用户名: 密码: 验证码:
粳稻回交导入群体耐逆性筛选及QTL剖析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐害、冷害和高温是水稻生产面临的主要非生物胁迫。本研究以粳型超优1号为轮回亲本与11个来自不同国家的供体品种杂交和回交培育的BC2F4群体为材料,进行苗期及分蘖至成熟期耐盐、开花期耐热、孕穗期耐冷的鉴定与筛选,对目标性状的选择导入系进行正常和胁迫条件下的产量相关性状评价,剖析抗逆性的生理机制,并利用耐冷选择导入系进行耐冷QTL定位,获得了以下主要结果。
     1.对回交群体进行苗期(2-3叶)盐胁迫(140mmol·L-1NaCl)筛选,经过初筛共筛选到125个耐盐单株,入选率为2.58%。对52个耐盐株系进行形态和离子的测定,结果表明:盐胁迫导致了根长、根鲜重和根干重的增加;苗长、地上鲜重和地上干重的显著减少,且根部变化幅度小于地上部,说明幼苗地上部分的反应比根部对盐害的反应敏感。在离子效应上,盐胁迫导致了地上部和根部钠离子的显著增加,其中地上部分增加了20倍以上,导入系增加的量小于轮回亲本。钾离子的吸收与钠离子相反,胁迫下减少了对钾离子的吸收,但导入系比轮回亲本表现吸收较多的钾离子。所以导入系耐盐性的增强在离子效应上主要表现为保持较低的叶片钠离子浓度、较低的钠离子转运和增强对钾离子的吸收来降低盐害对水稻生长的抑制和毒害作用。
     2.对回交群体进行分蘖至成熟期的盐池(140mmol·L-1NaCl)筛选,筛选到150个耐盐导入系。其中籼、粳稻供体回交后代的在入选率和结实率上分别为6.9%和2.6%,表明籼、粳供体的回交后代在耐盐性上存在差异。耐盐导入系间具有不同的生理形态表现:一部分株系表现为抽穗期提早,属于避盐机制;另一部分株系表现为具有较高的株高、有效穗数和生物产量的株系,属于稀盐机制;还有一些株系表现为千粒重、每穗实粒数、结实率的显著提高,属于忍盐机制。机理间并不是独立的,一些导入系同时具有两种或两种以上的耐盐机制,这些机制间相互协调,彼此促进,提高耐盐性。
     3.对回交群体进行开花期高温胁迫,筛选到124个耐高温单株,粳稻比籼稻供体的回交群体出现耐热个体数多,表明粳稻资源中同样存在耐热有利基因。导入系在两种环境下均出现广幅分离,在胁迫和正常条件下分别有80个和47个株系的结实率显著高于轮回亲本,从中鉴定出的耐热性和产量性状均显著好于轮回亲本的优良导入系有8个。对3个F2聚合群体耐高温筛选分别获得7、31和68株极显著好于聚合亲本的耐热个体,平均结实率在80%以上,显著高于聚合亲本和轮回亲本,显示出较理想的耐热聚合效果。
     4.对回交群体进行孕穗期的冷水胁迫处理,筛选到324个耐冷单株。经苗期和孕穗期耐冷鉴定,其耐冷性比轮回亲本有显著提高的株系数分别为40个和242个。对116个强耐冷株系进行重复鉴定,在胁迫条件下,结实率和单株产量显著高于轮回亲本的导入系分别有94个和77个;正常条件下,结实率和单株产量显著高于轮回亲本的导入系分别有39个和34个,并且鉴定出18个耐冷性和产量性状都显著好于轮回亲本的优良导入系。而且对目标性状的选择还导致了株高、生物产量、每穗实粒数等相关联性状的显著提高。
     5.利用以超优1号为轮回亲本,Chhomromg、Doddi和丰矮占1号为供体筛选获得的回交选择耐冷导入系进行卡方检测的耐冷QTL定位,同时对随机群体进行耐冷评价和方差分析定位耐冷QTL。采用耐冷极端选择导入系定位到29个QTL,方差分析检测到16个耐冷QTL。发现耐冷QTL主要有两种类型:一是影响随机群体冷胁迫与正常条件下结实率差值的QTL,这些等位基因具有提高冷胁迫下性状表达的稳定性,对增强耐冷性有贡献,共检测到8个QTL,分布在第3、5、6、7和8染色体上;第二类是在不同的选择群体中经卡方检测到的相同耐冷QTL,其受假阳性的影响相对较小,共有3个QTL,分别位于第2、3和9染色体上。本研究检测到的耐冷QTL位点,大多与前人发现的位点吻合,说明本研究利用选择群体进行QTL定位的方法有效。试验材料的获得是在高的选择压力下进行的,这些耐冷选择导入系将是生产上的育种群体,本研究将育种群体和基因定位群体相联系,缩短了遗传理论研究与育种实践的距离,对育种技术路线提供了有益的补充。
     研究表明,不同供体的回交后代中均出现耐盐、耐冷和耐热的超亲分离,表明这些供体均带有控制这些性状的有利“隐蔽”基因,但各个组合间的抗逆性筛选效率存在较大差异,抗逆性表现不仅取决于供体本身,还取决于受体品种与供体品种的不同组合。本研究筛选出的导入系将成为进行大规模有利基因发掘以及通过有利基因的高效聚合来定向改良抗逆性分子育种的材料平台。
Abiotic stresses such as salinity, cold and heat are major threat to rice production. ElevenBC2F4backcross introgression populations derived from crosses between a japonica varietyChaoyou1as the recurrent parent and11donor parents collected from different countries werescreened for salt tolerance (ST) at the seedling and from tillering to maturity stages, heattolerance (HT) at flowering stage and cold tolerance (CT) at booting stage. The targetintrogression lines (ILs) were evaluated for yield and its related traits under normal and stresscondition to dissect physiological mechanisms of stress tolerance and map QTL for CT. Themain results were described as follows.
