用户名: 密码: 验证码:
完全无氯铜基催化剂制备与催化甲醇氧化羰基化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
被誉为有机合成“新基石”的碳酸二甲酯(DMC)是一种重要的有机合成中间体,可以代替剧毒或致癌的光气、硫酸二甲酯等,用作甲基化、羰基化以及甲氧基化的化工生产。DMC也是性质优良的溶剂和汽油添加剂。在众多DMC的合成工艺中,甲醇气相氧化羰基化法由于其过程简单、环境友好、成本低而引起人们的极大关注。
     金属氯化物负载催化剂具有较好的催化活性,但由于Cl离子流失使催化剂寿命短、易失活,且腐蚀设备。由CuCl和酸性分子筛载体固相离子交换制备的CuI/分子筛催化剂,具有氯含量低、稳定性较好的特点,表面Cu_2(OH)_3Cl物种的形成与催化活性密切相关,但仍存在氯流失的问题。本文首先采用CuCl_2替代CuCl与HY型分子筛进行固体离子交换制备了CuI/Y催化剂,研究了负载Cu_2(OH)_3Cl催化剂的催化性能和稳定性,并通过Cu~(2+)溶液与NaY分子筛离子交换和Cu_2(OH)_3NO_3/活性炭(AC)热处理,实现了具有较好催化活性的完全无氯负载型Cu基催化剂的制备,并通过多种表征和分析手段,研究了催化剂结构、活性中心及催化活性之间的关系,获得的主要研究结论如下:
     (1)在惰性气氛下,CuCl_2·2H_2O在低于200℃,下加热,脱除结晶水;在300℃到550℃之间加热,CuCl_2分解生成CuCl和Cl_2;温度高于550℃,CuCl快速升华。证明了CuCl_2热分解为CuCl的温度和固体离子交换温度一致。
     (2)研究了CuCl_2·2H_2O能够取代CuCl进行固体离子交换制备CuI/Y催化剂。在惰性气氛下,加热处理CuCl_2·2H_2O和HY分子筛混合样品,脱除结晶水的CuCl_2在300℃到550℃之间分解生成CuCl,CuCl进一步与HY发生固相离子交换反应生成Cu/Y分子筛催化剂;当加热温度高于550℃时,催化剂表面的CuCl升华。
     (3)表征分析表明,以CuCl_2·2H_2O和HY分子筛加热处理获得的Cu/Y催化剂中,活性金属Cu在分子筛表面以CuCl或CuCl_2形式存在,而在分子筛笼内以交换的Cu+和少量吸附的CuCl形式存在。比CuCl和HY制备的催化剂具有更低的Cu和Cl含量,却表现出较高的催化活性。当加热温度为650oC时制备的CuI/Y催化剂具有较高的气相甲醇氧化羰基化的催化活性,DMC的时空收率(STY)为110mg/(g·h),选择性(SDMC)为72.56%。
     (4)研究表明,负载Cu_2(OH)_3Cl的催化剂比负载CuCl_2的催化剂具有更好的催化活性和稳定性,且活性炭载体最好。Cu含量为18.7%的Cu_2(OH)_3Cl/AC催化剂, DMC的STY, SDMC和CMeOH分别达到139.1mg/(g·h),67.3%和6.93%。
     (5)在甲醇氧化羰基化反应过程中,Cu_2(OH)_3Cl/AC催化剂表面的Cu_2(OH)_3Cl晶粒逐渐团聚变大,并且部分转化为CuCl_2和CuO而导致其催化活性降低,而且原催化剂中唯一的CuⅡ物种部分转化为CuI物种。
     (6)采用无氯Cu~(2+)盐进行溶液离子交换,制备的完全无氯CuNaY催化剂的催化活性较低。Cu~(2+)盐的阴离子影响到溶液的pH值,使Cu~(2+)的存在形式不同,导致Cu~(2+)的交换量不同,催化活性不同。滴加氨水调节Cu~(2+)盐水溶液的pH值为12后,Cu~(2+)形成铜氨络合离子,所制备的CuNaY催化剂的催化活性和DMC选择性明显升高,且趋于一致。
     (7)采用Cu(NO_3)2溶液离子交换制备催化剂时,随着NH_3量的增加,形成的铜氨溶液pH值升高,CuNaY催化剂中Cu含量升高,催化活性也升高。当pH值由3增加到10时,催化活性增加比较明显,当pH大于10时,Cu~(2+)交换量变化较小,活性增加趋于缓和。
     (8)在惰性气氛下,加热处理Cu_2(NO_3)(OH)3/AC前驱体,可获得完全无氯负载CuO/AC、Cu_2O/AC和Cu/AC催化剂。在200℃下加热,活性组分主要为CuO。随着加热温度升高,催化剂中CuO逐步转化为Cu_2O。在300℃~400℃下加热制备的催化剂为Cu_2O/AC,当在450℃以上加热时获得Cu0/AC催化剂。
     (9)加热处理Cu_2(NO_3)(OH)3/AC制备的催化剂的甲醇氧化羰基化催化活性顺序为:CuO/AC      (10)添加Zn元素可改善Cu/AC催化剂的稳定性。Cu/Zn摩尔比为2,制备温度为400℃时,所得的Cu-Zn/AC催化剂催化活性最高。在24h的反应过程中DMC的STY与选择性分别达到122.24 mg/(g·h)和73.46%。
As an environment benign green-chemical, dimethyl carbonate (DMC) is regarded as“new building block”in organic synthesis. It can served as green and safe substitute for phosgene and dimethyl sulfate, which are highly toxic and corrosive used in commercial chemical processes of methylatiion and carbonylation. In addition, DMC is also good solvent and additive in gasoline. In the all routs of DMC synthsis, vapor phase oxidative carbonylation of methanol to DMC has been considered as the most promising way because of its simple process, friendly environment and low cost.
