用户名: 密码: 验证码:
铝熔体过滤用刚玉—莫来石基泡沫陶瓷的强韧化制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫陶瓷特有的三维开放孔隙结构,与陶瓷自身的优良属性相结合,使其在熔融金属过滤方面表现出特殊的优越性。采用有机泡沫浸渍法生产铝熔体过滤用泡沫陶瓷过滤器(Ceramic Foam Filter,以下简称CFF),具有工艺简单、操作方便、成本低的优势,发展前景广阔。铝用CFF目前存在的主要问题是制品的热强度及抗热冲击性能差,使用寿命短。这些均制约着铝合金产品性能的提升,同时也是CFF研究的热点。
     本文从干压实体陶瓷成瓷机理研究入手,通过优化烧结制度、调整粘结剂比例,以及添加混合稀土、滑石、蓝晶石、工业氧化铝、TiO2等手段,大幅提高烧结体强度。在优化挂浆性能的基础上,采用有机泡沫浸渍法进行泡沫陶瓷的实验室制备,并对其力学性能、抗热震稳定性、孔径分布、比表面积等进行表征。在此基础上,结合现场生产条件,制备出新型铝熔体过滤用CFF,并通过A356铝合金现场熔铸过滤试验,从合金成分、金相组织、抗拉强度、延伸率等方面对新型CFF进行了效能评价。
     对以刚玉、硅微粉、钾长石、高岭土等为原料的原始配方干压实体陶瓷的力学性能及成瓷机理的研究表明:基体内缺少活性氧化铝、α-方石英生成过多、二次针状莫来石生成量少等,是烧结体强度偏低的主要原因。
     研究了磷酸添加量对烧结体力学性能的影响,确定了最佳的磷酸加入量。当磷酸与去离子水的质量比达到20/65时,烧结体的抗压与抗弯强度比原始配方分别提高50.5%与55.4%,这是因为合适的磷酸加入,使基体内活性Al2O3含量相对增加,促进了莫来石转化,并使基体内形成牢固的聚合磷酸铝陶瓷网络。
     优化的烧结制度对实体陶瓷力学性能有重要影响。其中1350℃优化条件下的烧结体抗压及抗弯强度,比原始烧结体分别提高6.8%及13.1%。而1400℃优化条件下的烧结体抗压及抗弯强度,比原始烧结体分别提高44.3%及52.8%。
     系统研究了多种添加剂对实体陶瓷力学性能的比较,在磷酸强化配方(A)的基础上,确定了三种添加剂优化配方,即6%生滑石+4%蓝晶石配方(B)、3%混合稀土配方(C)及TiO2+工业Al2O3高能球磨配方(D)。
     ·添加6%生滑石的实体陶瓷抗压及抗弯强度比磷酸强化配方分别提高108.9%和33%;在此基础上添加4wt%的蓝晶石球磨粉,烧结体抗压及抗弯强度进一步提高20.1%及29.1%。滑石的强化效应主要源于其酸溶反应及相变产生的大量非晶态物质成为促进石英及莫来石转化的活化中心,以及铝镁尖晶石的细晶强化作用。而蓝晶石的强化与补缩作用主要源于其高温下的不可逆膨胀及莫来石转化。
     ·添加3%的混合稀土可使实体陶瓷的抗弯及抗压强度比磷酸强化配方分别提高23.3%和25.4%;其强化机理在于:混合稀土中的CeO2高温变价产生的晶格缺陷促进了液相的生成、聚集,及莫来石的转化,并产生细晶强化作用。
     ·加入TiO2+工业Al2O3高能球磨粉的烧结体,其抗压及抗弯强度分别比磷酸强化配方提高80.2%及85.3%。其强化作用源于球磨产生的高活性Al2O3、TiO2及其介稳相对合成莫来石-钛酸铝固溶体的促进作用、以及莫来石、Fe2O3等对钛酸铝高温分解的抑制作用。
     浆料吸光度与沉降度研究表明:在相同固液比下,上述四种优选配方分散性能排序为:D-A-C-B。生滑石因其固有的疏水作用能及表面气膜,使浆料分散性变差;蓝晶石表面铝离子的优先酸解,可在一定程度上减弱滑石的不利影响;CeO2表面离子极化弱,并造成Al2O3双电层压缩,使浆料分散性变差;而TiO2+工业Al2O3高能球磨增加了浆料固-液界面的相容性,有利于浆料分散。浆料的流变曲线分析表明:当固液比为1:0.4时,四种浆料流变曲线均表现为一定的切稀及应力过冲行为,其触变性的改善程度排序为:B-C-A-D,这与不同添加剂对浆料内“卡片结构”的影响有关。
     通过水解和表面改性,确定了聚氨酯泡沫最佳挂浆条件,将聚氨酯泡沫浸泡于15%NaOH溶液中,在60℃条件下水解40min,可有效去除其孔筋间膜,增加孔筋表面粗糙度。采用羧甲基纤维素钠(CMC)、十二烷基硫酸钠(SDS)、硅溶胶、自制铝溶胶等改善聚氨酯泡沫挂浆量,效果最好的是自制铝溶胶。通过调整对辊间距,确定当挤压比为5:1时,浆料涂覆效果最优。
     在上述研究的基础上,采用有机泡沫浸渍法进行了上述四种配方泡沫陶瓷的实验室制备及性能表征。结果表明:B、C、D配方烧结体的常温抗压强度比A配方分别提高64.4%、28.8%、48.1%;抗弯强度分别提高24.9%、15%、72.6%。抗热震破坏循环次数最多的是配方D,其次为C、B、A。而经一次热震循环后抗弯强度的下降幅度最小的是配方B,其次为配方C、D、A。
     采用压汞法测定泡沫陶瓷表面孔径分布和比表面积,发现在低压区,配方A烧结体的表面孔径分布最广,函数峰值最高、其次为配方C、B、D,这主要与基体内液相量及颗粒重排有关。而高压区内纳米孔径的存在,则与烧结过程中气体排出、相变收缩、微裂纹、莫来石生成等有关。而经冷冻干燥的烧结体的孔径分布范围、函数峰值及比表面积比均大幅增加。
     采用实验室配方A、B、C进行了新型铝用CFF的中试制备,结果表明:新型CFF通孔率高、外观整洁、无掉渣、裂纹等缺陷。A、B、C三种过滤器的常温抗压强度分别比原始配方提高17.6%、104%、64.9%;抗弯强度分别提高20.8%、163.6%、74%。
     采用新型CFF进行了A356铝合金熔体现场过滤试验。结果表明:新型CFF高温性能稳定,对铝合金熔体中小于10μm细微夹杂的去除效率达到50%以上。同时对熔体中的氢具有一定的去除作用。A、B、C新型CFF,过滤后合金试样的抗拉强度比过滤前分别提高18.9%、13.1%、12.9%,延伸率分别比过滤前提高4%、11.4%、8.3%。
Foam ceramics, with particular structure of 3D open porosity and excellent texture properties, have showed great superiority in the field of molten metal filtration. Organic sponge impregnation technology, due to its simple process and low cost, is an economical and practical method for aluminum ceramic foam filters(CFF). Presently, the main technical problems for aluminum CFF lie in its low thermal strength, poor thermal shock resistance and long-term stability. All these restrain the elevation for the aluminium alloy properties, and therefore having become the hotspots of CFF research.