     1. Eleven BC2F4backcross introgression populations were screened for salt tolerance (ST)at seedling stage. One hundred and twenty-five (125) ILs were selected on the basis of singleplant SDS under salt water (140mmol·L-1NaCl).12,11,21and10ILs selected from four ofthe BC populations including donors Chouyou1/X21, Chouyou1/Q5, Chouyou1/Chhomrongand Chouyou1/Doddi were evaluated for morphological characteristics and ion concentrationsin replicated experiments under stress and normal conditions. The ILs had increased rootlength, root fresh weight, root dry weight but reduced shoot length, shoot fresh weight, shootdry weight under salt stress. The amplitudes of variations in the root traits were smaller thanthose of shoot traits, indicating that shoots were more sensitive to salt stress. With regard toionic effect, salt stress resulted in accumulation of Na+and reduction of K+in the whole plant.Compared to the recurrent parent, the increase of amplitude of Na+and the reduction of Kwere observably lower for the ILs. Coinstantaneous accumulation of20times more Na+in theshoot after salt stress was observed. Most of the salinity tolerant ILs improve their salinitytolerances through lower shoot Na+concentration and lower root to shoot Na+translocation.
     2. Eleven BC2F4backcross introgression populations were screened for salt tolerance (ST)at different developmental stages from tillering to maturity. One hundred and fifty (150) ILswere selected on the basis of single plant grain yield (GY) and spikelet fertility (SF) under saltwater (140mmol·L-1NaCl). Our results clearly showed that there was a rich hidden geneticvariation for ST in the donor lines and phenotypic selection under stress condition was apowerful way to identify transgressive segregaantis from the segregating BC populations.Further evaluation of126ILs selected from four BC populations in replicated experimentsunder stress and normal conditions identified10promising ILs with greatly improved ST and higher yield than CY1. Selection under salt stress for yield and SF, supplemented by acombination of desirable secondary traits, can greatly improve the efficiency and accuracy ofbreeding for high salt-tolerance. It is important to point out that three mechanisms includingosmotic adjustment, salt exclusion and tissue tolerance appeared to function together andaffect the same suite of ST related traits in the ILs; although their contributions to specific STtraits were very different for different ILs depending on the specific scenarios of stress.
     3. Eleven BC2F4backcross introgression populations were screened for heat tolerance(HT) at flowering stage. Total of124ILs were selected, based on single plant SF under hightemperature (38℃). The results showed that the ILs had better tolerance to heat (HT) than therecurrent parent, Chaoyou1, and the frequencies of plants with higher HT were higher in thepopulations derived from japonica donors were higher than those from indica ones,suggesting that japonica varieties were better sources of desirable genes for improving HT.Progeny testing of the124ILs under the HT stress and normal conditions revealed that64.5%(80) of the lines had better HT than the RP, as measured by SF. The124selected ILspresented wide segregations for other measured traits as well. Eight ILs with greatly improvedHT and higher yield than CY1were selected. HT plants selected from three pyramidingpopulations had an average SF of more than80%, which was significantly higher than the RPand the parents used in pyramiding. One hundred and six (106) plants with significant higherHT than the pyramiding parental lines were selected
     4. ILs from the eleven diverse donors were screened for CT at the reproductive stageunder the low temperature (LT) treatment created by irrigating the plants with cold water(19℃) at the reproductive stage. Three hundred and twenty four (324) BC2F5introgressionlines (ILs) were selected based on single plant SF. Progeny testing of the324ILs under thesimilar LT stress revealed that the efficiency of selection for CT was0.794. Further evaluationof116ILs selected from five BC populations in replicated experiments under LT and normalconditions identified18promising ILs with greatly improved CT and yield than CY1.Detailed comparisons between the ILs and CY1were conducted for yield and related traitsunder the LT stress and non-stress conditions to gain useful information and betterunderstanding of important issues related to breeding for CT using introgression breedingsuch as donor selection, selection efficiency, screening method and genetic drag fornon-target traits in the BC breeding process.
     5. ILs were assessed to identify cold-tolerance quantitative trait loci (QTL) from thedonors including Chhomromg, Doddi and Fengaizhan1in the genetic background of japonicacultivar Chaoyou1. X2test was used for QTL identification for the CT-selected ILs, meanwhile, random populations were assessed to identify CT-QTL by single marker analysismethod. Total of29QTL associated with CT were detected by the selected ILs and16identified by single marker analysis. The CT-QTL were classified into two types, one are eightQTL affecting trait difference for seed setting rate of stress to control, which distributedchromosomes3,5~8and the alleles at the QTL improved trait stability under stress andactually contributed to CT. The second type is the three common QTL detected by theselected ILs from different populations with less negative chance of QTL detection, whichdistributed chromosomes2,3and9. Furthermore, most of the QTLs identified in this studywere consistent with those documented. Therefore, QTL detection using selected ILs based onwell-known X2test is a simple and effective. previously by other studies.. The use ofintrogression populations in QTL identification and selection for outstanding lines providesan efficient way for integrating gene discovery and practical breeding and as a result speed upthe application modern molecular techniques in breeding for complex traits.
     The present study indicated that transgressive segregations were observed for ST, HTand CT in most of the backcross populations, indicating that all the11donors possesfavorable ‘hidden’ alleles for tolerances to the studied stresses. There were significantdifferences among populations in selection efficiency, reflecting stress tolerance depends notonly on donor itself but also on different combinations of the recurrent parent and the donorparent. The stress tolerant ILs will be partially a platform and valuable materials for favorableallele mining and improvement of stress tolerance by pyramiding of favorable genes.
引文
[1]邴雷,赵宝存,沈银柱,黄占景,葛荣朝.2008.植物耐盐性及耐盐相关基因的研究进展.河北师范大学学报(自然科学版).32(2):243-248.
    [2]藏金萍,孙勇,王韵,杨静,李芳,周永力,朱苓华, R. Jessica, F. Mohammadhosein,徐建龙,黎志康.2008.利用回交导入系剖析水稻苗期和分蘖期耐盐性的遗传重叠.中国科学C辑,38(9):841-850.