     In the process of oxidative carbonylation of methanol in vapor phase, metal chloride supported catalysts have good activity but suffer from the quick deactivation and equipment corrison due to the loss of chlorine during the reaction running. Prepared by solid-state ion-exchange reaction of CuCl and acidic zeolite, the CuI/zeolite with low chlorine exhibited good activity and stability,but still suffer from the loss of chlorine. In this thesis, CuCl_2·2H_2O was used as substitute of CuCl to produce CuI/Y catalyst by solid-state ion-exchange reaction, and the preparation process and morphological structure of the CuI/Y catalyst were characterized. The supported Cu_2(OH)_3Cl catalyst were also studied. By aqueous ion-exchange reaction of Cu~(2+) and NaY zeolite or heat treatment of Cu_2(OH)_3NO_3/AC precursor, the chlorine-free copper catalysts were made and studied. The micro-structure, active species of catalysts were analyzed by CO-TPD, XRD, TG-DTG, XPS, SEM and EA technics. The obtained main conclusions are listed as following.
     (1) Under inert atmosphere, CuCl_2·2H_2O lost its crystal water below 200oC, and decomposed into CuCl and Cl_2 gas between 300°C and 550°C, then the formed CuCl sublimated above 550°C. The temperature of CuCl_2 decomposition to CuCl is in the range of of solid-state ion-exchange temperature between CuCl and HY zeolite.
     (2) CuCl_2·2H_2O can substitute CuCl to prepared CuI/Y catalyst by solid-state ion-exchange reaction. Under inert atmosphere, the CuCl_2 by dehydration of CuCl_2·2H_2O decomposed into CuCl and Cl_2 from 300℃to 550℃, the produced CuCl ion-exchanged with HY zeolite to form Cu/Y catalyst; the extra CuCl in the surface of catalyst sublimed above 550℃.
     (3) In the Cu/Y catalyst prepared by heat treatment of CuCl_2·2H_2O and HY zeolite, the Cu existed in the form of CuCl or CuCl_2 in the zeolite surface, while ion- exchanged Cu+ and little adsorbed CuCl in the zeolite cages. Comparing to the catalysts from CuCl and HY zeolite, the catalysts from CuCl_2·2H_2O and HY zeolite have lower Cu and Cl amount, but higher catalytic activity in the oxidative carbonylation of methanol in vapour phase, the space-time yield of DMC was 110mg(g·h), selectivity of DMC was 72.56%.
     (4) The catalytic activity and stability of Cu_2(OH)_3Cl supported catalysts were higher than that of CuCl_2 supported catalyst, activated carbon was the best support. The methanol conversion, selectivity and space time yield of DMC on the Cu_2(OH)_3Cl/AC of 18.71% Cu were 6.93 %, 67.3 % and 139.13 mg/(g·h) respectivly.
     (5) The dispersion property of Cu_2(OH)_3Cl in Cu_2(OH)_3Cl/AC catalyst was getting worse and the Cu_2(OH)_3Cl was transformed to CuCl_2 and CuO during the reaction, resulting in the decrease of catalytic activity. The unique CuⅡ species in the fresh catalyst transferred into CuI species partially during the reaction.
     (6) The chlorine-free CuNaY catalysts prepared by ion-exchange reaction of NaY zeolite and Cu~(2+) aqueous solution were poor in catalytic activity. When the pH value of Cu~(2+) aqueous solution was adjusted to 12 by adding of ammonia, the copper ammonia complex was formed, and the catalytic activity and selectivity of DMC increased greatly.