     Laboratory studies of this paper started from the porcelain-forming mechanism investigation for the dry-pressed concrete ceramic. By means of binder ratio optimizing, sintering enhancement, and the addition of mixed rare earth, talc, kyanite, industrial alumina and TiO2, ceramic matrixs with high-strength have been obtained. Based on slurry coating optimization, foam ceramics were prepared in lab using organic foam impregnation technique, which is followed by characterization of mechanical properties, thermal shock stabilities, pore size distributions, specific surface areas, etc. Then, according to the optimized formulas and slurry coating techniques, pilot studies were carried out firstly to prepare new types of aluminium-used CFF, then the new filters were applied to on-site A356 aluminum alloy filtration tests, and comprehensive comparison and evaluation were done on the aspects of specimen mechanical properties, alloy composition, etc.
     Form the mechanical property and porcelain-forming mechanism studies of the original formula dry-pressed concrete ceramics, which induded coruadum, silica, K-feldspar and kaolinite, as raw materials, it showed that:low sintering density and matrix intensity can be mainly attributed to the lack of active Al2O3, the excessiveα-cristobalite and low secondary acerate mullite generated in the ceramics.
     By studing the effect of the additive concentration, on the mechanical preoperties of the matrix, it is found that the optimal phosphoric acid addition amount was 85% phosphoric acid and deionized with the ratio of 20/65 in matrix. In this case, the compressive and flexural strength at room temperature of the dry-pressed ceramics were 50.5% and 55.4% respectively, which was more than the original formula. This is mainly due to the low stoichiometric phosphoric acid which supplies more activiteγ-Al2O3. And the activeγ-Al2O3 is much propitious to the formation of secondary mullite and firm aluminum phosphate ceramic net.
     Sintering system has great impact on the mechanical properties of the sintered body. Two optimized sintering curves with their highest temperatures being 1350℃and 1400℃were determined. The compressive and flexural strength of ceramic matrix were increased by 6.8% and 13.1% respectively for 1350℃sinters, and 44.3% and 52.8% respectively for 1400℃sinters.
     Effects of multiform additives on the mechanical properties of the dry-pressed ceramics entities were systematically studied. Three kinds of optimized formulas were determined based on the phosphoric acid strengthended formula(A), which were the 6% talc+4% kyanite modified formula(B); the 3% mixed rare earth modified formula(C); and the TiO2+industrial Al2O3 co-milled formula(D). The main results and achievementsa are as following:
     ·Adding 6wt% raw talc, the compressive and flexural strength of the dry-pressed sintered bodies can be increased by 108.9% and 33% respectively compared to that of A. Then further adding 4% ball milled kyanite on this basis, the elevation of the compressive and flexural strength further reached 20.1% and 29.1% respectively. The strengthening mechanism of talc addition mainly lies in the mullitization promoting effect by the generation of large number of glass phase, as well as the fine-grain strengthening effect of the generated aluminum-magnesium spinel solid solution. The role of kyanite in strengthening is mainly due to its high temperature inreversible mullitization, and its volume expansion effects fetching up the matrix shrinkage.
     ·Adding 3% CeO2-riched mixed rare earth(formula C), the compressive and flexural strength of the dry-pressed ceramics entities can be improved by 25.4% and 23.3% respectively compared to that of formula A. The strengthening effects mainly lie in the CeO2 lattice defects generated at high-temperature which acts as activation centers for mullite crystallization, and promotes liquid-phase formation and aggregation, and the fine-grain strengthening function.
     ·Adding TiO2+industrial Al2O3 co-milled powder(formula D), the compressive and flexural strength of the dry-pressed ceramic sintered body can be increased by 80.2% and 85.3% respectively compared to that of formula A. The strengthening mechanism of mainly lies in the promoting effect of the highly activated Al2O3 and TiO2, together with the metastabilized phase generated during the ball-milling process, and the stabilizing effect of mullite, silica and Fe2O3 on the aluminium titanate crystal.
     Dispersity and thixotropy of the above mentioned four optimized formula slurries were studied. formula D showed best dispersity followed by formula A、C、and B. The bad dispersity for formula B is due to the inherent hydrophobic interaction and surface air film on the talc particles; and for formula C, weaker surface ionic polarization for CeO2 particles resulted in compressure to the Al2O3 electric double layer. Well for formula D, high energetic ball milling improved the solid-liquid interface compatibility, and thus improving the slurry dispersity. Thixotropy studies showed that:when the solid-liquid ratio exceeded 1:4, the four kinds of slurries all put up the feature of pseudo-plastic fluid to some extent with shear thinning behavior and different stress overshoots. Formula B showed best thixotropy properties followed by formulaC、A and D. These are mainly associated with the different effects of the additives on the kaolinite "card structure" in the slurries.
     The polyurethane foam interosseous membrane can be removed effectively when hydrolyzed in 15% NaOH solution at 60℃for 40min, with its surface roughness increasing and no significant decline in elasticity. Idea slurry coating was derived when adjusting the compression ratio to 5:1. Soaked in certain solutions containing sodium carboxymethyl cellulose (CMC), sodium dodecyl sulfate (SDS), silica sol, and a home-made aluminum sol respectively, the slurry coating performances for the polyurethane foam were improved to different degrees, among which the home-made aluminum sol showed best coating effect.
     Laboratory preparation and property characterizations of foam ceramics based on above studies have been carried out with formula A as comparison. Mechanical properties studies showed that:the compressive strength for formula B、C and D were increased by 64.4%,28.8% and 48.1% respectively compared to that of formula A; as for the bending strength, the elevations were 24.9%,15%,72.6% respectively. Formula D showed highest number of thermal shock cycles, followed by formula C、B and A, this showed the effects of aluminum titanate stability on the improvement of matrix thermal shock resistance. As the bending strength variation after one thermal shock cycle, formula B showed smallest decline, followed by formula C、D and A.
