., R. A. Locarnini, T. P. Boyer,et al. World Ocean Atlas2009, Volume4:Nutrients (phosphate, nitrate, silicate). S. Levitus, Ed., NOAA Atlas NESDIS71[Z],U.S. Government Printing Office, Washington, D.C.,2010b, pp398.
    Gendt G.[IGSMAIL5438]:IGS switch to absolute antenna model and ITRF2005.
    Ge M,Gendt G,Dick G,et a1.Impact of GPS satellite antenna offsets on scale changes inglobal network solutions[J].Geophysical Research Letters,2005,32,L06310:1-4.
    Ge M,Gendt G,Dick G,et al.Improving carrier-phase ambiguity resolution in global GPSnetwork solutions[J].Journal of Geodesy,2005,79:103-110.
    Gill, A. E., Atmosphere-Ocean Dynamics [M], Academic, San Diego, Calif,1982
    Hatch, R. The synergism of GPS code and carrier measurement, In: Proc, the3rd int.geodetic symp. On satellite Doppler positioning, las Cruces, New Mexico,1982,pp1213-1232
    Heflin, M. B., Bertiger, W. I., Blewitt, G. et al. Global geodesy using GPS without fiducialsites [J]. Geophys. Res. Lett.,1992,19:131-134.
    Hofmann-Wellenhof, B., Lichtenbergger, H., and Collins,J. Global positioning system:theory and Practice,5th edn[M], Springer-verlag,Berlin,Heidelberg,New York,2001
    Hsu, H.-H., and B. J. Hoskins. Tidal fluctuations as seen in ECMWF data [J].Q. J. R.Meteorol. Soc.,1989,(115),247–264,
    Hugentobler U, Schaer S, Fridez P. Bernese GPS Software4.2[R]. AstronomicalInstitute/University of Bern,2001
    Hu X G,Jian-Li Chen,Huang C,et a1.Non-tidal oceanic contribution to the variation ofthe Earth oblateness [J], Chinese J Geophys,(in chinese),2004,47(3):428~432
    I.M Longman.A Green's function for determining the deformation of the Earth undersurface mass loads: Journal of Geophysical Research,1962,67(2):845–850.
    Jentzsch, G., Kundsen, P., Ramatschi M. Ocean tidal loading affecting precise geodeticobservations on Greenland: error account of surface deformations by tidal gravitymeasurements [J]. Phys. Chem. Earth (A),2000,25(4),401–407.
    J.Kusche and E.J.O. Schrama. Surface mass redistribution inversion from global GPSdeformation and Gravity Recovery and Climate Experiment (Grace) gravity data[J].JGR,2005,(10):B1032
    Kanamitsu, M., W. Ebisuzaki, J. Woolen, et al. Overview of NCEP/DOE Reanalysis-2,paper presented at the Second International Conference on Reanalyses [C], WorldClim. Res. Prog., Reading, UK,23–27Aug,1999.
    Kantha, L.H. Barometric tides in the global oceans from a non-linear tidal modelassimilating altimetric tides. Part1. Model description and results [J]. J. Geophys. Res.1995,(100),25283–25308
    Kaplan E.D and Hegarty C.J. Understanding GPS-Principal and application,2nd Edn [M].Artech House, Norwood,2006
    K.H. Zahran, G. Jentzsch, G. Seeber. Accuracy assessment of ocean tide loadingcomputations for precise geodetic observations [J]. Journal of Geodynamics,2006,(42):159–174
    KINFU HABTE HAILE. Estimation of terrestrial water storage in the upper reach ofyellow river [D]. Heidelberglaan, University of Utrecht,2011
    Leick, A., GPS Surveying2nd end [M]. John wiley and sons, New York,1995
    Levitus, S., and T. P. Boyer, World Ocean Atlas1994, vol.4, Temperature,129pp., Natl.Environ. Satell [R]. Data and Inf. Serv, Silver Spring, Md.,1994.