     (7) With the adding of ammonia, the pH value of copper nitrate solution increased, the ion-exchanged CuⅡand catalytic activity of the produced CuNaY catalyst increased consequently. The increase of catalytic activity was obvious when the pH value was between 3 to 10, and unconspicuous when the pH value was above 10.
     (8) Under inert atmosphere, the chlorine free CuO/AC, Cu_2O/AC or Cu/AC catalyst can be obtained by heat treatment of Cu_2(NO_3)(OH)3/AC precursor sample. When heated under 200°C, the main product on AC support was CuO. With heating temperature rising, the CuO turned to Cu_2O gradually. The Cu_2O/AC was obtained under 300°C to 400°C, and Cu0/AC was under 450°C.
     (9) In oxidative carbonylation of methanol in vapor phase, the catalytic activity of the catalyst by heat treatment of Cu_2(NO_3)(OH)3 /AC increased in the sequences of CuO/AC      (10) The stability of Cu/AC catalysts can be improved by adding of Zn element. When the heating temperature was 400°C, the Cu-Zn/AC catalyst with Cu/Zn molar ratio of 2 exhibited the best catalytic activity. The STY and selectivity of DMC were 122.24 mg/(g·h) and 73.46% in the 24h reaction.
引文
[1] Y. Ono. Dimethyl carbonate for environmentally benign reaction[J]. Catalysis Today, 1997, 35(1-2): 15-25.
    [2] D. Delledonne, F. Rivetti, U. Romano. Developments in the production and application of dimethylcarbonate[J]. Applied Catalysis A: General, 2001, 221 (1-2): 241-251.
    [3] H. Babad and A. G. Zeiler, The chemistry of phosgene. Chem. Rev, 1973, 73(1), 75-91.
    [4]常雁红,王化军.酯交换法合成碳酸二甲酯研究进展[J].化工进展,2007,26(5): 642-646.
    [5] U. Romano, R. Tesel, M. Massi, etc. Synthesis of Dimethyl carbonate from methanol, carbon monoxide and oxygen catalyzed by copper compounds[J]. Ind. Eng.Chem.Prod. Res. Dev, 1980, 19(3), 396-403.
    [6]孙建军,杨伯伦,林宏业.尿素醇解法制备碳酸二甲酯[J].现代化工, 2003(s)23: 33-40.
    [7]肖雪,路嫔,韩媛媛等.二氧化碳与甲醇合成碳酸二甲酯反应的热力学探讨[J].天然气化工,2007, 32(2): 34-37.
    [8]王文进,方奕文,宋一兵等.甲醇、二甲醚共进料气相氧化羰基化合成碳酸二甲酯的热力学分析[J].天然气化工, 2007, 32(1): 44-55.
    [9]孙明,余林,孙长勇等.二甲醚的应用及下游产品开发[J].精细化工, 2003, 20(11), 695-699.
    [10]赵新强,王延吉,王淑芳等.碳酸二甲酯的电化学合成[J].精细石油化工, 2002, 3(2): 43-46.
    [11] K.Otsuka, T.Yagi, I.Yamanaka. Dimethyl carbonate synthesis by electrolyticcarbonylation of methanol in the gas phase[J]. Electrchimica Acta, 1994, 39(14): 2109-2115.
    [12]赵文波,彭伟才,赵宁等.Lewis酸碱催化氨基甲酸甲酯和甲醇合成碳酸二甲酯[J].石油化工, 2009, 38(4): 367-372.
    [13] Ube industries, Process for preparing diester of carbonic acid[P]. EP 425197, 1991- 5-2.
    [14] U. Romano, R. Tesei, G. Ciprianni, etc. Method for the preparation of esters of carbonic acid[P]. US: 4218391, 1980.
    [15]王公应,王越.新型甲醇氧化羰化合成碳酸二甲酯催化剂的研究[J].精细与专用化学品, 2000(20): 15-18.
    [16]莫婉玲,熊辉,朱永强等. Schiff碱在甲醇液相氧化羰化反应中的双功能作用[J].石油化工,2003,32(2):89-92.
    [17]莫婉玲,李光兴,朱永强.咪唑类化合物-CuCl络合催化剂在甲醇氧化羰基化反应中的催化性能[J].燃料化学学报,2003, 31(2): 124-127.
    [18]莫婉玲,黄荣生,熊辉等. CuCl/菲咯啉/甲基咪唑催化甲醇/乙醇氧化羰化一步合成碳酸甲乙酯[J].催化学报, 2004, 25(3): 243-246.
    [19] Y. Cao, J. C. Hu, P. Yang. CuCl catalyst heterogenized on diamide immobilized SBA-15 for efficient oxidative carbonylation of methanol to dimethyl carbonate[J]. Chem. Commun., 2003, (7): 908-909.
