用户名: 密码: 验证码:
Mint2以“打开—闭合”构象变化来调节APP的代谢
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔兹海默病(Alzheimer's disease, AD)是一种神经退化性失调,困扰着全球数百万的老龄人。本文基于晶体结构及后续的生化和功能手段研究了在AD发病机制中起着重要作用的两个蛋白Mint2和amyloid-β protein precursor (APP)。
     Aβ的沉积是AD病的一个重要标志,它的产生来自APP有序分解。APP的转运和代谢的调节取决于结合到APP胞内末端的蛋白,这其中就包括Mint蛋白家族。Mint蛋白家族,是一个含多个蛋白-蛋白相互作用结构域的支架蛋白家族。Mint蛋白家族包括一个变化的氮端区域和一个保守性很高的碳端区域,其碳端区域包含一个重要的phosphotyrosine-binding (PTB)结构域,一对串联排列的PDZ结构域和最末端的C端(之后简称PPC)。通过这些结构域,Mints介导组装成功能各异的蛋白复合体,最引入注目的是能够调节APP的代谢过程和参与amyloid-β多肽(Aβ)的生成。Mint蛋白家族的PTB结构域能结合APP的YENPTY模序。但是APP动态结合Mint2的分子机制还不清楚。
     本文报道了结合及没有结合APP多肽的Mint2-PPC的两个晶体结构,其分辨率分别为3.3A和2.7A。这些结构表明没有结合APP多肽的Mint2-PPC以“闭合”的构象存在,在这个状态中ARM结构域盖住了PTB结构域的APP多肽结合口袋。而与之完全相反的是,结合APP多肽的Mint2-PPC以“打开”的构象存在,此时ARM结构域彻底从结合多肽处旋转开来。体内和体外实验证明了控制Mint2“打开—闭合”构象变化的不同突变体动态调节APP代谢。我们的实验结果揭示了PTB结构域一种崭新的“打开—闭合”构象变化动态地结合它的多肽底物的机制。此外,这种构象变化可能代表Mint蛋白家族调节APP蛋白家族的一种普遍模式,为AD疾病的治疗提供有用的信息。
Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions of elderly people worldwide. Based on the crystal structures and detailed biochemical and functional strategies, we studied the scafolding protein Mint2-mediated amyloid-p protein precursor (APP) metabolism in the pathogenesis of AD.
     The deposition of neurotoxic Aβ is a major hallmark of AD, The production of Aβ is accomplished by the sequential cleavage of the APP. The regulation of the trafficking and processing of APP depends on the cytosolic proteins that bind to the intracellular tail of APP, which include proteins from the Mint family.The Mint protein family are multidomain scafolding proteins. The Mint proteins (Mints) have a variable N-terminal region and a highly conserved C-terminal region that contains a central phosphotyrosine-binding (PTB) domain, a tandem PDZ domain and the very end of C-terminus (hereafter referred to as PPC). Through these domains, Mints mediate the assembly of functional protein complexes. Strikingly, they can modulate processing of APP and production of amyloid-β(Aβ). The PTB domains found in the Mint family are capable of interacting with the YENPTY motif of APP. However, the molecular mechanism of APP dynamically binding to Mint2remains elusive.
     Here, we report the structures of APP peptide-free and APP peptide-bound C-terminal Mint2mutants (Min2-PPC) at resolutions of2.7and3.3A, respectively. Our structures reveal that APP peptide-free Mint2-PPC exists in a closed state in which the ARM domain blocks the peptide-binding groove of the PTB domain. In sharp contrast, APP peptide-bound Mint2-PPC exists in an open state in which the ARM domain drastically swings away from the bound peptide. Mutants that control the open-closed motion of Mint2dynamically regulated APP metabolism both in vitro and in vivo. Our results uncover a novel open-closed mechanism of the PTB domain dynamically binding to its peptide substrate. Moreover, such a conformational switch may represent a general regulation mode of APP family members by Mint proteins, providing useful information for the treatment of AD.
引文
[1]Miller, C.C., D.M. McLoughlin, K.F. Lau, et al. The X11 proteins, Abeta production and Alzheimer's disease. Trends Neurosci,2006.29(5):280-5.
    [2]Berchtold, N.C. and C.W. Cotman. Evolution in the conceptualization of dementia and Alzheimer's disease:Greco-Roman period to the 1960s. Neurobiol Aging,1998.19(3): 173-89.
    [3]Waldemar, G, B. Dubois, M. Emre, et al. Recommendations for the diagnosis and management of Alzheimer's disease and other disorders associated with dementia:EFNS guideline. Eur J Neurol,2007.14(1):e1-26.