    Lowry, A.R.Resonant slow fault slip in subduction zones forced by climatic load stress [J],Nature,2006,442(7104), doi:10.1038/nature05055,802-805.
    Lyard F,Lefevre F,Letellier T,et al.Modelling the global ocean tides:insights fromFES2004[J].Ocean Dynamics,2006,56:394-415.
    Mader G L.GPS antenna calibration at the National Geodetic Survey[J].GPS solutions,1999,3(1):50-58.
    Matsumoto, K., T. Takanezawa, and M. Ooe. Ocean tide models developed by assimilatingTopex/Poseidon altimeter data into hydrodynamical model: a global model and aregional model around Japan [J], J. Oceanogr.,2000,56,567–581.
    McCarthy D, Petit G.IERS Conventions, IERS Technoical Notes32.3004[Z], Frankfurt,Germany,2003
    McCarthy D.IERS Standards, IERS Technical Note13[Z], Paris, France,1992.
    Melbourne W G.The case for ranging in GPS based geodetic system.In: Proceedings1stinternational symposium on precise positioning with the global positioning system [C],April15-19, Rockville,1985,373-386.
    Merriam, J. B. An ephemeris for gravity tide predictions at the nanogal level [J]. Geophys.J Internat,1992,108,415–422.
    Miyazaki, S., P. Segall, J.J.McGuire, et al.Spatial and temporal evolution of stress and sliprate during the2000Tokai earthquake [J]. Journal Geophysics Research,2006,111(B03409), doi:10.1029/2004JB003426.
    M.J.F. Jansen, J. Kusche, E.J.O. Schrama. Low-degree load harmonic coefficients fromcombining GRACE, GPS time series and a-priori dynamics [J], Journal GeophysicsResearch,2006,151(B03452), doi:10.1029/2004JB003426.
    M. Kanamitsu, W. Ebisuzaki, J. Woollen, et al. NCEP-DEO AMIP-II Reanalysis (R-2)[C],Nov2002, Bulletin of the American Meteorological Society,2002,1631-1643
    Munekane, H, and S. Matsuzaka. Nontidal ocean mass loading detected by GPSobservations in the tropical Pacific region [J], Geophys Res Lett,2004(31), L08602,doi:10.1029/2004GL019773.
    Niell, A.E; Ong, K.M. MacDoran, PF., et al.Comparision of a radio interferometricdifferential baseline measurement with conventional geodesy [J], Tectonophysics,1979,52(1-4):49-58.
    Neill A E.Global mapping functions for the atmosphere delay at radio wavelength [J]. JGeophys Res.1996,101(B2):3227-3246.
    Nikolaidis R.Observation of Geodetic and Seismic Deformation with the GlobalPositioning System [D].San Diego: University of California,2002.
    Nordman, M., J. M kinen, H. Virtanen, J. M, et al. Crustal loading in vertical GPS timeseries in Fennoscandia [J], J. Geodyn.,2009,(48),144–150,doi:10.1016/j.jog.2009.09.003.
    Ortiz J.P.,Toledano C.,Cachorro V.,et al.Improvement in PWV estimation from GPS dueto the absolute calibration of antenna phase center variations[J].GPSSolut,2010(14):389-395.
    Otsubo, T., T. Kubo-oka, T. Gotoh, et al. Atmospheric blue sky effects on SLR stationcoordinates [R],14th International Laser Ranging Workshop proceedings,2006
    Petovello, M.G. Narrowlane: is it worthy?[J]. GPS solution,2006,10(3):187-195
    Penna, N. T., M. A. King, and M. P. Stewart. GPS height time series: Short-period originsof spurious long-period signals [J], J. Geophys. Res.,2007,(112), B02402,doi:10.1029/2005JB004047.
    Petit, G. and B. Luzum (Eds.). IERS Conventions (2010).(IERS Technical Note;36)[Z],Frankfurt am Main: Verlag des Bundesamts für Kartographie undGeod sie (inprint),2010
    Petrov, L., Boy, J.-P. Study of the atmospheric pressure loading signal in very longbaseline interferometry observations [J]. J. Geophys. Res.2004,(109), B03405.