    [20]刘海涛,莫婉玲,熊辉等.甲醇氧化羰化反应中含氮配体助催化剂的空间及电子效应[J].应用化学, 2005, 22(9): 997-1001.
    [21]李忠,孟凡会,任军等. CuCl/SiO2-Al2O3催化剂的表面结构及甲醇氧化羰基化催化性能[J].催化学报, 2007, 29(7): 643-648.
    [22]李忠,黄海彬,谢克昌. CuⅠ/SO42-/ZnO和CuⅠ/S2O82-/ZnO催化剂的制备和表征[J].高等学校化学学报, 2008, 29(8): 1609-1615.
    [23] J. Ren, S. S. Liu, Z. Li, etc. Oxidative carbonylation of methanol to dimethyl carbonate over CuCl/SiO2–TiO2 catalysts prepared by microwave heating: The effect of support composition. Applied Catalysis A: General 2009, 366(1): 93-101.
    [24]黄海彬,孟凡会,李威源等.固体酸和固体超强酸负载CuⅠ的催化剂制备与催化合成碳酸二甲酯[J].太原理工大学学报,2008, 39(04): 343-346.
    [25] Y. Sato, M. Kagotani, Y. Souma. A new type of support `bipyridine containing aromatic polyamide' to CuCl2 for synthesis of dimethyl carbonate by oxidative carbonylation ofmethanol[J]. Journal of Molecular Catalysis A: Chemical, 2000, 151(1-2): 79-85.
    [26] Y. Sato, M. Kagotani, T. Yamamoto, etc., Novel effective poly (2,2'-bipyridine -5,5'-diyl)-CuCl2 catalyst for synthesis of dimethyl carbonate by oxidative carbonylation of methanol[J]. Applied Catalysis A: General, 1999, 185(2):219-226.
    [27] V. Raab, M. Merz, J. Sundermeyer. Ligand effects in the copper catalyzed aerobic oxidative carbonylation of methanol to dimethyl carbonate[J]. Journal of Molecular Catalysis A: Chemical, 2001, 175(1-2): 51-63
    [28] J. C. Hu, Y. Cao, P. Yang, etc., A novel homogeneous catalyst made of poly(N-vinyl-2-pyrrolidone)-CuCl2 complex for the oxidative carbonylation of methanol to dimethyl carbonate[J]. Journal of Molecular Catalysis A: Chemical, 2002, 185(1-2): 1-9.
    [29]杨洋,刘晓勤,刘定华等.型铜络合催化剂用于羰基合成碳酸二甲酯的工艺过程[J].南京工业大学学报(自然科学版),2006, 28(01): 75-9.
    [30]杨洋,刘晓勤,刘定华等.羰基化合成碳酸二甲酯用铜系催化剂的研究[J],精细石油化工进展, 2006, 7(05): 21-25.
    [31]杨洋,刘晓勤,刘定华等.络合催化剂氧化羰基合成碳酸二甲酯的研究[J].化学反应工程与工艺, 2006, 22(02): 131-136.
    [32]杨洋,刘晓勤,刘定华等. Cu基络合物催化甲醇液相氧化羰化反应[J].化学反应工程与工艺, 2006, 22(07): 131-136.
    [33]杨洋,刘晓勤,刘定华等. CuBrnLm配合催化剂液相氧化羰化合成碳酸二甲酯[J].化工进展[J], 2006, 25(10): 1166-1170.
    [34]李峰,卫敏,何静等.磷酸锆类层柱催化剂的制备、表征及其催化甲醇氧化羰基化反应性能[J].催化学报, 1999, 20(05): 510-514.
    [35] R. U. Rivetti. Alcohol carbonylation with palladium ( II )complexes effects of ligands, carbon monoxide, pressure and added bases[J]. J Organometallic Chern. 1979, 174(2): 221-226.
    [36]李光兴,王俊义,梅付名等.吡啶-2-羰酸钴催化羰化合成DMC[J].石油化工,1999, 28(7):440-443.
    [37] T. Matsuzaki, T. Shimamura. Method of producing carbonic acid diester[P]. US Patent 5292916. 1994.
    [38] N. Manada, T. Kurafuji, Y. Yamamoto, etc. Process for producing a carbonic acid diester[P]. US Patent 5426209.1995.
    [39] Chang, D. Clarence, Santiesteban, etc. Process for the preparation of dialkyl carbonates[P]. US Patent 5288894.1993.
    [40]苏跃华,吴晓华,姜玄珍.甲醇气相氧化羰基化合成碳酸二甲酯[J].高校化学工程学报1999,13(6):564-567.
    [41]王国良,李朝恒,裴旭东,等.碳酸二甲醋的催化偶联合成及作汽油添加剂的研究[J].石油炼制与化工, 2003, 34(9): 40-43.