    [4]Amarasinghe, A.W. WHO's world health report 2003:time to ease the mental health burden. BMJ,2004.328(7434):288.
    [5]Brookmeyer, R., E. Johnson, K. Ziegler-Graham, et al. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement,2007.3(3):186-91.
    [6]Wenk, GL. Neuropathologic changes in Alzheimer's disease. J Clin Psychiatry,2003.64 Suppl 9:7-10.
    [7]Tiraboschi, P., L.A. Hansen, L.J. Thal, et al. The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology,2004.62(11):1984-9.
    [8]Francis, P.T., A.M. Palmer, M. Snape, et al. The cholinergic hypothesis of Alzheimer's disease:a review of progress. J Neurol Neurosurg Psychiatry,1999.66(2):137-47.
    [9]Mudher, A. and S. Lovestone. Alzheimer's disease-do tauists and baptists finally shake hands? Trends Neurosci,2002.25(1):22-6.
    [10]Sherrington, R., E.I. Rogaev, Y. Liang, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature,1995.375(6534):754-60.
    [11]Jarrett, J.T., E.P. Berger, and P.T. Lansbury, Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation:implications for the pathogenesis of Alzheimer's disease. Biochemistry,1993.32(18):4693-7.
    [12]Blacker, D., J.L. Haines, L. Rodes, et al. ApoE-4 and age at onset of Alzheimer's disease:the NIMH genetics initiative. Neurology,1997.48(1):139-47.
    [13]Cuajungco, M.P., L.E. Goldstein, A. Nunomura, et al. Evidence that the beta-amyloid plaques of Alzheimer's disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem,2000.275(26):19439-42.
    [14]De Strooper, B. and W. Annaert. Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci,'2000.113 (Pt 11):1857-70.
    [15]Rogelj, B., J.C. Mitchell, C.C. Miller, et al. The X11/Mint family of adaptor proteins. Brain Res Rev,2006.52(2):305-15.
    [16]Okamoto, M. and T.C. Sudhof. Mints, Munc18-interacting proteins in synaptic vesicle exocytosis. J Biol Chem,1997.272(50):31459-64.
    [17]Park, J.H., M.S. Jung, Y.S. Kim, et al. Phosphorylation of Munc18-1 by Dyrkl A regulates its interaction with Syntaxin 1 and X11alpha. J Neurochem,2012.122(5):1081-91.
    [18]Duclos, F., U. Boschert, G. Sirugo, et al. Gene in the region of the Friedreich ataxia locus encodes a putative transmembrane protein expressed in the nervous system. Proc Natl Acad Sci U S A ,1993.90(1):109-13.
    [19]Rodius, F., F. Duclos, K. Wrogemann, et al. Recombinations in individuals homozygous by descent localize the Friedreich ataxia locus in a cloned 450-kb interval. Am J Hum Genet, 1994.54(6):1050-9.
    [20]Maximov, A. and I. Bezprozvanny. Synaptic targeting of N-type calcium channels in hippocampal neurons. J Neurosci,2002.22(16):6939-52.
    [21]Kitano, J., K. Kimura, Y. Yamazaki, et al. Tamalin, a PDZ domain-containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and the guanine nucleotide exchange factor cytohesins. J Neurosci,2002.22(4):1280-9.
    [22]Nie, Z., D.S. Hirsch, and P.A. Randazzo. Arf and its many interactors. Curr Opin Cell Biol, 2003.15(4):396-404.
    [23]Nakajima, Y, M. Okamoto, H. Nishimura, et al. Neuronal expression of mintl and mint2, novel multimodular proteins, in adult murine brain. Brain Res Mol Brain Res,2001.92(1-2): 27-42.
    [24]Hase, M., Y. Yagi, H. Taru, et al. Expression and characterization of the Drosophila X11-like/Mint protein during neural development J Neurochem,2002.81(6):1223-32.
    [25]Glodowski, D.R., T. Wright, K. Martinowich, et al. Distinct LIN-10 domains are required for its neuronal function, its epithelial function, and its synaptic localization. Mol Biol Cell,2005. 16(3):1417-26.
    [26]Zucker, R.S. Exocytosis:a molecular and physiological perspective. Neuron,1996.17(6): 1049-55.
    [27]Tanahashi, H. and T. Tabira. X11L2, a new member of the XI1 protein family, interacts with Alzheimer's beta-amyloid precursor protein. Biochem Biophys Res Commun,1999.255(3): 663-7.