    Ponte, R. M., and R. D. Ray, Atmospheric pressure corrections in geodesy andoceanography: A strategy for handling air tides [J], Geophys. Res. Lett.,2002,29(24),2153, doi:10.1029/2002GL016340.
    Ray, R.D. and R.M. Ponte, Barometeric tides from ECMWF operational analyses [J].Annales Geophysicae,2003,21,1897-1910.
    Ray J, Altamimi Z, Collilieux X, van Dam T. Anomalous harmonics in the spectra of GPSposition estimates [J]. GPS Solution,2008,12(1).doi:10.1007/s10291-007-0067-7
    Ray, R. D., and G. D. Egbert. The global S1tide, J. Phys. Oceanogr.,2004,(34),1922–1935.
    Ray, R. D., G. D. Egbert, and S. Y. Erofeeva, Tide predictions in shelf and coastal waters:status and prospects, in Coastal Altimetry [C], Springer-Verlag, New York,2011, pp.191–216.
    Roads, J., T. Reichler, S. Chen, M, et al. Surface water characteristics and influences inNCEP/DOE Reanalysis-2[C], paper presented at the Second International Conferenceon Reanalyses, Reading, UK,23–27Aug.,1999.
    Robert K. The NCEP-NCAR50-year reanalysis: monthly means CD-ROM anddocumentation [J]. Bulletin of the American Meteorological Society,2001,82(Z):247-266
    Rodell, M, Houser, P.R,Jambor, U, et a1. The global land data assimilationsystem[J].Bulletin of the American Meteorological Society,2004,85(3):381-394.
    Rodell, M, Veliocogna, I and Famiglietti, J.S. Sarellite-Based estimates of grounddepletion in India.[article]. Nature,2009,460,5
    Rothacher M. Comparison of absolute and relative antenna phase center variations [J].GPSSolutions,2001,4(4):55-60.
    Rychetsky M, Ortmann S, Ullmann M, et a1.Accelerated training of support vectormachines [A].Proceedings of International Joint Conference on Neural Networks(IJCNN99)[c]. IEEE,1999.998-1003.
    Schemeck H G,Johansson J M,Webb F H.Ocean loading tides in GPS and rapid variationsof the frame origin [C]. In:Schwarz K P(ed.):Geodesy beyond2000-The challenges inthe First Decade.IAG General Assembly Birmingham,July19-30,1999,32-40.
    Schmid, R., P. Steigenberger, G. Gendt, M. Ge, et al. Generation of a consistent absolutephase center correction model for GPS receiver and satellite antennas [J], J. Geod,2007,81,781-798, doi:10.1007/s00190-007-0148-Y.
    Serpelloni, E., R. Burgmann, M.Anzidei, et al.Strain accumulation across messina straitsand kinematics of Sicily and Calabria from GPS data and dislocation modeling [J].ScienseDirect,2010,doi:10.1016/j.epsl.2010.08.005.
    Shen,Z.-K.,J.Lu,M.Wang et al. Contemporary crustal deformation around the southeastborderland of the Tibetan Plateau [J].J. Geophys. Res.,2005,110, B11409:1-17.
    Shin Chan Han,Richard D. Ray, Scott B. Luthcke. One centimeter-level observations ofdiurnal ocean tides from global monthly mean time-variable gravity fields [J], Journalof Geodesy,2010,84(?):715-729
    Sun H P, Ducarme B, Dehant V. Effect of the atmospheric pressure on surfacedisplacements [J]. Journal of Geodesy,1995,70:131-139.
    Stewart M P,Penna N T,Lichti D D.Investigating the propagation mechanism ofunmodelled systematic errors on coordinate time series estimated using leastsquares[J].Journal of Geodesy,2005,(79):479-489.
    Steigenberger P, Rothacher M, Dietrich R,et al.Reprocessing of a global network[J].Journal of Geophysical Research,2006,111, B05402
    Steigenberger P., Boehm J., Tesmer V.Comparison of GMF/GPT with VMF1/ECMWFand Implications for Atmospheric Loading [J]. Journal of Geodesy,2009,9,311-319.