     Mercury injection method was used to test the surface pore size distribution and the specific surface area of the sinters. At low-pressure, pore size distribution curve for formula A showed highest functional peak and widest pore size distribution, followed by formula C、B and D. This may be attributed to liquid aggregation and particle rearrangement in the matrix. While the presence of nano-sized pores in the matrix may be associated with gas emission, phase change shrinkage, micro-cracks and the mullitation in the sintering bodies. It was ulteriorly found that: inflicting the adobe of formula with vacuum freeze drying, the pore size distribution of the sinter was much wider than the unfrozen sinter. This is due to the formation of amouts of large pores with 10:1 aspect ratio on the cross-bars between the struts during freeze-drying process.
     Formula A、B and C were adopted in the pilot tests to prepare new types of aluminum CFF. The new products showed the advantages of high porosity, clean appearance, with no dregs, cracks and other defects. The compressive strength for the specimen of formula A、B and C were increased by 17.6%、104%、64.9% respectively, while the flexural strength,20.8%、163.6%、74% respectively, both of which are more than that of original formula.
     The on-site A356 aluminum alloy filtration tests showed that:the new filters met the actual production needs completely with high temperature stability, and good removing effects on fine inclusions. Hydrogen content testing to the various casting stages indicated that: filtration processes had certain removing effects on the hydrogen. Tensile strength and elongation tests for the alloy samples before and after filtration showed that:the tensile strength elevation rates for filters of the fomula A、B、C were 18.9%、13.1%、12.9%、respectively; while for the elongation, elevation rate for fomula A、B、C were 4%、11.4% and 8.3% respectively.
引文
[1]曾可令、王慧、罗民华,多孔功能陶瓷制备与应用[J],北京:化学工业出版社2006.5,1-10
    [2]宋慎泰、刘开琪等.特种陶瓷与耐火材料[J],北京:冶金工业出版社,2004:136-145
    [3]王宝和、于才渊、王喜忠,纳米多孔材料的超临界干燥新技术[J],化学工程,2005,33(2):13-17
    [4]韦保,陶瓷浆料成分及流变性对泡沫陶瓷过滤器性能的影响[D],哈尔滨工业大学硕士论文,2006,2-5
    [5]Wu Qiangxian、Zhang Lina. Appl Polym,2001,79:2006
    [6]Peter Greil. Advanced Engineering Ceramics. Adv Mater[J],2002,14(10):709-716
    [7]刘辉、孙伟等,多孔陶瓷材料的应用及发展前景[J],矿业工程,2003,26(6):68-71
    [8]段曦东,多孔陶瓷的制备、性能及应用[J],陶瓷研究,1999,14(3):12-17
    [9]韩永生,李建保等.多孔陶瓷材料应用及制备的研究进展[J]:材料导报.2002,16(3):26-29
    [10]钦征骑等,新型陶瓷材料手册[M],江苏:科学技术出版社,1996
    [11]刘辉、孙伟、覃文庆等,多孔陶瓷材料的应用及发展前景[J],矿冶工程,2003,23(6):69-71
    [12]王慧、曾令可等,多孔陶瓷—绿色功能材料[J].中国陶瓷,2002,38(3):6-8
    [13]Berthold N, Sabine T, Rainer S, et al. Porous bore replacement materials[P], US Patent, No.5650108,1997207222
    [14]Roddguez Lor, Pnzoa L M, Ferreirab J M F, Development of Porous Ceramic Bodies for Applications in Tissue Engineering and Drug Delivery Systems[J], Materials Research Bulletin[J],2004,(39):83-91
    [15]李小龙,多孔陶瓷材料[J],中国陶瓷,2000,36(4):36-39
    [16]张守梅,曾令可等,环保吸声材料的发展及展望[J],陶瓷学报,2002,23(1):56-60
    [17]金宗哲,卫罡,黄丽容,微米多孔陶瓷板及制备方法[P],中国专利,No.CN1657501,2005208224
    [18]李月琴,吴基球,多孔陶瓷的制备、应用及发展前景[J],陶瓷工程,2000, (12):44-47
    [19]史可顺,多孔陶瓷材料的制造工艺及进展[J]硅酸盐通报,1994(3):38-43
    [20]高正亚,史旭莲,多孔陶瓷的制备工艺[J]佛山陶瓷,1999(4):19-20
    [21]张宇民,刘殿魁,韩杰才,赫晓东,多孔陶瓷材料制备工艺研究进展[J],兵器材料科学与工程,2002,25(2):64
    [22]Fujiu, Synthesis of Highly Porous Ceramics[J], Journal of the American Ceramic Society,1990, (1):85-89
    [23]Lyckfeldt O, Ferreia J M F, Processing of Porous Ceramics by Starch Consolidation[J], J Eur Ceram Soc,1998,18:131-140
    [24]Schwartzwalder K, Arthur H, Somers V, et al, Method of Making porous ceramic particles[P], US Patent, No.3090094,1963-05-21
    [25]时利民,赵宏生,闫迎辉,唐春和,开孔多孔陶瓷的制备技术[J],材料工程,2005,(12):58
    [26]Zhang G J, Jian F Y, Tatsuki O, Fabrication of porous ceramics with unidirectionlly aligned continuous pores [J], J Am Ceram Soc, 2001,84(6):1395-1397.
    [27]朱时珍,赵振波,刘庆国,多孔陶瓷材料的制备技术[J],材料科学与工程1996,14(3):33~39
    [28]资文华,孙俊赛,黄明华,陈庆华,缪松兰.溶胶—凝胶法制备多孔陶瓷的研究进展.中国陶瓷,2003(4)
    [29]毕秋,李克等,多孔陶瓷的制备工艺及其研究进展[J],材料导报,2009,4(1),23-26
    [30]Omatete O.U, Janney M.A, Gelcasting, A New Ceramic Forming Process [J], American Ceramic Society Bulletin,1991,70(10):1641-1650.
    [31]Sofie SW, Dogan,. Freeze, Casting of Aqueous Alumina Slurries with Glycerol[J] J Am Ceram Soc,2001,84(7):1459-1464
    [32]马文,沈卫平,董红英等,多孔陶瓷的制造工艺及进展[J],粉末冶金技术,2002,20(6):365-368
    [33]Takayuki F, Motohide A, Synthesis of porous ceramics with complex pore structure by freeze-dry processing [J], J Am Ceram Soc,2001,84(1):230-232
    [34]Kiyoshi A, JohnW H, Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique[J], J Am Ceram Soc,2005,88(3):777-779
    [35]罗民华,多孔陶瓷实用技术[M],北京:中国建材工业出版社,2006.3,99-108.