    [28]Tanahashi, H. and T. Tabira. Genomic organization of the human X11L2 gene (APBA3), a third member of the X11 protein family interacting with Alzheimer's beta-amyloid precursor protein. Neuroreport,1999.10(12):2575-8.
    [29]Uhlik, M.T., B. Temple, S. Bencharit, et al. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J Mol Biol,2005.345(1):1-20.
    [30]Borg, J.P., J. Ooi, E. Levy, et al. The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol Cell Biol, 1996.16(11):6229-41.
    [31]Zhou, M.M., K.S. Ravichandran, E.F. Olejniczak, et al. Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature,1995.378(6557):584-92.
    [32]Zhou, M.M., B. Huang, E.T. Olejniczak, et al. Structural basis for IL-4 receptor phosphopeptide recognition by the IRS-1 PTB domain. Nat Struct Biol,1996.3(4):388-93.
    [33]Wolf, G., T. Trub, E. Ottinger, et al. PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities. J Biol Chem,1995.270(46):27407-10.
    [34]Zhang, Z., C.H. Lee, V. Mandiyan, et al. Sequence-specific recognition of the internalization motif of the Alzheimer's amyloid precursor protein by the X11 PTB domain. EMBO J,1997. 16(20):6141-50.
    [35]Dietl, A., K. Wild, and B. Simon. (1)H, (13)C, and (15)N chemical shift assignments of the phosphotyrosine binding domain 2 (PTB2) of human FE65. Biomol NMR Assign,2013.
    [36]Radzimanowski, J., B. Simon, M. Sattler, et al. Structure of the intracellular domain of the amyloid precursor protein in complex with Fe65-PTB2. EMBO Rep,2008.9(11):1134-40.
    [37]Radzimanowski, J., K. Beyreuther, I. Sinning, et al. Overproduction, purification, crystallization and preliminary X-ray analysis of human Fe65-PTB2 in complex with the amyloid precursor protein intracellular domain. Acta Crystallogr Sect F Struct Biol Cryst Commun,2008.64(Pt 5):409-12.
    [38]Zhang, M. and W. Wang. Organization of signaling complexes by PDZ-domain scaffold proteins. Acc Chem Res,2003.36(7):530-8.
    [39]Harris, B.Z. and W.A. Lim. Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci,2001.114(Pt 18):3219-31.
    [40]Zhang, J., X. Yan, C. Shi, et al. Structural basis of beta-catenin recognition by Tax-interacting protein-1. J Mol Biol,2008.384(1):255-63.
    [41]Jelen, F., A. Oleksy, K. Smietana, et al. PDZ domains-common players in the cell signaling. Acta Biochim Pol,2003.50(4):985-1017.
    [42]Long, J., Z. Wei, W. Feng, et al. Supramodular nature of GRIP1 revealed by the structure of its PDZ12 tandem in complex with the carboxyl tail of Frasl. J Mol Biol,2008.375(5): 1457-68.
    [43]Long, J.F., W. Feng, R. Wang, et al. Autoinhibition of X11/Mint scaffold proteins revealed by the closed conformation of the PDZ tandem. Nat Struct Mol Biol,2005.12(8):722-8.
    [44]Mueller, H.T., J.P. Borg, B. Margolis, et al. Modulation of amyloid precursor protein metabolism by Xllalpha/Mint-1. A deletion analysis of protein-protein interaction domains. J Biol Chem,2000.275(50):39302-6.
    [45]Biederer, T., X. Cao, T.C. Sudhof, et al. Regulation of APP-dependent transcription complexes by Mint/Xlls:differential functions of Mint isoforms. J Neurosci,2002.22(17): 7340-51.
    [46]Taru, H. and T. Suzuki. Regulation of the physiological function and metabolism of AbetaPP by AbetaPP binding proteins. J Alzheimers Dis,2009.18(2):253-65.
    [47]Weyer, S.W., M. Klevanski, A. Delekate, et al. APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP. EMBO J,2011.30(11):2266-80.
    [48]Hardy, J. and D.J. Selkoe. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics. Science,2002.297(5580)':353-6.
    [49]Haass, C. and D.J. Selkoe. Soluble protein oligomers in neurodegeneration:lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol,2007.8(2):101-12.
    [50]Goldgaber, D., M.I. Lerman, O.W. McBride, et al. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science,1987. 235(4791):877-80.
    [51]Robakis, N.K., N. Ramakrishna, G. Wolfe, et al. Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc Natl Acad Sci U S A,1987.84(12):4190-4.