    Swenson S, Chambers D, Wahr J. Estimating geocenter variations from a combination ofGRACE and ocean model output [J]. J. Geophys. Res,2008,113: B08410
    Syed, T.H, Famiglietti, Rodell, M, Chen, et al. C.R. Analysis of terrestrial water storagechanges from GRACE and GLDAS [J]. Water Resource Res,2008,44,15.
    Tapley. B. D, Bettadpur, S, Watkins, M, et al. The gravity recovery and climate experiment:Mission overview and early results [J]. Geophys. Res Letter,2004,31,4
    Tay F E H, Cao L J. Modified vector machine in financial time series forecasting [J].Neural computing,2002,2(48):???-???
    Thomas ID, King MA, Clarke PJ. A comparison of GPS, VLBI and model ocean tideloading displacements [J]. J Geod,2007,81:359–368. Doi:10.1007/s00190-006-0118-9
    Tran, N., S. Labroue, S. Philipps, E. et al. Overview and Update of the Sea State BiasCorrections for the Jason-2, Jason-1and TOPEX Missions [J]. Marine Geodesy,2012(accepted, in Press).
    Tregoning, P., and C. Watson. Atmospheric effects and spurious signals in GPS analyses, J.Geophys. Res.,2009,(114), B09403, doi:10.1029/2009JB006344.
    Tregoning, P., C. Watson, G. Ramillien, et al. Detecting hydrologic deformation usingGRACE and GPS [J], Geophys Res Lett,2009,36, L15401, doi:10.1029/2009GL038718.
    Tregoning, P, and T. van Dam. Atmospheric pressure loading corrections applied to GPSdata at the observation level [J], Geophys. Res. Lett.,2005a,(32), L22310, doi:10.1029/2005GL024104.
    Urschl C, Dach R, Hugentobler U, Schaer S, Beutler G. Validating ocean tide loadingmodels using GPS [J]. J Geod,2005(78):616–625. Doi:10.1007/s00190-004-0427-9
    Van Dam, T.M. and T.A. Herring. Detection of atmospheric pressure loading using VeryLong Baseline Interferometry measurements [J], J. of Geophys Res.1994(99):4505-4518.
    Van Dam, T.M., G. Blewitt, and M. Heflin. Detection of atmospheric pressure loadingusing the Global Positioning System [J]. J. of Geophys. Res,1994(99):23,939-23,950.
    van Dam, T. M., J. Wahr, Y. Chao, et al. Predictions of crustal deformation and of geoidand sea‐level variability caused by oceanic and atmospheric loading [J], Geophys. J.Int.,1997,(129),507–517, doi:10.1111/j.1365-246X.1997.tb04490.x.
    Van Dam, J. Wahr, P. C. D. Milly, et al. Crustal displacements due to continental waterloading [J]. Geophysical Research letters,2001,28(4);651-654
    Van Dam, X. Collilieux, J. Wuite, Z, et al. Nontidal Ocean loading: amplitudes andpotential effects in GPS height time series [J], journal of geodesy,2012,(152),DOI10.1007/s00190-012-0564-5
    Van Dam, T. and R. Ray,2010, Updated October2010. S1and S2Atmospheric TideLoading Effects for Geodetic Applications.Data set/Moddel accessedYYYY-MM-DD at http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html.
    van Dam, T., Z. Altamimi, X. Collilieux,et al. Topographically induced height errors inpredicted atmospheric loading effects [J]. J. Geophys. Res,2010(115), B07415, doi:10.1029/2009JB006810.
    Van den Dool, H. M., S. Saha, J. Schemm,et al. A temporal interpolation method to obtainhourly atmospheric surface pressure tides in Reanalysis1979–1995[J]. J. Geophys.Res,1992,(102),22,013–22,024.