    [3]曹立勇,朱军,赵松涛等.2002.水稻籼粳交DH群体耐热性的QTLs定位.农业生物技术学报,10(3):210-214.
    [4]陈冰嬬,石英尧,崔金腾,钱益亮,刘海燕,张力科,王辉,高用明,朱苓华,黎志康.2008.利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL.作物学报,34(8):1299-1307.
    [5]陈佳慧,兰进好,王晖等.2011.小麦RIL群体SSR分子标记偏分离的遗传分析.麦类作物学报,31(3):407-410.
    [6]陈庆全,余四斌,李春海等.2008.水稻抽穗开花期耐热性QTL的定位分析.中国农业科学,41(2):315-321.
    [7]方先文,张所兵,王艳平,林静.2011.高盐浓度处理对水稻苗期生长的影响.江苏农业科学,39(3):69-71.
    [8]顾兴友,梅曼彤,严小龙等.2000.水稻耐盐性数量性状位点的初步检测.中国水稻科学,14(2):65-70.
    [9]郭望模,傅亚萍,孙宗修.2004.水稻芽期和苗期耐盐指标的选择研究.浙江农业科学,1:30-33.
    [10]韩朝红,孙谷畴,林植芳.1998.NaCl对吸胀后水稻的种子发芽和幼苗生长的影响.植物生理学通讯,34(5):339-342.
    [11]韩龙植,乔永利,张媛媛等.2005.水稻孕穗期耐冷性QTLs分析.作物学报,31(5):653-657.
    [12]康乐,李宏,孙勇,卢德城,张帆,黄道强,徐建龙,王志东,朱苓华,高用明,傅彬英,李康活,周永力,周少川,黎志康.2008.应用导入系群体进行水稻产量相关性状的遗传剖析,作物学报,34(9):1500-1509.
    [13]柯玉琴,潘廷国.2001.鉴定水稻发芽种子成苗过程中耐盐性的NaCl琼脂固定法,植物生理学通讯,37(5):432-434.
    [14]奎丽梅,谭禄宾,涂建等.2008.云南元江野生稻抽穗开花期耐热QTL定位.农业生物技术学报,16(3):461-464.
    [15]黎志康.2005.我国水稻分子育种计划的策略.分子植物育种,3(5):603-608.
    [16]李武,林忠旭,张献龙等.2007.亚洲棉种内群体异常偏分离的分子标记检测.遗传学报,34(7):634-640.
    [17]李霞,曾昆,阎丽娜,王超,孙志伟,周月兰.2008.盐碱胁迫对不同水稻材料苗期生长特性的影响.植物生理科学,24(8):252-256.
    [18]梁谊,王建军,游承俐.1998.亚洲水稻耐冷性研究进展.云南农业大学学报,13(1):135-138.
    [19]林鸿宣,柳原城司,庄杰云等.1998.应用分子标记检测水稻耐盐性的QTL.中国水稻科学,12(2):72-78.
    [20]刘建丰,徐立云.水稻耐冷性研究现状与展望.作物研究,1996.10(2):41-43.
    [21]刘之熙,刘云开,詹庆才.2008.水稻孕穗期耐冷基因的CAPs标记辅助选择.湖南农业大学学报(自然科学版),34(2):127-131.
    [22]孟丽君,林秀云,崔彦茹等.2010.利用高代回交导入群体进行水稻耐盐碱鉴定与筛选.分子植物育种,8(6):1142-1150.
    [23]祁栋灵,郭桂珍,李明哲,曹桂兰,张俊国,周庆阳,张三元,徐锡哲,韩龙植.2007.水稻耐盐碱性生理和遗传研究进展.植物遗传资源学报,8(4):486-493.
    [24]钱益亮,王辉,陈满元等.2009.利用BC2F3产量选择导入系定位水稻耐盐QTL.分子植物育种,7(2):224-232.
    [25]申时全,曾亚文,李绅崇等.2005.应用近等基因系初步定位粳稻孕穗期的耐冷基因.中国水稻科学,19(3):217-222.
    [26]申时全,曾亚文,李自超,李绅崇.2003.孕穗期NILs的耐冷相关性状的相关分析及聚类分析.西南农业大学学报(自然科学版),25(4):316-320.
    [27]孙勇,藏金萍,王韵等.2007.利用回交导入系群体发掘水稻种质资源中的有利耐盐QTL.作物学报,33(10):1611-1617.
    [28]汤日圣,郑建初,陈留根等.2005.高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响.植物生理与分子生物学学报,31(6):657-662.
    [29]汪斌,兰涛,吴为人等.2007.盐胁迫下水稻苗期Na+含量的QTL定位.中国水稻科学,21(6):585-590.
    [30]翁跃进,陈道明.2002.小麦耐盐基因的标记和标记的克隆.遗传学报,29(4):343-349.
    [31]徐建龙,高用明,傅彬英等.2005.回交导入后代水稻种质有利基因的鉴定与筛选研究.分子植物育种,3(5):619-628.
    [32]晏斌,汪宗立.1994.水稻苗期体内Na的分配与品种耐盐性.江苏农业学报,10(1):l-6.
    [33]阳标仁.2008.水稻孕穗期耐冷性的生理研究和OTL初步定位.贵州大学硕士学位论文.
    [34]杨静,孙勇,程立锐等.2009.利用双向导入系群体检测遗传背景对耐盐QTL定位的影响.作物学报,35(6):974-982.
    [35]张帆,郝宪彬,高用明,华泽田,马秀芳,陈温福,徐正进,朱苓华,黎志康.2007.利用籼稻资源中的“隐蔽有利基因”提高粳稻苗期耐冷性.作物学报,33(10):1618-1624.
    [36]张桂莲,陈立云,张顺堂,等.2007.高温胁迫对水稻花器官和产量构成要素及稻米品质的影响.湖南农业大学学报(自然科学版),33(20):132-136.
    [37]张海波,崔继哲,曹甜甜,张佳彤,刘千千,刘欢.2011.大豆出苗期和苗期对盐胁迫的响应及耐盐指标评价.生态学报,31(10):2805-2812.