    [52]Tanzi, R.E., J.F. Gusella, P.C. Watkins, et al. Amyloid beta protein gene:cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science,1987.235(4791):880-4.
    [53]Pena, F., A. Gutierrez-Lerma, R. Quiroz-Baez, et al. The role of beta-amyloid protein in synaptic function:implications for Alzheimer's disease therapy. Curr Neuropharmacol,2006. 4(2):149-63.
    [54]Lahiri, D.K. and Y.W. Ge. Role of the APP promoter in Alzheimer's disease:cell type-specific expression of the beta-amyloid precursor protein. Ann N Y Acad Sci,2004. 1030:310-6.
    [55]Suh, Y.H. An etiological role of amyloidogenic carboxyl-terminal fragments of the beta-amyloid precursor protein in Alzheimer's disease. J Neurochem,1997.68(5):1781-91.
    [56]Mackay, E. A., A. Ehrhard, M. Moniatte, et al. A possible role for cathepsins D, E, and B in the processing of beta-amyloid precursor protein in Alzheimer's disease. Eur J Biochem, 1997.244(2):414-25.
    [57]Sisodia, S.S. and D.L. Price. Role of the beta-amyloid protein in Alzheimer's disease. FASEB J,1995.9(5):366-70.
    [58]Ashall, F. and A.M. Goate. Role of the beta-amyloid precursor protein in Alzheimer's disease. Trends Biochem Sci,1994.19(1):42-6.
    [59]Wisniewski, H.M. and J. Wegiel. The role of perivascular and microglial cells in fibrillogenesis of beta-amyloid and PrP protein in Alzheimer's disease and scrapie. Res Immunol,1992.143(6):642-5.
    [60]Tang, K., C. Wang, C. Shen, et al. Identification of a novel alternative splicing isoform of human amyloid precursor protein gene, APP639. Eur J Neurosci,2003.18(1):102-8.
    [61]Konig, G., U. Monning, C. Czech, et al. Identification and differential expression of a novel alternative splice isoform of the beta A4 amyloid precursor protein (APP) mRNA in leukocytes and brain microglial cells. J Biol Chem,1992.267(15):10804-9.
    [62]Forman, M.S., D.G. Cook, S. Leight, et al. Differential effects of the swedish mutant amyloid precursor protein on beta-amyloid accumulation and secretion'in neurons and nonneuronal cells. J Biol Chem,1997.272(51):32247-53.
    [63]Wasco, W., S. Gurubhagavatula, M.D. Paradis, et al. Isolation and characterization of APLP2 encoding a homologue of the Alzheimer's associated amyloid beta protein precursor. Nat Genet,1993.5(1):95-100.
    [64]Orcholski, M.E., Q. Zhang, and D.E. Bredesen. Signaling via amyloid precursor-like proteins APLP1 and APLP2. J Alzheimers Dis,2011.23(4):689-99.
    [65]Sakurai, T., K. Kaneko, M. Okuno, et al. Membrane microdomain switching:a regulatory mechanism of amyloid precursor protein processing. J Cell Biol,2008.183(2):339-52.
    [66]Selkoe, D.J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature, 1999.399(6738 Suppl):A23-31.
    [67]Beher, D., J.D. Wrigley, A.P. Owens, et al. Generation of C-terminally truncated amyloid-beta peptides is dependent on gamma-secretase activity. J Neurochem,2002.82(3): 563-75.
    [68]Stephens, D.J. and B.M. Austen. Characterization of beta-secretase. Biochem Soc Trans, 1998.26(3):500-4.
    [69]Puzzo, D., L. Privitera, E. Leznik, et al. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci,2008.28(53):14537-45.
    [70]Lendon, C.L., F. Ashall, and A.M. Goate. Exploring the etiology of Alzheimer disease using molecular genetics. JAMA,1997.277(10):825-31.
    [71]Harper, J.D. and P.T. Lansbury, Jr. Models of amyloid seeding in Alzheimer's disease and scrapie:mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem,1997.66:385-407.
    [72]Lee, D.S., S. Tomita, Y. Kirino, et al. Regulation of X11L-dependent amyloid precursor protein metabolism by XB51, a novel X11L-binding protein. J Biol Chem,2000.275(30): 23134-8.
    [73]Araki, Y., S. Tomita, H. Yamaguchi, et al. Novel cadherin-related membrane proteins, Alcadeins, enhance the Xll-like protein-mediated stabilization of amyloid beta-protein precursor metabolism. J Biol Chem,2003.278(49):49448-58.