    [36]Sugiyama K, Preparation of Low Density Free Standing Shape of SiC by Pressure Pulsed Chemical Vapor Infiltration[J], Journal of Materials Science Letters,1995,(14):1720-1726
    [37]Aoki Y, McEnaney B, SiC Foams Produced by Siliciding Carbon Foams[J], British Ceramic Transactions,1995,94(4):133-137.
    [38]Tang F.Q, Fudouzi H, Uchikoshi T. Preparation of Porous Materials with Controlled Pore Size and Porosity[J], Journal of European Ceramic Society. 2004,(24):341-344
    [39]R.H Tuffias, R.B.Kaplan. Refractory ceramic Foams—A Novel New Hight Teperature Structure[J], Am.Ceram.Soc.Bulletin,1992,70(6):1025-1029
    [40]夏光华,高孔隙率多孔陶瓷滤料的制备[J],陶瓷学报.2004,25(1):24-27
    [41]Tanev P T, Pinnavaia T J. Biomimetic Templating of Porous Lamellar Silica by Vesicular surfactant Assemblies [J], Science.1996,(271):1267-1269
    [42]Kinomuchia Y, Wataria K, Uchimurab S. Grading Porous Ceramics by Centrifugal Sintering[J], Journal of Actable Materials.2003,(51):3225-3231
    [43]Yongheng Zhang. Microstructures and Mechanical Properties of Silicon Nitride Bonded Silicon Carbide Ceramic Foams[J], Materials Research Bulletin. 2004,(39):755-761
    [44]冯胜山,陈巨乔.泡沫陶瓷过滤器的研究现状和发展趋势[J],耐火材料.2002,36(4):235-239
    [45]叶荣茂,杨戈涛.铸铁用泡沫陶瓷过滤器[J],球铁.987,(2):21-25
    [46]黄继和,韩星赵.泡沫陶瓷过滤器在球铁生产中的应用[J],铸造.1991,40(1):21-26
    [47]王微微,曹达富.用纯氧化镁泡沫陶瓷过滤器过滤铸造镁合金的研究[J],铸造技术.1991,17(6):15-18
    [48]冯胜山,陈巨乔.应加强推广泡沫陶瓷过滤净化铸铁工艺[J],铸造设备研究.2001,(6):38-41
    [49]Mollard F R, Davison N. Ceramic foam filter for molten metal[J], AFS Transactions.1978,86:479-486
    [50]Sutton W H, et al. Development of ceramic foam materials for filtering high temperature alloys[J], AFS Transactions.1985,93:339-346
    [51]朱新文,江东亮.有机泡沫浸渍工艺:一种经济实用的多孔陶瓷制备工艺[J],硅酸盐通报,2000(3):45-51
    [52]刘培生.多孔材料引论[M].北京:清华大学出版社,2004,6:1-20
    [53]Mollard F R, Davison N. Ceramic foam filter for molten metal[J]. AFS Transactions,1978,86:479-486
    [54]Sutton W H, et al. Development of ceramic foam materials for filtering high temperature alloys[J]. AFS Transactions,1985,93:339-346
    [55]AubreyL A, et al. Cast steel qualilty Improvement by filteration with ceramic foam filters[J]. AFS Transactions,1985,93:171-176
    [56]Stamper J M. The filtration of steel castings with ceramic foam filters[J], AFS Transactions,1985,93:867-870
    [57]R.H Tuffias, R.B.Kaplan. Refractory Ceramic Foams—A Novel New Hight Temperature Structure[J]. Am.Ceram Soc Bulletin,1992,70(6):1025-1029
    [58]陈哲,单外娥.泡沫陶瓷的研究现状及展望[J].十堰职业技术学院学报,2003,16(2):53-55
    [59]朱小龙,苏雪筠.多孔陶瓷材料[J],中国陶瓷.2000,36(4):36-39
    [60]梁海林译,石桥政勇著.铸造用泡沫陶瓷过滤器的开发与应用[J].铸造,1990,39(3):36-37
    [61]陈巨乔,冯胜山.铸造用泡沫陶瓷过滤器的研制与应用[C].中国机械工程学会第八届全国铸造年会论文集.北京,1992:298-299
    [62]房文斌等.泡沫陶瓷过滤器的研究进展[J].铸造.1996,45(9):45
    [63]范小林,冯春祥,宋永才等.先驱体转化制备耐腐蚀性过滤器用多孔陶瓷材料:(1)泡沫状多孔先驱体的合成[C].中国空间科学学会空间材料专业委员会1999年学术交流会,昆明,1999,8,93-99
    [64]房文斌,耿耀宏,安阁英等.烧结制备泡沫陶瓷过滤器工艺的优化[J].铸造,2002,5(6):349-351.
    [65]王薇薇,曹达富.用纯氧化镁泡沫陶瓷过滤器过滤铸造镁合金的研究[J].铸造技术,1991,17(6):15-18
    [66]路贵民,柯东杰.铝合金熔炼理论与工艺[M].沈阳:东北大学出版社,1999.1-10.
    [67]柯东杰.国内现行铝熔体净化技术的生产实践[J].轻合金加工技术,1994(11):17-19.
    [68]杨长贺,高钦.有色金属净化[M].大连:大连理工大学出版社,1989.1,1-10
    [69]Crepeau P N, Molten Aluminum Contamination:Gas,Incl usions and Dross[J], Modem Casting,1997,87(7):39-41
    [70]Lewis D K, Can We Control Hard Spot Problems?[J] Die Casting Engineer, 1987,31(2):34-38
    [71]Eckert C E, Inclusions in Aluminum Foundry Alloys [J], Modem Casting,1991, (4):28-30
    [72]周明品,周宏,梁涛等,压铸铝合金中的金属间化合物[J],特种铸造及有色合金,1999增刊(1):117-119
    [73]Davis I R, Aluminum and Aluminum Alloys[J], The Materials Information Society, USA,1994,21(4),3-4
    [74]Zhang Lifeng, Lucas Damoah, Li Shusen, et al. MECHANISM OF INCLUSION REMOVAL FROM ALUMINIUM THROUGH FILTTATON[J]. TMS Light Metals,2008,649-655.