    [38]张锦伟,许键,杨改刚,谭学林.2004.用不同浓度NaCI溶液筛选水稻苗期耐盐抗旱材料.西南农业学报,17:81-84.
    [39]赵秀琴,朱苓华,徐建龙,黎志康.2007.灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位.作物学报,33(9):1536-1542.
    [40]赵志刚,江玲,肖应辉等.2006.水稻孕穗期耐热性QTLS分析.作物学报,32(5):640-644.
    [41]郑天清,徐建龙,傅彬英,高用明, S. Veruka, R. Lafitte,翟虎渠,万建民,朱苓华,黎志康.2007.回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究.作物学报,33(8):1380-1384.
    [42]周政,李宏,孙勇等.2010.高产、抗旱和耐盐选择对水稻产量相关性状的影响.作物学报,3(10):1725-1735.
    [43]朱昌兰,江玲,张文伟,王春明,翟虎渠,万建民.2006.稻米直链淀粉含量和胶稠度对高温耐性的QTL分析.中国水稻科学,20(3):248-252.
    [44]朱昌兰,肖应辉,王春明等.2005.水稻灌浆期耐热害的数量性状基因位点分析.中国水稻科学,9(2):117-121.
    [45] Aggarwal R. K, V. V. Shenoy, J. Ramadevi, R. Rajkumar and L. Singh.2002. Molecularcharacterization of some Indian Basmati and other elite rice genotypes using fluorescent–AFLP.Theor. Appl. Genet,105:680-690.
    [46] Akbar M., and F. N. Ponnamperuma.1982. Saline soils of south and southeast Asia as potential ricelands. In: Rice Research Strategies for the Future,265-281. IRRI, Los Banos, Philippines.
    [47] Akita S and G. S. Cabuslay.1990, Physiological basis of differential response to salinity in ricecultivars. Plant and Soil,123:277-294.
    [48] Ali A. J, J. L. Xu, A. M. Ismail, B. Y. Fu, C. H. M Vijaykumar, Y. M. Gao, J. R. Domingo Maghirang,S. B. Yu, G. Gregorio, S. Yanaghihara, M. Cohen, B. Carmen, D. Mackill and Z. K. Li.2006. Hiddendiversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a largebackcross breeding program. Field Crops Res,97:66-76.
    [49] Andayal V. C and D. J. Mackill.2003a. Mapping of QTLs associated with cold tolerance during thevegetative stage in rice. Journal of Experimental Botany,54(392):2579-2585.
    [50] Andayal V. C. and D. J. Mackill.2003b. QTL conferring cold tolerance at the booting stage of riceusing recombinant inbred lines from a japonica/indica cross. Theoretical and Applied Genetics,106,pp.1084-1090.
    [51] Bal A. R.1975. Note on the effects of submergence with saline water at different stages of growth ofsome rice varieties. Ind. J. Agric. Sci,45:497-499.
    [52] Blumwald E.2000. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol,12:431-434.
    [53] Bonilla P. S, J. Dvorak, D. Mackill, K. Deal and G. Gregorio.2002. RFLP and SSLP mapping ofsalinity tolerance genes in chromosome1of rice (Oryza saliva L.) using recombinant inbred lines.Philipp. Agric. Sci,85:64-74.
    [54] Carden D. E.1999. The cell physiology of barley salt tolerance. PhD Thesis, University of Sussex,UK.
    [55] Cardon L. R. and B. Ell.2001. Association study designs for complex diseases. Nature ReviewsGenetics,2:91-99.
    [56] Chinnusamy V, A. Jagendorf, J. K. Zhu.2005. Understanding and improving salt tolerance in plants.Crop Science,45:437-448.
    [57] Chinnusamy V, J. Zhu and J. K. Zhu.2006. Salt stress signaling and mechanisms of plant salttolerance. Genet Eng(NY),27:141-177.
    [58] Dai L. Y, K. Kariya, C. R. Ye, K. Ise, H. Tanno, T. Q. Yu, F. R. Xu and C. W. Ma.2002. Studies oncold tolerance of rice, Oryza sativa L. II. Evaluation on cold tolerance of Yunnan rice geneticresources. Southwest China J. Agric. Sci,15:47-52.(in Chinese with English abstract)
    [59] Dai L.Y, X. H. Lin, C. R. Ye, K. Ise, K. Saito, A. Kato, F. R. Xu, T. Q. Yu and D. P. Zhang.2004.Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnanlandrace of Rice, Kunmingxiaobaigu. Breeding Sci,54:253-258.
    [60] Daniells I. G, J. F. Holland, R. R. Young, C. L. Alston and A. L. Bernardi.2001. Relationship betweenyield of grain sorghum (Sorghum bicolor) and soil salinity under conditions. Australian Journal ofExperimental Agriculture,41:211-217.
    [61] Demiral T and I. Turkan.2005. Comparative lipid peroxidation, antioxidant defense systems andproline content in roots of two rice cultivars differing in salt tolerance. Environmental andExperimental Botany,53(3):247-257.
    [62] Dilday R. H.1990. Contribution of ancestral lines in the development of new cultivars of rice. CropSci,30:905-911.
    [63] Djanaguiraman M, J. A. Sheeba, A. K. D. Shanker, D. Devi and U Bangarusamy.2006. Rice canacclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmoticadjustment. Plant Soil,284:363-373.
    [64] Eshed Y and D. Zamir.1994. Introgressions from Lycopersicon pennellii can improve thesoluble-solids yield of tomato hybrids. Theor. Appl. Genet,88:891-897.
    [65] Fischer K.S, R. Lafitte, S. Fukai, G. Atlin and B. Hardy. editors.2003. Breeding to improve yieldunder adverse environments: direct selection for grain yield. In Breeding rice for drought-proneenvironments. Los Ba os (Philippines):International Rice Research Institute,20-37.
    [66] Flowers T. J and A. R. Yeo.1995. Breeding for salinity resistance in crop plants-where next?Australian Journal of Plant Physiology,22:875-884.