    [42]李兆基.活性炭负载钯催化剂合成碳酸二甲酯[J].石油化工, 1997, 26(5): 286 -288.
    [43] H. Miyamori, T. Simomura, M.Miura, K. Hayashi. Process for producing oxalate diester[P]. US Patent 4229589. 1981.
    [44] G. L. Curnutt. Catalytic vapor phase process for producing dihydrocarhyl carbonates[P]. US Patent 5004827. 1991
    [45] G. L. Curnutt. Method for reactivating catalysts used in catalytic vapor phase process for producing dihydrocarbyl carbonates[P]. US Patent 5132259. 1992 .
    [46]李忠.甲醇氧化羰基化洁净合成DMC催化反应研究[D].太原:太原理工大学,2004.
    [47] M. S. Han, B. G. Lee, B. S. Ahn, etc. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol over Cu-based Catalysts[J]. J Mol Catal A: Chem, 2001, 170(1-2): 225-234.
    [48] M. S. Han, B. G. Lee, B. S. Ahn, etc. Surface properties of CuCl2/AC catalysts with various Cu contents: XRD, SEM, TG/DSC and CO-TPD analysis[J]. Appl Surf Sci , 2003, 211(1-4): 6-81.
    [49]马新宾,李振花,王保伟等.甲醇氧化羰基合成碳酸二甲酯原位红外研究[J].天津大学学报, 2002, 35(4): 459-463.
    [50] X. B. Ma, Z. H. Li. Effect of Cu catalyst preparation on the oxidative carbonylation of methanol to dimethyl carbonate[J]. React Kinet Catal Lett, 2002, 76(1), 179-187.
    [51] K. Nishimura, S. Uchiumi, K. Fujii, etc. Process for preparing a diester of oxalic acid[P]. US Patent 4229589. 1981.
    [52] G. L. Curnutt, D. L. Harley. Oxgen complexes and oxgen activation by transition metal[M]. New York: Pleunm Publishing Co., 1988, 215-232.
    [53]曹发海,应卫勇,房鼎业等.甲醇氧化羰化CuCl2/C催化剂的失活与再生[J].华东理工大学学报, 1997, 23(1): 14-17.
    [54] K. Tomishige, T. Sakaihori, S. Sakai, etc. Dimethyl carbonate synthesis by oxidativecarbonylation on activated carbon supported CuCl2 catalysts:Catalytic properties and structural change[J]. Applied Catalysis A: General, 1999, 181(1): 95-102.
    [55] M. S. Han, B. G. Lee. The role of copper hydroxides in the oxidative carbonylation of methanol for dimethyl carbonate synthesis[J].Journal of Molecular Catalysts A: Chemical, 2003, 203(1/2):37-143.
    [56] D.Y. Fang, F. H. Cao. Intrinsic kinetics of direct oxidative carbonylation of vapor phase methanol to over Cu-based catalysts[J].Chem Eng J, 2000, 78(2-3), 237-241.
    [57]陈兴权,王丽琼,赵天生等.甲醇气相氧化羰化合成碳酸二甲酯Ⅰ.复合载体铜基催化剂的制备[J].石油化工, 2003, 32(8), 654-657.
    [58]陈兴权,王丽琼,赵天生等.甲醇气相氧化羰化合成碳酸二甲酯Ⅱ.工艺条件的研究[J].石油化工, 2003, 32(9):753-755.
    [69]陈兴权,薛冰,赵春香等.甲醇气相氧化羰化合成碳酸二甲酯Ⅲ.复合载体铜基催化剂的表征[J]石油化工, 2005,34(11):041-1045.
    [60] Y. Z. Yuan, W. Cao, W. Z. Weng. CuCl2 immobilized on amonifunctionalized MCM-41 and MCM-48 and their catalytic performance toward the vapor-phase oxy-carbonylation of methanol to dimethyl carbonate[J]. Journal of Catalysis, 2004, 228(2): 311-320.
    [61] R.X. Jiang, Y. J. Wang, X. Q. Zhao, etc. Characterization of catalyst in the synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol[J]. J Mol Catal A: Chem, 2002, 185(1/2): 59-166.
    [62] Y. J. Wang, X. Q. Zhao, B. G. Yuan, etc. Synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol on the supported solid catalystⅠ.Catalyst preparation and catalytic properties[J]. Applied catalysis A: General, 1998, 171(2): 255-260.
    [63] R. X. Jiang, S. F. Wang, X. Q. Zhao, etc. The effects of promoters on catalytic properties and deactivation-regeneration of the catalyst in the synthesis of dimethyl carbonate[J]. Applied catalysis A: General, 2003, 238(1): 131-139.