    Vapnik V. Statistical learning theory [M]. New York: Wiley,1998
    Vergnolle M.,Bouin M.N. Morel L.et al. GPS estimates of ocean tide loading inNW-France: determination of ocean tide loading constituents and comparison with arecent ocean tide mode [J].Geophys J.Int.2008,(173):444-458.
    Vergnolle, M., E. Calais, and L.Ding. Dynamics of continental deformation in Asia [J]. J.Geophys. Res,2007,112(B11403):1-22.
    Vergnolle M., Pollitz F., Calais E. Constraints on the viscosity of the continental crust andmantle from GPS measurements and postseismic deformation models in westernMongolia [J]. J.Geophys. Res,2003,108(B10):2502-2516
    Vergnolle, M., A. Walpersdorf, V. Kostoglodov, et al. Slow slip events in Mexico revisedfrom the processing of11-year GPS observations [J], J. Geophys. Res,2010,115(B08403):1-18.
    Volker. Tesmer, Peter. Steigenberger, Tonie. Van. Dam et al.vertical deformations fromhomogeneously processed GRACE and global GPS long-term series [J]. J Geod,2011,(85):291–310
    Wahr, J, Molenaar, M, and Bryan,F. Time variability of the Earth’s Gravity field:hydrological and ocean effects and their possible detection using GRACE [J]. J.Geophys. Res,1998,(103),30205-30299
    Wang H S, Xu H Z, Li G Y. Improvement of computations of load love numbers of SNREIearth model [J].Chinese J.Geophys.(Acta Geophysica Sinica)(in Chinese),1996,39(Supp1):182-189
    Webb,F.H.,Zumberge,J.F.An introduce to GIPSY-OASIS II,Jet Propulsion LaboratoryUser Manual[R],JPL Technical Document D-11088,California Institute ofTechnology.
    Williams, S. D. P, and N. T. Penna. Non-tidal Ocean loading effects on geodetic GPSheights [J]. Geophys. Res. Lett,2011,(38), L09314, doi:10.1029/2011GL046940.
    WILLIS J, CHAMBERS D, NEREM R. Assessing the globally aversged sea level budgetin seasonal to interannual time scales [J]. J. Geophys Res,2008,(113), C06015, doi:10.1029/2007JC004517.
    Watson C,Tregoning P,Coleman R.Impact of solid Earth tide models on GPS coordinateand tropospheirc time series[J].Geophysical Research Letters,2006,33,L08306:1-4.
    Wells, D. E., N. Back, D. Delikaraoglou, et al. Guide to GPS Positioning[C],1986,Canadian GPS Associates, New Brunswick, Canada.
    WEI Jin, LI Hu, SHEN Wen-Bin, KANG Kai-Xu et al. An analysis to observations of thesuperconducting gravimeter at the Jiufeng seismic station, Wuhan [J], Chinese Journalof Geophysics,2012,55(4):409-417
    Williams, S. D. P., and N. T. Penna. Non-tidal ocean loading effects on geodetic GPSheights [J], Geophys Res Lett,2011,(38), L09314, doi:10.1029/2011GL046940.
    Wunsch, C. and D. Stammer, Atmospheric loading and the "inverted barometer" effect [J],Rev. Geophys.,1997(35):117-135.
    Wubberna G.Software developments for geodetic positioning with GPS using TI-4100code and carrier measurement.In: Proceedings1st international symposium on precisepositioning with the global positioning system,1985, April15-19, Rockville,403-412.
    Xavier Collilieux and Laurent Metivier et al. Quality assessment of GPS reprocessedterrestrial reference frame [J]. GPS solution,2011,(15):219–231
    Xiong Fu-Wen, Zhu Wen-Yao.land deformation monitoring by gps in the yangtze
    Delta and the measurements analysis [J], CHINESE JOURNAL OF GEOPHYSICS,2007,50(6):1501-1514
    YANG Minghsuan, Ahuja N. A geometric approach to train support vector machines [A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,IEEE,2000:430-437.