    [67] Flowers T. J.2004. Improving crop salt tolerance. J. Exptl. Bot,55:307-319.
    [68] Foolad M. R and F. Q. Chen.1999. RFLP mapping of QTLs conferring salt tolerance during thevegetative stage in tomato. Theor Appl Genet,99:235-243.
    [69] Francois L. E and E. V. Maas.1994. Crop response and management on salt affected soils. In:Pessarakli M, ed. Handbook of plant and crop stress. New York: Marcel Dekker,149-181.
    [70] Fujino K, H. Sekiguchi, T. Sato, H. Kiuchi, Y. Nonoue, Y. Takeuchi, T. Ando, S. Y. Lin and M. Yano.2004. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryzasativa L.). Theoretical and Applied Genetics,108:794-799.
    [71] Glaszmann J. C, R. N. Kaw and G. S. Khush.1990. Genetic divergence among cold tolerant rice(Oryza sativa L.). Euphytica,45:95-104.
    [72] Goff S. A, D. Ricke, T. H. Lan, G. Presting, R. L. Wang, M. Dunn et al.2002. A draft sequence of therice genome (Oryza sativa L. ssp. japonica). Science,296:92-100.
    [73] Gregorio G. B and D. Senadhira.1993. Genetic analysis of salinity tolerance in rice (Oryza sativa L.).Theor Appl Genet,86:333-338.
    [74] Gregorio G. B, D. Senadhira and R. D. Mendoza.1997. Screening rice for salinity tolerance. IRRIDiscussion Paper Series no.22. Manila (Philippines): International Rice Research Institute. pp.1-30.
    [75] Gregorio G. B.1997. Tagging salinity tolerance genes in rice using amplified fragment lengthpolymorphism (AFLP). Ph.D. dissertation. College, Laguna, Philippines:University of the PhilippinesLos Ba os, Laguna pp.118.
    [76] Pathak H and K. Sumfleth.2009. Climate change affecting rice production: the physiological andagronomic basis for possible adaptation strategies. Advances in Agronomy,101:59-122.
    [77] Harr B, M. Kauer and C. Schlotterer.2002. Hitchhiking mapping: a population based fine mappingstrategy for adaptive mutations in Drosophila melanogaster.PNAs,99:12949-12954.
    [78] Hasegawa P. M, R. A. Bressan, J. K. Zhu and H. J. Bohnert.2000. Plant cellular and molecularresponses to high salinity. Annu Rev Plant Physiol Plant Mol Biol,51:463-499.
    [79] He Y. X, T. Q. Zheng, X. B. Hao, L. F. Wang, Y. M. Gao, Z. T. Hua, H. Q. Zhai, J. L. Xu, Z. J. Xu, L.H. Zhu and Z. K. Li.2009. Yield performances of japonica introgression lines selected for droughttolerance in a BC breeding program. Plant Breed,129:167-175.
    [80] Hittalmani S, N. Huang, B. Courtois, et al.2003. Identification of QTL for growth and grainyield-related traits in rice across nine locations of Asia. Theor Appl Genet,107:679-690.
    [81] Huang B. R and J. D. Fry.1998. Root anatomical, physiological and morphological responses todrought stress for tall rescue cultivars. Crop Science,1017-1022.
    [82] Huang X. Y, D. Y. Chao, J. P. Gao, M. Z. Zhu, M. Shi and H. X. Lin.2009. A previously unknown zincfinger protein,DST, regulates drought and salt tolerance in rice via stomatal aperture control,23(15):1805-1810.
    [83] IRGSP (International rice genome sequencing project).2005. The map-based sequence of the ricegenome. Nature,436:793-800.
    [84] IRRI (International Rice Research Institute).1967. Annual Report for1967. Los Ba os, Laguna,Philippines. p.308.
    [85] IRRI.1996. Standard evaluation system for rice. Manila: International Rice Research Institute.
    [86] IRRI.1976. Annual Report. Manila, The Philippines: IRRI.
    [87] Ishimaru T. H. Hirabayashi, I. Da, M. Takai, T. Y. A. Sanoh, Y. S. Oshinaga, I. Ando, O. T. Gawa andM. Kondo.2010. A genetic resource for early-morning flowering trait of wild rice Oryza of ficinalis tomitigate high temperature induced spikelet sterility at anthesis. Annals of Botany,106:515-520.
    [88] Ismail A. M, M. J. Thomson, G. V. Vergara, M. A. Rahman, R. K. Singh, G. B. Gregorio and D. J.Mackill.2010. Designing resilient rice varieties for coastal deltas using modern breeding tools. In:Hoanh CT,Szuster BW,Pheng KS, Ismail AM, Nobel AD, editors. Tropical Deltas and coastal zones:food production, communities and environment at the land-water interface. Wallingford:CABI:154-165.
    [89] Ismail A. M, S. Heuer, M. J. Thomson and M. Wissuwa2007. Genetic and genomic approaches todevelop rice germplasm for problem soils. Plant Mol Biol,65:547-570.
    [90] Jagadish S. V. K, P. Q. Craufurd and T. R. Wheeler.2007. High temperature stress and spikeletfertility in rice (Oryza sativa L.). Journal of Experimental Botany,58:1627-1635.
    [91] Jagadish S. V. K, J. Cairns, R. Lafitte, T. R. Wheeler, A. H. Price and P. Q. Craufurd.2010. Geneticanalysis of heat tolerance at anthesis in Rice. Crop Sci,50:1633-1641.
    [92] Ji S. L, L. Jiang, Y. H. Wang, S. J. Liu, X. Liu, H. Q. Zhai, A. Yoshimura and J. M. Wan.2008. QTLand epistasis for low temperature germinability in rice. Acta Agron. Sin.,34:551-556.(in Chinesewith English abstract)
    [93] Kato A and K. Saito.1996. Mapping of genes responsible for cold tolerance at the booting stage.International Rice Research Note,21(1):35-36.
    [94] Kato A, H. Kiuchi and K. Aito.1997. Analysis of the genetic loci involved in cool tolerance of a cooltolerance stain Hokkai PL5. Japan J Breed,307.