    [75]Apelian D, New Developments in Aluminum Processing[C], Proceedings of the 2nd International Symposium, Light Metals Commitee, USA,1992:423-456
    [76]Peterson R D, Common Impurities in Aluminum Alloys[C], Porceedings of 3rd International Conference on Aluminum Processing 1994,(1):75-89
    [77]王肇经.铸造铝合金中的气体和非金属夹杂物[M].北京:兵器工业出版社,1989.5:1-5
    [78]Laz P J, Hillberry B.M. Fatigue Life Prediction from Inclusion Initiated Cracks [J], Int. J. Fatigue,1998,20(4):263-270
    [79]闰海,陈鹅,丁传富等,LY12CZ铝合金短裂纹行为的微观扩展机制研究[J].材料工程,1999(4):13-15
    [80]Liu L, Samuel F H. Effect of Inclusions on the Tensile Properties of Al-7% Si-0.35%Mg (A356.2) Aluminium Casting Alloy[J], J.Mater.Sci,1998,33: 2269-2281
    [81]Gudmundsson T, Efficiency of Holding Time in a Casting Furnace [J], Light Metals 1995:855-858
    [82]A..切尔涅茄等著,黄良余。严名山译,有色金属及其合金中的气体北京:冶金工业出版社,1989
    [83]Doutre D, Gariepy B, Martin JP, et al, Aluminium Cleanliness Monitoring: Methods and Applications in Process, Development and Quality Control [J], Light Metals 1985:1179-1195
    [84]Rooy E L, Hydorgen:The One-Third Solution[J], AFST ransactions.1993, 209:961-964
    [85]Eckert C E, Miler R E, Apelian D, et al. Molten Aluminum Filtration: Fundamentals and Models[J], Light Metals 1984:1281-1304
    [86]Molland F R, Davidson N. Ceramic Foam-A Unique Method of Filtering Molten Aluminium in the Foundry[C]. Detriot Michigan, AFS Conference,1978.
    [87]傅高升,康积行,陈文哲等,铝熔体中夹杂物与气体相互作用的关系[J],中国有色金属学报,1999,9S(1):51-56
    [88]Shivkumar S, Wang L, Apelian D, Molten Metal Processing of Advanced Cast Aluminum[J], Jounral of Metals,1991(1):26-32
    [89]Liu L, Samuel F H, Assessment of Melt Cleanliness in the A356.2 Aluminium Casting Alloy Using Inclusion Measurements[J], Porous Disc Filtration Apparatus Technique, Part1, J Mater Sci,1997,32:5901-5925
    [90]Szekely A.G, The Removal of Solid Particles from Molten Aluminum in the spinning Nozzle Inert Flotation Process[J], Metal Trans.S,1976,(7B):289-270
    [91]D Apelian and R Mutharasan, Filtration:A Melt Rifning Method of Metals[J], Sept.1980:14-19
    [92]Popescu G, Gheorghe I, Danila F, et al, Vacuum Degassing of Aluminium Alloys[J], Materials Science Forum,1996,217,(22):147-152
    [93]Roy Raja R, Utigard T A, Dupuis C, Inclusion Removal during Chlorine Fluxing of Aluminum Alloys[J], Light Metals 1998:871-876
    [94]Schmahl J R, Aubrey L S, Martins L C B, Recent Advances in Molten Aluminum Filtration Technology[M], the 4th Int.Confon Molten Processing, AFS, Des Plaines,IL,1995:71-94
    [95]HoshinoK, Nishizaka T, Kakimoto K, et al, The Filtration of Molten 1100 Series Aluminum Alloys with Rigid Media Tube Filter [J], Light Metals 1996:833-838
    [96]Improving Performance in the Flitration Process[M], Pyrotek. Supplement,2-11
    [97]Clement Guillaume, The Pechiney Deep Bed Filter:Technology and Performance[J], Light Metals 1995:1253-1262
    [98]Eichenmiller D L, Henderson R S, Neff D V, Rigid Media Filtration:New Understanding and Possibilities with Bonded Particle Filters[J], Light Metals 1994:1009-1016
    [99]Gauckler L J, Waeber M M, Conti C, et al, Industrial Application of Open Pore Ceramic Foam for Molten Metal Filtration[J], Light Metals,1985:1261-1283
    [100]叶荣茂,常庆明,王恩光,过滤器过滤效率的评价[J],铸造,1992(12):1-6
    [101]Tian C, Guthrie R I L. Direct simulation of initial filtration phenomena within highly porous media[J]. Met.Trans,1995. B,26B, (June):537.
    [102]Mutharasand R, A laboratory investigation of aluminium filtration through deep-bed ceramic opencell filter[J], JOURNAL OF METALS, December 1981, 12-17
    [103]F A Acosta, A H Castillejos, E Ruiz, A Study of the Role of Fluid Velocity and Particle Size On Deep Bed Filtration Behaviour[J], Light Metals,1996
    [104]C Tian, R I L Guthrie, The dynamic process of liquid metal filtration[J], Light Metals,1995
    [105]贾天敏,李军文,江度,安阁英,泡沫陶瓷过滤器净化原理及含过滤器浇注系统的设计、铸造[J],1998,(5):22-26
    [106]Rivierel Carlos, A 2D LATTICE-BOLTZMANN MODEL OF ALUMINIUM DEPTH FILTRATION[J]. Light Metals 2005,761-765
    [107]Backman Joans, Ingvar L Svensson, Evaluation of filter parameters from direct observation of metal flow in aluminium castings [J], Jonkoping University, Division of Component
    [108]Acosta G F A, Castillejos E A H, A mathematical model of aluminum depth filtration with ceramic foam filters:Part Ⅰ, Validation for short-term filtration[J]. Metallurgical and Materials Transactions B,2000,31,(3),491-502
    [109]Acosta G F A, Castillejos E A.H, A mathematical model of aluminum depth filtration with ceramic foam filters:Part Ⅰ I. Application to Long-term filtration[J], Metallurgical and Materials Transactions B,2000,31(B):503-514
    [110]Alexandre Vianna da Silva, Maia Alberto Martins, Luiz C B, et al, FILTRATION EFFICIENCY AND MELT CLEANNESS EVALUATION USING LAIS SAMPLING AT VALESUL ALUMINIO S.A[J]. Light Metals 2005:957-960.
    [111]Mansfield TL. Ultrasonic technology for measuring molten metal quality[J]. Materials Evaluation,1983,41(6):743-747.
    [112]Brun P Le, Krautlein C, Rombach G, et al. Removal of intermetallic particles for the purification of aluminum alloys[J], Light Metals 2007,657-659
    [113]Katgerman L, Zuidema Jr Jan, UPSTREAM FLUID FLOW PARTICLE REMOVAL[J]. TMS Light Metals 2005, pp.927-931
    [114]Laszlo Istvan Kiss, Rung Tien Bui, Duygu Kocaefe, et al, FLOW STRUCTURE AND STABILITY OF THE DEPOSITION LAYER IN DEEP-BED-FILTERS[J], Light Metals 2001,191-1195.