    Yuning Fu and Jeffrey T Freymueller. Seasonal and long-term vertical deformation in theNepal Himalaya constrained by GPS and GRACE measurements [J]. J. Geophys. Res,2012(117): B03407
    Zahel W. Modeling Ocean tides with and without assimilating data [J]. J. Geophys. Res.1991(96):20379–20391.
    Zaitchik, B.F, Rodell,M, Olivera,F. Evaluations of the Global Land Data AssimilationSystem using global river discharge data and a source-to-sink routine scheme[J].Water resource Res,2010,46(17):110-158
    Z. AltaMimi and X. Collilieux, IGS contribution to the ITRF [J]. Journal of Geodesy,2009(83):375–383
    Zerbini, S., F. Matonti, F. Raicich, et al, Observing and assessing non tidal ocean,continuous GPS and gravity data in the Adriatic area[J], Geophys. Res. Lett,2004(31),L23609,doi:10.1029/2004GL021185.
    Zheng Zuoya, Dang Yamin, Lu Xiushan et al. Efect analysis of observations and satellitesclock bias on convergence behavior in PPP [J], China J space Sci,2010,30(6):573-578
    Zhu S,Massmann F-H,Yu Y, et a1.Satellite antenna phase center offsets and scale error inGPS solution[J].Journal of Geodesy,2003,76:668-672.
    Zumberge J F,Helfin M B,Jefferson D C,et a1.Precise point positioning for the efficientand robust analysis of GPS data from large networks[J]. J GeophysRes,1997,102(B3):5005-5017.
    陈俊勇.GPS技术进展及其现代化[J].大地测量与地球动力学,2010,30(3):1-4.
    陈俊勇.GPS现代化重大进展-GPS L5和L3频率的发射[J].全球定位系统,2009(4):7-8.
    程宗颐,朱文耀.由APRGP97~APRGP99的GPS联测资料确定的亚太地区地壳形变[J].地震学报,2001,23(3):268-279.
    地壳运动监测工程研究中心.中国地壳运动观测技术规程[M].北京:中国环境科学出版社,2005:3135.
    党亚民,陈俊勇.全球大地测量地心坐标参考框架最新进展[J].测绘科学,2004,29(1):61-63.
    党亚民,秘金钟,成英燕等.全球导航卫星系统原理与应用[M].北京:测绘出版社,2007.
    符养,中国大陆现今地壳形变与GPS坐标时间序列分析[D],博士论文,上海天文台,2002.
    甘卫军,李强,张锐等.中国大陆构造环境监测网络的建设与应用[J],工程研究,2012,4(4):324-331
    甘卫军.GPS的地球物理应用-美国加州东部及全美中部地壳变形研究[D].北京:中国地震局地质研究所,2001.
    甘卫军,沈正康,张培震,等.青藏高原地壳水平差异运动的GPS观测研究[J].大地测量与地球动力学,2004,24(1):29-35.
    甘卫军,程朋根,周德敏等.青藏高原东北缘主要活动断裂带GPS加密观测及结果分析[J].地震地质,2005,27(2):177-187.
    黄健,汪平,阮仁贵等.DCB对精密单点定位精度影响研究[J].大地测量与地球动力学,2010,30(3):110-112
    黄珹,胡小工,程宗颐.利用非差资料的精密点定位方案解算区域GPS网[J].天文学报,2001,42(3):248-258.
    黄立人,张培震.中国大陆的GPS速度场、地块运动与应变场[J].工程地球物理学报,2004,1(3):204-212.
    海斯卡涅,莫里兹(卢福康,胡国理译).物理大地测量[M].北京:测绘出版社,1984
    何玉晶,杨力.基于球谐函数模型的GPS电离层延迟改正分析[J].测绘科学,2010,35(4):74-76
    胡贤金.支持向量机回归方法在切削参数预测中的应用[J],工具技术,2012,46(10):42-45
    纪希禹,韩秋明,李薇等.数据挖掘技术与应用实例[M].北京:机械工业出版社,2009
    刘大宁,杨永乐,白林.SVM核函数对分类精度影响的研究[J],佳木斯大学学报(自然科学版本).2012,20(4):627-630
    刘根友,朱耀仲,周蓉生.GPS单历元定位新算法用于滑坡监测[J].地震学报.2005,27(4):402-408.