    [74]Swistowski, A., Q. Zhang, M.E. Orcholski, et al. Novel mediators of amyloid precursor protein signaling. J Neurosci,2009.29(50):15703-12.
    [75]Lau, K.F., D.M. McLoughlin, C. Standen, et al. X11 alpha and x11 beta interact with presenilin-1 via their PDZ domains. Mol Cell Neurosci,2000.16(5):557-65.
    [76]Wilquet, V. and B. De Strooper. Amyloid-beta precursor protein processing in neurodegeneration. Curr Opin Neurobiol,2004.14(5):582-8.
    [77]Ho, A., X. Liu, and T.C. Sudhof. Deletion of Mint proteins decreases amyloid production in transgenic mouse models of Alzheimer's disease. J Neurosci,2008.28(53):14392-400.
    [78]Doubli6, S. Preparation of selenomethionyl proteins for phase determination. Methods in enzymology,1997.276:523-530.
    [79]Walter, T.S., C. Meier, R. Assenberg, et al. Lysine methylation as a routine rescue strategy for protein crystallization. Structure,2006.14(11):1617-22.
    [80]Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J,2000.78(3):1606-19.
    [81]Schuck, P. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal Biochem,2003.320(1):104-24.
    [82]Wang, X.J., J.D. Hayes, and C.R. Wolf. Generation of a stable antioxidant response element-driven reporter gene cell line and its use to show redox-dependent activation of Nrf2 by cancer chemotherapeutic agents. Cancer research,2006.66(22):10983-10994.
    [83]Martin, S.F., H. Sawai, J.M. Villalba, et al. Redox regulation of neutral sphingomyelinase-1 activity in HEK293 cells through a GSH-dependent mechanism. Archives of biochemistry and biophysics,2007.459(2):295-300.
    [84]Gilge, J.L., M. Fisher, and Y.-C. Chai. The effect of oxidant and the non-oxidant alteration of cellular thiol concentration on the formation of protein mixed-disulfides in HEK 293 cells. PLoS One,2008.3(12):e4015.
    [85]McLoughlin, D.M., N.G. Irving, J. Brownlees, et al. Mint2/X11-like colocalizes with the Alzheimer's disease amyloid precursor protein and is associated with neuritic plaques in Alzheimer's disease. Eur J Neurosci,1999.11(6):1988-94.
    [86]Feng, W. and M. Zhang. Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci,2009.10(2):87-99.
    [87]Kondo, M., M. Shiono, G. Itoh, et al. Increased amyloidogenic processing of transgenic human APP in X11-like deficient mouse brain. Mol Neurodegener,2010.5:35.
    [88]Lee, J.H., K.F. Lau, M.S. Perkinton, et al. The neuronal adaptor protein Xllbeta reduces amyloid beta-protein levels and amyloid plaque formation in the brains of transgenic mice. J Biol Chem,2004.279(47):49099-104.
    [89]Saito, Y., Y. Sano, R. Vassar, et al. X11 proteins regulate the translocation of amyloid beta-protein precursor (APP) into detergent-resistant membrane and suppress the amyloidogenic cleavage of APP by beta-site-cleaving enzyme in brain. J Biol Chem,2008. 283(51):35763-71.
    [90]Mitchell, J.C., B.B. Ariff, D.M. Yates, et al. Xllbeta rescues memory and long-term potentiation deficits in Alzheimer's disease APPswe Tg2576 mice. Hum Mol Genet,2009. 18(23):4492-500.
    [91]Schock, F. and N. Perrimon. Molecular mechanisms of epithelial morphogenesis. Annu Rev Cell Dev Biol,2002.18:463-93.
    [92]Banks, L. and P.O. Humbert. On the guardians of polarity and the disorientation of cancer. Oncogene,2008.27(55):6876-7.
    [93]Doerks, T., P. Bork, E. Kamberov, et al. L27, a novel heterodimerization domain in receptor targeting proteins Lin-2 and Lin-7. Trends Biochem Sci,2000.25(7):317-8.
    [94]Mukherjee, K., M. Sharma, H. Urlaub, et al. CASK Functions as a Mg2+-independent neurexin kinase. Cell,2008.133(2):328-39.
    [95]te Velthuis, A.J., J.F. Admiraal, and C.P. Bagowski. Molecular evolution of the MAGUK family in metazoan genomes. BMC Evol Biol,2007.7:129.
    [96]Bohl, J., N. Brimer, C. Lyons, et al. The stardust family protein MPP7 forms a tripartite complex with LIN7 and DLG1 that regulates the stability and localization of DLG1 to cell junctions. J Biol Chem,2007.282(13):9392-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700