    [64] Y. Cao, P. Yang, C. Z. Yao, etc. Impact of preparation strategy on the properties of carbon-supported Wacker-type catalysts in vapor-phase dimethyl carbonate synthesis[J], Applied Catalysis A: General, 2004, 272: 15-22.
    [65] P. Yang, Y. Cao, W. L. Dai, etc. Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over wacker-type catalysts[J], Applied Catalysis A: General, 2003, 243(2): 323-331.
    [66] P. Yang, Y. Cao, J. C. Hu, etc. Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol[J]. Applied Catalysis A: General, 2003, 241(1-2): 363–373.
    [67]王少成,曹勇,杨平等. TBAB修饰的负载型Wacker催化剂催化甲醇羰基化合成碳酸二甲酯[J].高等学校化学学报,2002, 23(12): 2363-2365.
    [68] S. T. King. Oxidative carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts[J]. Catalysis Today, 1997, 33(1-3): 173 -182.
    [69]姜明,伏义路. Cu(Ⅰ)Y分子筛的固体离子交换制备及其表征[J].物理化学学报,1997, 13(9) : 822-826.
    [70]谢有畅,张佳平,童显忠等.一氧化碳高效吸附剂CuCl/分子筛[J].高等学校化学学报,1997, 18(7) : 1159-1165.
    [71] Z. Li, K.C. Xie, R. C. T. Slade. Studies of Interaction Between CuCl and HY Zeolite for Preparing Heterogeneous CuⅠCatalyst[J]. Appl Catal: A, 2001, 209(1-2): 107-115.
    [72] S. T. King. Reaction mechanism of oxidative carbonylation of methanol to dimethyl carbonate in Cu-Y zeolite[J]. J Catal, 1996, 161: 530-538.
    [73] Z. Li, K. C. Xie, R. C. T. Slade. High selective catalyst CuCl/MCM-41 for oxidative carbonylation of methanol to dimethyl carbonate[J]. Appl Catal:A, 2001, 205(1-2): 85-92.
    [74] Anderson S A, Root T W. Kinetic Studies of carbonylation of methanol to dimethyl carbonylation over Cu+X zeolite catalyst[J].Journal of Catalysis, 2003, 217(2) : 396-405.
    [75] S. A. Anderson, T. W. Root. Investigation of the effect of carbon monoxide on the oxidative carbonylation of methanol to dimethyl carbonate over Cu+X and Cu+ZSM-5 zeolites[J]. Journal of Molecular Catalysis A: Chemical, 2004, 220(2) : 247-255.
    [76] G. Rebmann, M. J. Ledoux, N. Keller. Cu–Y zeolite supported on silicon carbide for the vapour phase oxidative carbonylation of methanol to dimethyl carbonate[J]. Green Chemistry, 2008,10(2): 207–213.
    [77] M. Richter, M. J. G. Fait, R. Eckelt, etc. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure[J]. Applied Catalysis B: Environmental, 2007, 73(3-4), 269-281.
    [78] M. Richter, M. J. G. Fait, R. Eckelt, etc. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J].Journal of Catalysis, 2007, 245(1), 11-24.
    [79] I. J. Drake, K. L. Fujdala, A. T. Bell, T. D. Tilley. Dimethyl carbonate production via the oxidative carbonylation of methanol over Cu/SiO2 catalysts prepared via molecular precursor grafting and chemical vapor deposition approaches[J]. Journal of Catalysis, 2005, 230(1): 14-27
    [80] Y. H. Zhang, I. J. Drake, D. N. Briggs, etc. Synthesis of dimethyl carbonate and dimethoxy methane over Cu-ZSM-5[J]. Journal of Catalysis, 2006, 244(2) : 219-229.
    [81] Y. H. Zhang, D. N. Briggs, E. Smit, ect. Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite[J]. Journal of Catalysis, 2007(251) : 443-452.
    [82] Y. H. Zhang, A. T. Bell. The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y[J]. Journal of Catalysis, 2008, 255(2): 153-161.
    [83] X. B. Zheng, A. T. Bel. A theoretical investigation of dimethyl carbonate synthesis on Cu-Y zeolite[J]. Journal of Physical Chemistry: C, 2008, 112(13): 5043-5047.
    [84] Y. J. Wang, R. X. Jiang, X. Q. Zhao, etc. Synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol over activated carbon-suppored copper catalysts[J], Journal of Natural Chemistry, 2000, 9(3), 205-211.
    [85]李忠,文春梅,王瑞玉等.醋酸铜热解制备无氯Cu2O/AC催化剂及其催化氧化羰基化[J].高等学校化学学报,2009, 30(10):2024-2031.