    刘庆元,包海,王潜心等.基于L5的GPS电离层折射误差改正[J].测绘工程,2008,17(1)?:17-20.
    刘焱雄,彭琳,周兴华等.网解和PPP解的等价性[J].武汉大学学报.信息科学版,2005,30(8):736-738
    李雄飞,董元方,李军等.数据挖掘与知识发现[M].北京:高等教育出版社,2010
    李济生.人造卫星精密轨道确定[M].北京:解放军出版社,2005
    李新,黄春林,车涛等.中国陆面数据同化系统研究的进展与前瞻[J].自然科学进展,2007,17(2):163-173
    李大炜,李建成,金涛勇等.利用验潮站资料评估全球海潮模型的精度[J],大地测量与地球动力学,2012,32(4):106-110
    李建民,张波,林福宗.支持向量机的训练算法[J].清华大学学报(自然科学版).2003,43(01):120-124
    李军海,刘焕玲,文汉江等.基于GRACE时变重力场反演南极冰盖质量变化[J].大地测量与地球动力学,2011,3(13):42-46
    廖海华,钟敏,周旭华.利用GRACE卫星重力资料解算气候驱动的地表周年垂直形变[J].地球物理学报,2010,53(5):1091-109
    梁昆淼.数学物理方法[M].北京:高等教育出版社,2003
    米仁欢,钟敏,闫昊明等.利用卫星测高资料研究海水热含量变化[J],大地测量与地球动力学,2009,29(5):58-61
    孟国杰,任金卫,金红林等.GPS高频数据处理方法及其在地震学中的应用研究进展[J].2007(7)?:26-31.
    乔学军,王琪,杜瑞林.川滇地区活动地块现今地壳形变特征[J].地球物理学报.2004,47(5):805-811.
    秦凯,王斌,郭广猛等.使用NCEP数据分析新疆于田地震前异常增温[J].吉林大学学报(地球科学版),2008,38(6):1076-1080
    邵晓梅,严昌荣.陇中黄土高原丘陵沟壑区土壤水分动态变化分析[J].水土保持研究,2006,13(4):243-249
    孙建中,杨少敏.GPS资料揭示现今中国大陆构造运动[J].大地测测量与地球动力学,2005,25(3):75-80
    苏勇,范东明,游为,等.完全正常化缔合Legendre函数及其导数计算的综合分析[J].2011,28(6):416-420
    宋小勇,杨志强,焦文海等.GPS接收机码间偏差[J].大地测量与地球动力学,2009,29(1):27-31
    史秋亮,林江.基于小波包分解与能量特征提取的相关分析法[J].声学与电子工程,2010,?(4):18-22
    唐远炎,王玲.小波分析与文本文字识别[M].北京:科学出版社,2004.
    武艳强,江在森,杨国华,等.用球谐函数整体解算GPS应变场方法研究[J].大地测量与地球动力学,2009,29(6):68-73
    王敏,沈正康,董大南.非构造形变对GPS连续站位置时间序列的影响和修正[J].地球物理学报,2005,48(5):1045-1052.
    王敏,沈正康,牛之俊等.现今中国大陆地壳运动与活动地块模型研究[J].中国科学(D辑),2003,33(增刊):21-32.
    王琪,赖锡安,游新兆等.红河断裂的GPS监测与现代构造应力场[J].地壳形变与地震,1998,18(2):49-56.
    伍岳,孟泱,王泽民等.现代化后电离层折射误差高阶项的三频改正方法[J].武汉大学学报(信息科学版),2005,20(7):601-603,608.
    熊永良,黄丁发,徐韶光等.长距离动态GPS数据处理方法与汶川地震引起的动态地壳形变特征分析[J].武汉大学学报.信息科学版,2010,35(3):265-269.