    [115]Towsey N, Schneider W, Krug H P, The Eeffects of Rod Grain Refiners with Differing Ti/B Ratio on Ceramic Foam Filtration[J]. Light Metals 2002, 931-935
    [116]Towsey N, THE INFLUENCE OF GRAIN REFINERS ON THE EFFICIENCY OF CETAMIC FOAM FILTERS[J]. Light Metals,2001,973-978
    [117]Lae E, Duval H, Riviere C. Experiment and Numerical Study of Ceramic Foam Filtration[J]. Light Metals 2006,753-756
    [118]周鸣,疏达,倪红军等,活性涂层泡沫陶瓷过滤铝熔体[J].上海交通大学学报,2004,38(2):295-299
    [119]Ni Hongjun, Zhu Yu, Huang Mingyu, et al, Purifying effects and mechanism of a new composite filter[J]. Materials Science and Engineering,2006,426(A) 53-58
    [120]Taslicukur Z, Balaban C, Kuskonmaz N. Production of ceramic foam filters for molten metal filtration using expanded polystyrene [J]. Journal of the European Ceramic Society,2007,27(2-3):637-640.
    [121]Miao X, Hu Y, Liu J, et al. Porous calcium phosphate ceramics prepared by coating polyurethane foams with calcium phosphate cements[J]. Materials Letters,2004,58(3-4):397-402.
    [122]曾可令、王慧、罗民华等,多孔功能陶瓷制备与应用[M],北京:化学工业出版社,2006,(5):54-55
    [123]陆佩文,无机材料科学基础[M],武汉:武汉理工大学出版社,2005.7,173-174
    [124]Aksay A, Dabbs Danid M, Sarikaya M. Mullite for structure electronic and applications[J]. J Am Ceram Soc,1991,74(10):2341-2346
    [125]Rain D Amutha, Gnanam F D. Sol-Gel mullite as the self-bonding material for refractory application[J], Ceramics International,2000,(26):347-350.
    [126]HidehiroK, Hisao S. Densification of sol-gel derived mullite ceramics after cold static pressing up [J]. J Am Cersm Soc,1998,81(1):173-177.
    [127]K C Liu, G Thomas, Time-temperature-transformation curves for kaolinite-alumina[J], J Am Ceram Soc.1994,77(6):1545-1552.
    [128]K C. Liu, G Thomas, A Caballero, J S Moya, S Aza, Mullite formation in kaolinite-alumina[J], Acta Metall Mater.1994,42(2):489-495.
    [129]C Y Chen, G S Lan, W H Tuan, Microstructural evolution of mullite during the sintering of kaolinpowder compacts[J], Ceramics International,2000,(26): 715-720
    [130]Nurishi Y & Pask J A, Sintering of α-Al2O3/amorphous silica compacts[J]. Ceram. Znt,1982,(8)57-59
    [131]A Gualtieri, M Belloto, G Artiolli, S M Clark, Kinetic study of the kaolinite-mullite reaction sequence, Part Ⅱ:Mullite formation[J], Phys.Chem. Minerals,1995,22(4):215.
    [132]Pask, J. A., Zhang, X. W. and Tomsia, A. P., Effect of sol-gel mixing on mullite microstructure and phase equilibria in the α-Al2O3-SiO2 system. J. Am. Ceram. soc.,1987,70,704-707
    [133]E M Levin, C R Robbins, H F Mcmurdie, Phase Diagrams for Ceramists[J] [J], The America Ceramic Society,1964, (1)68-74
    [134]W G Fahrenholtz, D M Smith, Densification and microstructure of sodium-doped colloidal mullite[J], J Am Ceram Soc.1994,(77):1377-1380
    [135]K Li, T Shimizu, K Igarashi, Preparation of short mullite fibers from kaolin via the addition of foaming agents[J], J Am Ceram Soc.2001 (84):497-503
    [136]李师军,梁金芳,.磷酸系无机粘合剂的研究动态[J],沈阳化工,1997(2)7-10
    [137]Arun S, Wagh, Susan Grover and Seung Y Jeong, Chemically Bonded Phosphate Ceramics[J], J Am Ceram Soc,2003,86(11):1845-1849
    [138]M Pourbaix, Electrochemical Equilibria in Aqueous Solutions[M]. Pergamon Press, New York,1974.
    [139]E M Levin, C R Robbins, H F Mcmurdie, Phase Diagrams for Ceramists[J], The America Ceramic Society,1964,(1)
    [140]K Li, T Shimizu, K Igarashi, Preparation of short mullite fibers from kaolin via the addition of foaming agents[J], J Am Ceram Soc.2001(84):497-503
    [141]陆佩文,无机材料科学基础[M],武汉:武汉理工大学出版社,2005.7:126-140
    [142]Sundaresan S. Mullitization of diphasic aluminosilicate gels[J], J Am Ceram Soc,1991,(74):2388-2392
    [143]蔡作乾,王琏等,陶瓷材料词典[M],北京:化学工业出版社,2001(8):320
    [144]Wei W and Halloran J W. Transformation kinetics of diphasic aluminosilicate gels[J], J Am Ceram Soc,1988,71:581-587
    [145]Mollard F R, Davison N. Ceramic foam filter for molten metal[J], AFS Transactions.1978,86:479-486
    [146]Sutton W H, et al. Development of ceramic foam materials for filtering high temperature alloys[J], AFS Transactions.1985,93:339-346
    [147]Yasuoka M, Hirao K, Brito M E, et al, High strength and high fracture toughness ceramics in the Al2O3/LaAl11O8 system[J]. J Am Ceram Soc,
    1995,78(7):1853
    [148]Y R Xu, X R Fu, and D S Yan, Creep behavior of hot-pressed silicon nitride ceramics with rare-earth oxides and alumina additives[J], Physica B: Condensed Matter and Physica C:Superconductivity,1988,150(1-2):276-282
    [149]陆佩文,无机材料科学基础[M],武汉:武汉理工大学出版社,2005.7:126-141
    [150]赵运才.肖汉宁稀土氧化铈对玻璃陶瓷晶化及性能的影响[J],湘潭矿业学院学报,2003,18(23):8-40
    [151]蔡作乾,王琏,陶瓷材料词典[M],北京:化学工业出版社,2001.8:92-97
    [152]W Duckucerth, J Am Cerama Soc,1953,36(1):38
    [153]Dynys F W, Halloran J W. Alpha-alumina formation in alum-derived gamma-alumina[J], J Am Ceram Soc,1982,65:442-448
    [154]Yen F S, Wen H L, Hsu Y T. Crystallite size growth and the derived dilatometric effect during θ-to α-phase transformation on nano-sized alumina powders [J], J Crystal Growth, Vol 233,2001:761-773.