    [86]李忠,文春梅,郑华艳等.载体表面性质对Cu2O/AC催化剂结构和活性的影响[J].高等学校化学学报, 2009, 31(1): 145-152.
    [1] Y. Mei. Encyclopedia of China. Chem II[M]. Beijing, Shanghai: Encyclopedia of China Press.1989.
    [2] Z. Li, K.C. Xie, R. C. T. Slade. Studies of Interaction Between CuCl and HY Zeolite for Preparing Heterogeneous CuⅠCatalyst[J]. Appl Catal: A, 2001, 209(1-2): 107-115.
    [3] H.G. Karge, B. Wichterlova, H.K. Beyer. High-temperature interaction of solid Cu chlorides and Cu oxides in mixtures with H-forms of ZSM-5 and Y zeolites[J]. Chem.Soc., Faraday Trans. 1992, 88(9): 1345-1351.
    [4]李忠,孟凡会,任军等. CuCl/SiO2-Al2O3催化剂的表面结构及甲醇氧化羰基化催化性能[J].催化学报, 2007, 29(7): 643-648.
    [5] J. Ren, S. S. Liu, Z. Li, etc. Oxidative carbonylation of methanol to dimethyl carbonate over CuCl/SiO2–TiO2 catalysts prepared by microwave heating: The effect of support composition[J]. Applied Catalysis A: General 2009, 366(1): 93-101.
    [6] Y. H. Zhang, I. J. Drake, D. N. Briggs, etc. Synthesis of dimethyl carbonate and dimethoxy methane over Cu-ZSM-5[J]. Journal of Catalysis, 2006, 244(2) : 219-229.
    [7]范闽光,李斌,张飞跃等.铜离子在CuLaHY分子筛中的分布与吸附脱硫性能[J].物理化学学报,2009, 25(3):495-501.
    [1] M. S. Han, B. G. Lee, B. S. Ahn, etc. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol over Cu-based Catalysts[J]. J Mol Catal A: Chem, 2001, 170(1-2): 225-234.
    [2] M. S. Han, B. G. Lee. The role of copper hydroxides in the oxidative carbonylation of methanol for dimethyl carbonate synthesis[J].Journal of Molecular Catalysts A: Chemical,2003, 203(1/2):37-143.
    [3]宋军超,赵天生,杜彦忠.用于甲醇直接气相氧化羰基化的负载铜催化剂.催化学报,2006, 27(5): 386-390.
    [4] Y. J. Wang, X. Q. Zhao, B. G. Yuan, etc. Synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol on the supported solid catalystⅠ.Catalyst preparation and catalytic properties[J]. Applied catalysis A: General, 1998, 171(2): 255-260.
    [5]杨平,曹勇,包信和,戴维林,等.助剂对合成碳酸二甲酯用活性炭负载Wacker催化剂结构和性能的影响.催化学报.2004, 25(12): 995-999.
    [6] P. Yang, Y. Cao, W. L. Dai, etc. Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over wacker-type catalysts[J], Applied Catalysis A: General, 2003, 243(2): 323-331.
    [7]王少成,曹勇,杨平,胡建国,等.TBAB修饰的负载型Wacker催化剂催化甲醇羰基化合成碳酸二甲酯.高等学校化学学报, 2002, 23(12): 2363-2365.
    [8]杨利.固体离子交换制备铜基催化剂常压催化甲醇氧化羰基化反应的研究[D].太原:太原理工大学,2004.
    [9] M. Richter, M. J. G. Fait, R. Eckelt, etc. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J].Journal of Catalysis, 2007, 245(1), 11-24.
    [10] K. Tomishige, T. Sakaihori, S. Sakai, etc. Dimethyl carbonate synthesis by oxidative carbonylation on activated carbon supported CuCl2 catalysts:Catalytic properties and structural change[J]. Applied Catalysis A: General, 1999, 181(1): 95-102.
    [1] S. T. King. Oxidative carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts[J]. Catalysis Today, 1997, 33(1-3): 173-182.
    [2] M. Ajmal, R. A. K. Rao, R. Ahmad, ect. Adsorption studies on Citrus reticula (fruit peel of orange): removal and recovery of Ni (II) from electroplating wastewater[J]. Journal of Hazardous Materials, 2000. B79: 117-131.
    [3] H. J. Chen, M. Matsuoka, J. L. Zhang, etc. The reduction behavior of the Cu ion species exchanged into Y zeolite during the thermovacuum treatment[J]. Journal of Catalysis,2004. 228(1): 75-79.
    [4] M. Iwamoto, H. Yahiro, Y. Torikai, etc. Novel preparation method of highly copper ion-exchanged ZSM-5 zeolite and their catalytic activities for NO decomposition[J].Chemistry Letter, 1990, 1967-1970.