    肖根如. GPS地壳形变观测及其在中亚大三角地震构造域的应用[D],中国地震局地质研究所博士论文,北京,2010
    杨博华,杨博,占伟,等.GPS资料反映大震前后青藏高原东北缘的水平形变[J].地震研究,2012,35(3):295-302
    杨国华,韩月萍,杨博.川滇地区地壳水平运动与变形场的演化特征及其机制讨论[J].地震研究,2009,32(3):275-382.
    杨启国,杨兴国,张旭东.甘肃雨养农业区降水概率特征研究[J].甘肃气象,2002,20(2):34-36
    袁运斌,霍星亮,欧吉坤.精确求定GPS信号的电离层延迟的模型与方法研究,[J]自然科学进展2006(01):9
    殷海涛,甘卫军,肖根如,等.利用高频GPS技术进行强震地面运动监测的研究进展[J].地球物理学进展,2009,24(6):2012-2019.
    殷海涛,李杰,马丕峰等.固体潮模型对GPS时间序列的影响研究[J].大地测量与地球动力学,2009,29(2)?:48-52.
    殷海涛,张培震等.高频GPS测定的汶川Ms8.0级地震震时近场地表变形过程[J],科学通报,2010(26):2621-2625.
    元安昌,邓松,李文敬等.数据挖掘原理和SPSS Clement应用宝典[M].北京:电子工业出版社,2009
    闫国华,朱永生.支持向量机回归的参数选择方法[J].计算机工程,2009(7):218-220
    杨元德,鄂栋臣,晁定波等.GRACE估算陆地水储量季节和年际变化.地球物理学报,2009,52(12):2987-2992
    游新兆,杜瑞林,王琪等.中国大陆地壳现今运动的GPS测量结果与初步分析[J].地壳形变与地震,2001,21(8):1-8.
    袁林果,丁晓利,陈武等.香港GPS基准站坐标时间序列特征分析[J].地球物理学报,2008,51(5):1372-1384.
    杨凯,刘鸿飞,赵倩等.绝对天线相位改正模型对GPS精密数据处理的影响[J].武汉大学学报.信息科学版,2010,35(6)?:694-697.
    郑波.基于Gauss核函数的SVM故障诊断技术研究[J].中国民航飞行学院学报2012,23(5):49-52
    张辉,高原,石玉涛等.基于地壳介质各向异性分析青藏高原东北缘构造应力特征[J].地球物理学报,2012,55(1):95-10
    周江存,孙和平.海潮负荷对GPS基线的影响[J].大地测量与地球动力学,2005,25(4):27-32
    张诗玉,钟敏,唐诗华.我国GPS基准站地壳垂直形变的大气负荷效应[J].武汉大学学报:信息科学版,2006,31(12):1090-1093
    张培震,王琪,马宗晋.中国大陆现今构造变形的GPS速度场与活动地块[J].地学前缘,2002,9(2):430-44l.
    周旭华,吴斌,彭碧波等.全球水储量变化的GRACE卫星检测[J].地球物理学报,2006,49(6):1644-1650
    周旭华,吴斌,李军.高精度大地测量中的海潮位移改正[J].测绘学报,2001,30(4):327-330
    朱广彬,李建成,文汉江等.利用GRACE时变重力位模型研究全球陆地水储量变化[J].大地测量与地球动力学,2008,28(5):40-44
    朱广彬,李建成,文汉江等.利用GRACE时变位模型研究南极冰盖质量变化[J],武汉大学学报(信息科学版)2009,34(10):1185-1189
    赵九章等编着.高空大气物理学[M],上册,科学出版社,北京,1965
    赵晶莹,郭海,孙兴滨等.基于小波包分解及模糊支持向量机的红虫识别[J].计算机应用,2010,(1):227-232
    周忠谟,易杰军,周琪. GPS卫星测量原理与应用[M].北京:测绘出版社,2002
    周伟莉,李素华,蒋美霞.基于球谐函数模型的电离层预报测[J].测绘信息与工程,2012,37(3):3-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700