    [95] Kban M. A and Z. Abdullah.2003. Salinity-Sodlcity induced changes in reproductive physiology ofrice under dense soil conditions. Environmental and Experimental Botany,49(2):145-147.
    [96] Khan D. R, D. J. Mackill and B. S. Vergara.1986. Selection for tolerance to low temperature inducedspikelet sterility at anthesis in rice. Crop Sci.,26:694-698.
    [97] Khatun S, and T. J. Flowers.1995. Effects of salinity on seed set in rice. Plant Cell Environ,18:61-67.
    [98] Koyama M. L. A. Levesley, R. M. D. Koebner, T. J. Flowers and A. R. Yeo.2001. Quantitative traitloci for component physiological traits determining salt tolerance in rice. Plant Physiol,125(1):406-422.
    [99] Krishnan P. and A. V. Suryarao.2005. Effects of genotype and environment on seed yield and qualityof rice. Journal of Agricultural Science, Cambridge,143:283-292.
    [100] Kuroki M, K. Saito, S. Matsuba, N. Yokogami, H. Shimizu, I. Ando and Y. Sato.2007. A quantitativetrait locus for cold tolerance at the booting stage on rice chromosome8. Theor. Appl. Genet.,115:593-600.
    [101] Lafitte H, R, Z. K. Li, C. H. M. Vijayakumar, Y. M. Gao, Y. Shi, J. L. Xu, B. Y. Fu, S. B. Yu, A. J. Ali,J. Domingo, R. Maghirang, R. Torres and D. Mackill.2006. Improvement of rice drought tolerancethrough backcross breeding. evaluation of donors and selection in drought nurseries. Field Crops Res,97:77-86.
    [102] Larsen R. J. and M. L. Marx.2000. An introduction to mathematical statistics and its applications,3rdedn. New Jersey: Prentice-Hall, Inc,505-507.
    [103] Lee K. S, W. Y. Choi, J. C. Ko, T. S. Kim and G. B. Gregoria.2003. Salinity tolerance of japonica andindica rice (Oryza sativa L.) at the seedling stage. Planta,216:1043-1046.
    [104] Lee S. Y, J. H. Ahn, Y. S. Cha, et al.2006. Mapping of quantitative trait loci for salt tolerance at theseedling stage in rice. Mol Cells,21(2):192-196.
    [105] Li H. B, J. Wang, A. M. Liu, K. D. Liu, Q. F. Zhang and J. S. Zou.1997. Genetic basis oflow-temperature-sensitive sterility in indica-japonica hybrids of rice as determined by RFLP analysis.Theor Appl Genet,95:1092-1097.
    [106] Li Z. K, B. Y. Fu, Y. M. Gao, J. L. Xu, J. Ali, H. R. Lafitte, Y. Z. Jiang, J. D. Rey, C. H. M.Vijayakumar, R. Maghirang, T. Q. Zheng and L. H. Zhu.2005. Genome-wide introgression lines andtheir use in genetic and molecular dissection of complex phenotypes in rice(Oryza sativa L.). PlantMol Biol,59:33-52.
    [107] Li Z. K, S. B. Yu, H. R. Lafitte, et al.2003. QTL×environment interactions in rice. I. heading date andplant height. Theor Appl Genet,108:141-153.
    [108] Li Z. K. and J. L. Xu.2007. Breeding for drought and salt tolerant rice (Oryza sativa L.): progress andperspectives. In: Jenks M A, Hasegawa P M, Jain S M, eds. Advances in Molecular Breeding TowardDrought and Salt Tolerant Crops. Netherlands: Springer, pp531-564.
    [109] Lin H. X, M. Z. Zhu, M. Yano, J. P. Gao, Z. W. Liang,, W. A. Su, X. H. Hu,, Z. H. Ren and D. Y.Chao.2004. QTLs for Na+and K+uptake of the shoots and roots controlling rice salt tolerance. TheorAppl Genet,108(2):253-260.
    [110] Mackill D. J and X. M. Lei.1997. Genetic variation for traits related to temperate adaptation of ricecultivars. Crop Sci,37:1340-1346.
    [111] Maraseni T. N, S. Mushtaq and J. Maroulis.2009. Greenhouse gas emissions from rice farming inputs:a cross-country assessment. J Agric Sci,147:117-126.
    [112] Maser P, B. Eckelman, R. Vaidyanathan, et al.2002. Altered shoot/root Na+distribution andbifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+transporter AtHKTI1.FEBSLetters531:157-161.
    [113] Matsui T and K. Omasa.2002. Rice (Oryza sativa L.) cultivars tolerant to high temperature atflowering: anther characteristics. Ann Bot,89:683-687.
    [114] Matsui T, K. Kobayasi, H. Kagata and T. Horie.2005. Correlation between viability of pollination andlength of basal dehiscence of the theca in rice under a hot and humid condition. Plant Prod Sci,8:109-114.
    [115] Matsui T, O. S. Namuco, L. H. Ziska and T. Horie.1997. Effects of high temperature andCO2concentration on spikelet sterility in indica rice. Field Crops Res,51:213-219.
    [116] Matsui T. O. K. Masa and H. T. Orie.2001. The difference in sterility due to high temperatures duringthe flowering period among japonica rice varieties. Plant Production Science,4:90-93.
    [117] McCouch S. R and R. W. Doerge.1995. QTL mapping in rice. Trends Genet11:482-487.
    [118] McCouch S. R, X. L. Chen, O. Panaud, S. Temnykh, Y. B. Xu, Y. G. Cho, N. Huang, T. Ishii and M.Blair.1997. Microsatellite marker development, mapping and applications in rice genetics andbreeding. Plant Mol Biol,35:89-99.
    [119] Mei H. W, J. L. Xu, Z. K. Li and L. J. Luo.2006. QTLs influencing panicle size detected in tworeciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Theor Appl Genet,112:648-656.
    [120] Munns R and A. Termaat.1986. Whole plant responses to salinity. Australian Journal of PlantPhysiology,13:143-160.