    [5] F. X. Llabrés, I Xamena, P. Fisicaro, ect. Thermal reduction of Cu2+-mordenite and re-oxidation upon interaction with H2O, O2, and NO[J]. J. Phys. Chem. B, 2003, 107 (29), 7036-7044.
    [6]李忠,孟凡会,任军等. CuCl/SiO2-Al2O3催化剂的表面结构及甲醇氧化羰基化催化性能[J].催化学报, 2007, 29(7): 643-648.
    [7] I. J. Drake, Y. H. Zhang, D. Briggs, ect. An In Situ Al K-Edge XAS Investigation of the Local Environment of H+- and Cu+-Exchanged USY and ZSM-5 Zeolites[J]. J PhysChem B, 2006,110: 11654-11676.
    [8] Y. H. Zhang, I. J. Drake, D. N. Briggs, ect. Synthesis of dimethyl carbonate and dimethoxy methane over Cu-ZSM-5[J]. J Catal, 2006, 244(2): 219-229.
    [9] Y. H. Zhang, D. N. Briggs, E. Smit, ect. Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite[J]. Journal of Catalysis, 2007(251) : 443-452.
    [10] W. L. Dai , Q. Sun , J. F. Deng , ect. XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2[J]. Appl Surf Sci, 2001, 177 (3): 172-179.
    [11] J. Goslar, A. B. Wieckowski. Migration and structure of aqueous Cu2+ complexes in faujasite[J]. Journal of solid state chemistry, 1985,56,101-115.
    [12] I. E. Maxwell, J. J. De Boer. Crystal structures of hydrated and dehydrated divalen-copper-exchanged faujasite[J]. J. Phys. Chem., 79: 1874-1879.
    [13] C.Y. Lee, K. Y. Choi, B. H. Ha. Catalytic Decomposition of Nitric-Oxide on Copper Zeolites[J]. Applied Catalysis B: Environmental, 1994,5(1-2), 7-21.
    [14]万颖,马建新,王正,周伟,张益群.催化学报, Cu-Al-MCM-41的Si/Al比对贫燃条件下NO选择性催化还原的影响[J]. 2004, 25(1): 27-32.
    [15] D. Berthomieu, G. Delahay. Recent Advances in CuI/IIY: Experiments and Modeling[J]. Catalysis Reviews, 2006, 48(3): 269-313.
    [1] S. T. King. Oxidative carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts[J]. Catalysis Today, 1997, 33(1-3): 173-182.
    [2]李忠,文春梅,王瑞玉等.醋酸铜热解制备无氯Cu2O/AC催化剂及其催化氧化羰基化[J].高等学校化学学报,2009, 30(10):2024-2031.
    [3]李忠,文春梅,郑华艳等.载体表面性质对Cu2O/AC催化剂结构和活性的影响[J].高等学校化学学报, 2009, 31(1): 145-152.
    [4] M. Richter, M. J. G. Fait, R. Eckelt, etc. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure[J]. Applied Catalysis B: Environmental, 2007, 73(3-4), 269-281.
    [5] M. Richter, M. J. G. Fait, R. Eckelt, etc. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J].Journal of Catalysis, 2007, 245(1), 11-24.
    [6] H. Niu, Q. Yang, K. Tang. A new route to copper nitrate hydroxide microcrystals[J]. Mater Sci Eng B-Solid State Mater, 2006,135:172-175.
    [7] T. Biswick, W. Jones, A. Pacula, ect. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates[J]. J Solid State Chem, 2006,179: 49-55.
    [8] Kong L, Chen X, Yang G, Yu L, Zhang P. Preparation and characterization of slice-like Cu2(OH)3NO3 superhydrophobic structure on copper foil[J]. Appl Surf Sci, 2008, 254:7255-7258.
    [9]冯绪胜,刘洪国,郝京城,等.胶体化学[D].化学工业出版社.北京, 2005:49.
    [10] M. H. Cao, C. W. Hu, Y. H. Wang, ect. A controllable synthestic route to Cu,Cu2O, and CuO nanotubes and nanorods[J]. Chem Commun, 2003,15:1884-1885.
    [11] S. Shin, J. Jang, S. H. Yoon, ect. A study on the effect of heat treatment on functional groups of based activated carbon fiber[J]. Carbon, 1997, 35(12):1739-1743.
    [12] M. M. Barbooti.在有碳的情况下氧化铜和硫化铜的热性状[J]. Solar Energy Materials, 1984,10(1):35-40.
    [13]李忠,黄海彬,谢克昌. CuⅠ/SO42-/ZnO和CuⅠ/S2O82-/ZnO催化剂的制备和表征[J].高等学校化学学报, 2008, 29(8): 1609-1615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700