    [155]杜海情等,工业陶瓷[M],长沙:湖南大学出版社,1989,8:353
    [156]王锡林,蓝晶石特性的探讨[J],佛山陶瓷,2005,101(5):45-48
    [157]倪文等,蓝晶石在不同环境中分解行为[J],北京科技大学学报,2000,22(1):67-81
    [158]赵煌,吕俊.机械激活法合成钛酸铝粉体的XRD分析[J],陶瓷学报,2005,26(4):221-224
    [159]Y X Huang, A M R Senos and J L Baptista, Preparation of an Aluminium Titanate-Mullite Composite by Sintering of Gel-Coated Powders[J], Journal of the Europeon Ceramic Society 1997 (17):1239-1246
    [160]Gani M S, McPherson R. The Enthalpy of Formation of Aluminum Titanate[J] Thermochim Acta,1973(7):251
    [161]Buscaglia V, Nanni P, Battilana G, et al, Reaction sintering of aluminium titanate:effect of MgO addition[J]. J Eur Ceram Soc.1994(13):411-417
    [162]T Korim, Effect of Mg2+and Fe3+ions on formation mechanism of aluminium titanate[J], Ceramics International,2009 (35):1671-1675
    [163]Giesche H, Synthesis of monodispersed silica powders Ⅱ Controlled grain growth reaction and continuous production process[J], J Eur Ceram Soc.1994, (14):205-214
    [164]陈晓虎,崔旭,机械激活对固态反应合成Al2TiO5的作用分析[J],JOURNAL OF CERAMICS,2008,29(2):87-89
    [165]Bose P, Pradhan S K, and Sen S, Rietveld analysis of polymorphic transformations of ball milled anatase TiO2[J], Mamr Chem Phy,2003,80:73-81
    [166]Girot T, Bgin Colin S, Devaux X, et al. Modefing of the phase transformation induced by ball milling in anatase TiO2[J], J Mater Syn Proc,2000,8:139-144
    [167]Giordano L, Viviani M, Bottino C, Buscaglia, M T, Buscaglia V, and Nanni P, Microstructure and thermal expansion of Al2TiO5-MgTi2O5 solid solutions obtained by reaction sintering[J]. J Eur Ceram Soc.2002,22:1811-1822
    [168]Masayuki Ishitsuka, Tsugio Sato, Tadashi Endo, et al. Synthesis and Thermal Stability of Aluminum Titante Solid Slutions[J], J Am Ceram Soc, 1987,70(2):69
    [169]江伟辉,肖兴成等,晶格常数的变化对钛酸铝热稳定性的影响[J],无机材料学报,2000,15(1):163-168
    [170]Y X Huang, A M R Senos, Preparation of an Aluminium Titanate-25%Mullite Composite by Sintering of Gel-Coated Powders [J], Journal of the Europeon Ceramic,1997,(17):1239-1246.
    [171]周健儿,莫来石抑制钛酸铝材料热分解的机理研究[J],陶瓷学报,2000,21(3):125-130.
    [172]Hiroguki Morishlma, Zenji kato, et al. Communication of the American Society, 1986(C):226-227
    [173]Brown I W M, and Mcgavin D G, Effect of iron oxide additives on Al2TiO5 formation[J], Fourth Euro-Ceramics,1995,(4):487-492
    [174]G Tilloca, Thermal stabilization of aluminium titanate and properties of aluminium titanate solid solutions[J], J Mater Sci.1991,(26):2809-2814
    [175]V Buscaglia, M Alvazzi Delfrate, P Nanni, et al, Factors affecting microstructure evolution during reaction sintering of Al2TiO5 ceramics[J], Ceramics:Charting the Future,1995,1867-1874
    [176]V Buscaglia, F Caracciolo, M Leoni, Synthesis, sintering and expansion of A10.8Mg0.6Ti1.6O5:a low-thermal-expansion material resistant to thermal decomposition[J], J Mater Sci.1997,(32):6525-6531
    [177]V Buscaglia, P Nanni, G Battilana, et al, Reaction sintering of aluminium titanate I effect of MgO addition[J], J Eur Ceram Soc.1994,(13):411-417
    [178]Y X Huang, A M Senos, R J L Baptista, Synthesis of aluminium titanate powder by different processing methods[J], Fourth Eur Ceram Basic Sci. 1995,(1):187-194
    [179]Binnner G P, Reichert J, Processing of hydroxyapatite ceramicfoams[J]. J Mater Sci,1996,31(21):571-572
    [180]朱新文,江东亮,谭寿洪.碳化硅网眼多孔陶瓷的制备[J],无机材料学报,2000,15(6):1056-1059
    [181]张旭昀,王勇,孙丽丽.纳米级多孔SiO2的分散及在水性涂料中的应用[J].纳米科技,20064(4):11-14
    [182]李志军,王红英,纳米二氧化钛分散性的实验研究[J],广州化工,2005,33(6):26-29
    [183]Xiaolan Song, Nan Jiang, Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension[J], Materials Chemistry and Physics,2008 (110):128-135
    [184]沈一丁,李小瑞,陶瓷添加剂[M],北京:化学工业出版社,2004,(7),75-79
    [185]Israclachvili J N, Intermolecula and Surface Forces[M], London:Academic Press Inc,1985,295-297
    [186]Hiemenz P C, Principles of Colloid and Surface Chemistry[M], New York:Marcel Dekkey Inc,1977
    [187]Xu Z, Yoon R H, The role of hypdrophobic interactions in coagulation[J], Journal of Colloid and Interface Science,1989(2):532-541
    [188]陆佩文,无机材料科学基础[M],武汉:武汉理工大学出版社,2005.7,126-141
    [189]蔡作乾,王琏等,陶瓷材料词典[M],北京:化学工业出版社,2001,(8):37
    [190]李晔,雷东升,许时,矿浆中金属离子对硅线石与石英浮选分离的影响[J],硅酸盐学报,2002,30:15-18
    [191]韩效钊,阎勇等.钾长石与磷矿磷酸反应机理研究[J],磷肥与复肥,2007,22(5):21
    [192]张琪,方和平,金属离子对硅线石和微斜长石可浮性的影响[J],矿产保护与利用,1999(1):34-37
    [193]张琪,方和平,Fe3+对Al3+活化微斜长石产生屏蔽的机理[J],中国有色金属学报,1999,19(3):85-89
    [194]Fuerstenau M C, Gaudin A M Floatation[J], New York:AIME,1976:148 (1)
    [195]James R O, et al, JOURNAL OF COLLOIED AND INTERFACE SCIENGCE, 1972,40(1):42
    [196]陆佩文,无机材料科学基础,武汉:武汉理工大学出版社,2005.7:129
    [197]Brad P V, Cygan R T, and Nagy K L, Molecular controls on kaolinite surface charge[J], Journal of Colloid and Interface Science,1996,183:356-364
    [198]Xu Z, et al. J Colloid and Interface Sci,1989,132:532-539
    [199]王木华等,矿物学[M],北京:地质出版杜,19846
    [200]PENG Xiao-ping, Application and analysis of talc[J], Ceramic Study,1995, 10(2):89-95
    [201]Jenkins P, Ralston J, The adsorption of a polysaccharide at the talc-aqueous solution interface[J], Colloids and Surfaces,1998,139(1):27-40
    [202]Lu S C, Colloids and Surface[J],1991,57:49-60.