    [121] Munns R.2002. Comparative physiology of salt and water stress. Plant Cell Environ.25:239-250.
    [122] Nagasawa N, T. Kawamoto, K. Matsunaga, T. Sasaki, Y. Nagato and K. Hinata.1994.Cool-temperature sensitive mutants at the booting stage of rice. Breeding Sci,44:53-57.
    [123] Nakagawa H, T. Horie and T. Matsui.2003. Effects of climate change on rice production and adaptivetechnologies. In Rice Science: Innovations and Impact for Livelihood. Proceedings of the InternationalRice Research Conference, Beijing, China:16-19.
    [124] Nishimura M and K. Hamamura.1993. Diallel analysis of cool tolerance at the booting stage in ricevarieties from Hokkaido. JpnJ Breed,43:557–566.
    [125] Nishiyama I.1982. Male sterility caused by cooling treatment at the young microspore stage in riceplants,23. Anther length, pollen number and the difference in susceptibility to coolness amongspikelets on the panicle. Jpn. J. Crop Sci.,51:462-469.
    [126] Nishiyama I.1995. Damage due to extreme temperatures. In: Matsuo, T., Kumazawa, K., Ishii, R.,Ishihara, H., Hirata, H.(Eds.), Science of the Rice Plant. Food and Agriculture Policy Research Center,Tokyo, Japan, pp.769-812.
    [127] Oliver S. N, J. T. Van Dongen, S. C. Alfred, E. A. Mamun, X. C. Zhao, H. S. Saini, S. F. Fernandes, C.L. Blanchard, B. G. Sutton, P. Geigenberger, E. S. Dennis and R. Dolferus.2005. Cold-inducedrepression of the rice anther-specific cell wall invertase gene OSINV4is correlated with sucroseaccumulation and pollen sterility. Plant Cell Environ,28:1534-1551.
    [128] Parida A. K and B. Dasa.2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicologyand Environmental Safety,60:324-349.
    [129] Pearson G. A, A. D. Ayers and D. L. Eberhard.1966. Relative salt tolerance of rice during germinationand early seedling development. Soil Sci,102:151-156.
    [130] Peltier W. R, and A. M. Tushingham.1989. Global sea level rise and the greenhouse effect: might theybe connected? Science,244:806-810.
    [131] Peng S, J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush andK. G. Cassman.2004. Rice yields decline with higher night temperature from global warming. ProcNat Acad Sci USA,101:9971-9975.
    [132] Prasad P. V. V, K. J. Boote, L. Allen, J. E. Sheehy and J. M. G. Thomas.2006. Species. Ecotype andcultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress.Field Crops Res,95:398-411.
    [133] Ren Z. H, J. P. Gao, L. G. Li, et al.2005. A rice quantitative trait locus for salt tolerance encodes asodium transporter. Nat Genet,37(10):1141-1146.
    [134] Rick C. M.1966. Abortion of male and female gametes in the tomato determined by allelic interaction.Genetics,53:85-96.
    [135] Rosenzweig C and M. L. Parry.1994. Potential impact of climate change on world food supply.Nature,367:133-138.
    [136] Saito K, K. Miura, K. Nagano, Y. Hayanosaito, A. Saito, H. Araki and A. Kato.1995. Chromosomallocation of quantitative trait loci for cool tolerance at the booting stage in rice variety‘Norin-PL8’.Breeding Sci45:337-340.
    [137] Saito K, Y. H. Saito, W. M. Funatsuki, Y. Sato and A. Kato.2004. Physical mapping and putativecandidate gene identification of a quantitative trait locus Ctb1for cold tolerance at the booting stage ofrice. Theor. Appl. Genet.,109:515-522.
    [138] Satio K, K. Miura, K. Nagano, et al.2001. Identification of two closely linked quantitative trait locifor cold tolerance on chromosome4of rice and their association with anther length. Theor Appl Genet,103:862-868.
    [139] Shannon M. C.1985. Principles and strategies in breeding for higher salt tolerance. Plant and Soil,89:227-241.
    [140] Sheehy J. E, A. Elmido, G. Centeno and P. Pablico.2005. Searching for new plants for climate change.Journal of Agricultural Meteorology,60:463-468.
    [141] Shimono H, T. Hasegawa, T. Kuwagata and K. Iwama.2007. Modeling the effects of watertemperature on rice growth and yield under a cool climate. Agron. J.,99:1338-1344.
    [142] Simmonds N. W.1984. Decentralized selection. Sugar Cane,6:8-10.
    [143] Simmonds N. W.1984: Decentralized selection. Sugar Cane,6:8-10.
    [144] Singh R. K, B. Mishra, M. S. Chauhan, A. R. Yeo, S. A. Flowers and T. J. Flowers.2002. Solutionculture for screening rice varieties for sodicity tolerance. Journal of Agricultural Science, Cambridge(UK),139:327-333.
    [145] Smith J. M and J. Haigh.1974. The hitch-hiking effect of a favourable gene. Genet Res,23:23-35.
    [146] Smith P and J. E. Olesen.2010. Synergies between the mitigation of, and adaptation to, climatechange in agriculture. J Agric Sci,148:543-552.
    [147] Song Z. P, B. R. Lu and K. J. Chen.2001. A study of pollen viability and longevity in Oryza rufipogon,O. sativa and their hybrids. International Rice Research Notes,26:31-32.
    [148] Sthapit B. R and J. R. Witcombe.1998. Inheritance of tolerance to chilling stress in rice duringgermination and plumule greening. Crop Sci.,38:660-665.
    [149] Suh J. P, J. U. Jeung, J. I. Lee, Y. H. Choi, J. D. Yea, P. S. Virk, D. J. Mackill, K. K. Jena, N Kurata, YNagamura, K. Yamamoto, Y. Harushima, N. Sue, J. Wu, B. A. Antonio, A. Shomura, T. Shimizu, S. Y.Lin, T. Inoue, A. Fukuda, T. Shimano, Y. Kuboki, T. Toyama, Y. Miyamoto, T. Kirihara, K. Hayasaka,A. Miyao, L. Monna, H. S. Zhong, Y. Tamura, Z. X. Wang, T. Momma, Y. Umehara, M. Yano, T.Sasaki and Y. A. Minobe.1994.300kilobase interval genetic map of rice including883expressedsequences. Nat Genet,8:365-372.