    [203]Dan Eklund, Jan Erik, Teir folk. Dispersion of talc for use as a coating pigment [J].Tappi,1981,64(5):63-65
    [204]董宏军,陈荩,毛钜凡,金属离子对蓝晶石可浮性的影响及机理研究[J],非金属矿,1996,109(1):27-29
    [205]陆佩文,无机材料科学基础[M],武汉:武汉理工大学出版社,2005.(7):324-327
    [206]方明,高基伟,锐钛矿晶型TiO2溶胶的精细结构及其光催化活性[J],硅酸盐学报,2006,34(4):438-441
    [207]秦伟庭,沈勇,张惠芳等.纳米TiO2在水分散体系中的稳定性[J],印染,2006(7):4-6
    [208]李玲,表面活性剂与纳米技术[M],北京:化学工业出版社,2003:155-156
    [209]许淳淳,于凯,何宗虎,纳TiO2在水中分散性能的研究[J],化工进展,2003,22(10):1095-1097
    [210]程冰,王秀峰,伍媛婷,金红石型纳米TiO2粉体的制备及其分散[J],电子元件与材料,2005,24(5):1-4
    [211]陈云,冯其明,超细二氧化钛在水溶液中分散性研究[J],颗粒制备与技术,2004,(5):23-25
    [212]韩振宇,低温共烧陶瓷基本制备技术研究进展[J],电子元件与材料,2000,(12):31-34
    [213]崔爱莉,王亭杰,超细二氧化钛粉末在水溶液中的分散[J],过程工程学报,2001,(1):99-101
    [214]SHEN H, MERTON C, FLEMINGS, et al, Solidification of YBa2Cu3O6, Part 1:Morphology[J], J Mater Res,1998,13(3):565-573
    [215]王相田,超细颗粒分散过程分析[J],化学通报,1995,(5):13-17
    [216]陈宗其,石林,武世英,化学通报,1991,54(2):31-36
    [217]Pryce Jones J. J Oil Col Chem Assoc,1934,17:305
    [218]F M White,粘性流体动力学,北京:机械工业出版社,1982,(12)23-24
    [219]陆佩文,无机材料科学基础[M],武汉:武汉理工大学出版社,2005.7,126-141
    [220]Jan Mewis, Norman J, Wagner, Thixotropy[J], Advances in Colloid and Interface Science,2009:214-227
    [221]贺兰传,张银生等,聚氨酯的老化降解[J],聚氨酯工业,2002,17(3),68-72
    [222]刘凉冰,聚氨酯的化学降解及其性能[J],聚氡酯工业,2001,16(2):5-9
    [223]李仙会,聚氪酯弹性体的降解及其稳定剂[J],聚氪酯工业,2000,15(2):1
    [224]张汝义,聚氨酯的化学降解[J],原材料,1995.(3)11-13
    [225]聚氨酯硬泡CFC-11替代技术手册[D],国家环保总局对外经济合作领导小组办公室,2002.8
    [226]赵能伟,刘林艳,泡沫载体的表面处理对泡沫陶瓷性能的影响[J],陶瓷学报,2007,28(3):221-226
    [227]曹大力,麦开华,碳化硅质泡沫陶瓷过滤器的研制[J]
    [228]刘岩,黄政仁,董绍明,表面处理对碳化硅泡沫陶瓷挂浆性能的影响[J],无机材料学报,2006,21(5)1185-1190
    [229]周健儿,邓义群,有机泡沫预处理对其挂浆性能的影响[J],中国陶瓷,2006,42(8),28-30
    [230]姚秀敏,谭寿洪,黄政仁,聚氨酯海绵的预处理对网眼多孔陶瓷性能的影响[J],硅酸盐学报,
    [231]Hargus P, Mula J, Redden M, Process for forming a ceramic foam[P], US patent,4866011,1989-9-12
    [232]Ravault F E G, Producing of porous ceramic materials[P], U.S, patent, 4004933,1977-1-25
    [233]Yong Sheng Han, Jian Bao Li, Yong Jun Chen. Fabrication of bimodal porous alumina ceramics[J]. Materials Research Bulletin,2003,38(2):373-379
    [234]龙波.三维通孔铁基泡沫的制备及其性能研究,[硕士学位论文].湖南长沙:中南大学,2006
    [235]罗民华,多孔陶瓷使用技术[M],北京:中国建材工业出版社,2006.3:134-148
    [236]刘培生,多孔材料引论[M],北京:清华大学出版社,2004.9:304-320
    [237]Wei Li, Zhao Hui Chen, Pore geometry of 3D-Cf/SiC composites by mercury intrusion porosimetry[J], Ceramics International 2009(35),747-753
    [238]Josef Kaufmann, Roman Loser, Andreas Leemann, Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption[J], Journal of Colloid and Interface Science 2009 (336) 730-737
    [239]贺永东,张新明,电解铝液中氢形成机理[J],中南大学学报,自然科学版,2007,38(6):1055-1062
    [240]傅高升,康积行等,提高铝熔体净化效果的理论基础及途径[J],轻合金加工技术,2002,30(6):17-22
    [241]李沛勇,贾均,郭景杰,亚共晶Al-Si合金熔体处理的研究进展[J],特种铸造及有色合金,1997,(2):36-39.
    [242]Svoboda J M,et al,朱培锇等译,铸造金属中的气体[M],北京:机械工业出版社,1984
    [243]杨长贺,高钦.有色金属净化[M],大连:大连理工大学出版社,1989
    [244]Campbel J, CASTINGS[M], University of Birmingham, UK,1991
    [245]Chen X G, Engler S, Formation of Gas Porosity in Aluminum Alloys[J], AFS Tram,1994:673-682

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700