    [150] Surekha P. R, B. Mishra, S. R. Gupta and A. Rathore.2008. Reproductive stage tolerance to salinityand alkalinity stresses in rice genotypes. Plant Breeding,127:256-261.
    [151] Tabata M, H. Hirabayashi, Y. Takeuchi, I. Ando, Y. Iida and R. Ohsawa.2007. Mapping of quantitativetrait loci for the occurrence of white-back kernels, associated with high temperatures during theripening period of rice (Oryza sativa L.). Breed Sci,57:47-52.
    [152] Takeuchi Y, H. Hayasaka, B. Chiba, I. Tanaka, T. Shimano, M. Yamagishi, K. Nagano, T. Sasaki andM. Yano.2001. Mapping quantitative trait loci controlling cool-temperature tolerance at the bootingstage in temperate japonica rice. Breed Sci,51:191-197.
    [153] Tanno H, H. Kiuchi, Y. Hirayama and H. Kinkuchi.2000. Development of a simple testing method forcool weather tolerance at the flowering stage of rice using an air-conditioned room. Japanese journalof crop science,69:43-48.
    [154] Temnykh S, D. Genevieve, L Angelika, L. Leonard, C. Samuel and S. R. McCouch.2001.Computational and Experimental Analysis of Microsatellites in Rice (Oryza sativa L.): Frequency,Length Variation, Transposon Associations, and Genetic Marker Potential. Genome Res,11:1441-1452.
    [155] Temnykh S, W. D. Park, N. Ayres, S. Cartinhour, N. Hauck, L. Lipovich, Y. G. Cho, T. Ishii and S. R.McCouch.2000. Mapping and genome organization of microsatellite sequences in rice (OryzasativaL.). Theor Appl Genet,100:697-712.
    [156] Tester M and R. Davenport.2003. Na+tolerance and Na+transport in higher plants. Annals of Botany,91:503-527.
    [157] Tsuchiya M, M. Miyake and H. Naito.1994. Physiological response to salinity in rice plant. III. Apossible mechanism for Na+exclusion in rice root under NaCl-stress conditions. Jpn. J. Crop Sci,63:326-332.
    [158] Wahid A, S. Gelani, M. Ashraf and M. R. Foolad.2007. Heat tolerance in plants: an overview.Environmental and Experimental Botany,61:199-223.
    [159] Wang Y, X. Y. Lin, Y. R. Cui, K. Chen, S. C. Zhou, J. L. Xu and Z. K. Li.2010. Screening of salt anddrought tolerant plants from backcross populations in rice. Mol. Plant Breed,8:1133-1141.(in Chinesewith English abstract)
    [160] Ware D, P. Jaiswal, J. Ni, X. Pan, K. Chang, K. Clark, L. Teytelman, S. Schmidt, W. Zhao, S.Cartinhour, S. McCouch and L. Stein.2002. Gramene: a resource for comparative grass genomics.Nucl Acid Res,30:103-105.
    [161] Wassmann R, S. V. K. Jagadish, S. Heuer, A. Ismail, E. Redona, R. Serraj, R. K. Singh, G. Howell,
    [162] Watanabe T and T. Kume.2009. A general adaptation strategy for climate change impacts on paddycultivation: special reference to the Japanese context. Paddy Water Environ,7:313-320.
    [163] Weber D. J.2009. Adaptive Mechanisms of Halophytes in Desert Regions. Salinity and alinity andwater sress,44:179-185.
    [164] Xu L. M, L. Zhou, Y. W. Zeng, F. M. Wang, H. L. Zhang, S. Q. Shen and Z. C. Li.2008. Identificationand mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica ricenear-isogenic line. Plant Sci.,174:340-347.
    [165] Xu S. J, R. J. Singh and T. Hymowitz.1997. Establishment of a cytogenetic map soybean: progressand prospective,24:121-122.
    [166] Yan C, Y. Ding, Q. Wang, Z. Liu, G. Li, I. Muhammad and S. Wang.2010. The impact of relativehumidity, genotypes and fertilizer application rates on panicle, leaf temperature, fertility and seedsetting of rice. J Agric Sci,148:329-339.
    [167] Ye C, S. Fukai, I. Godwin, R. Reinke, P. Snell, J. Schiller, and J. Basnayake.2009. Cold tolerance inrice varieties at different growth stages. Crop Pasture Sci,60:328-338.
    [168] Yeo A. R and T. J. Flowers.1984. Mechanisms of salinity resistance in rice and their roles asphysiological criteria in plant breeding.In: Staples R C, Toenniessen G H eds.Salinity tolerance inplants strategies for crop improvement. New York: John wiley–interscience,151-170.
    [169] Yeo A. R and T. J. Flowers.1986. Salinity resistance in rice (Oryza sativa L.) and a pyramidingapproach to breeding varieties for saline soil. Australian Journal of Plant Physiology,13:161-173.
    [170] Yin X, M. J. Kroff and J.Goudriann.1996. Differential effects of day and night temperature ondevelopment to flowering in rice. Ann Bot,77:20-213.
    [171] Yoshida S, D. A. Forno and J. H. Cock.1976. Laboratory manual for physiological studies of rice. In:IRRI, editor. Manila, p.1-83.
    [172] Yu S. B, W. J. Xu, C. H. M. Vijayakumar, j. Ali, B. Y. Fu, J. L. Xu, R.. Marghirang, J. Domingo, Y. Z.Jiang, C. Aquino, S. S. Virmani and Z. K. Li.2003. Molecular diversity and multilocus organization ofthe parental lines used in the International Rice Molecular BreedingProgram. Theor.Appl.Genet,108:131-140.
    [173] Zeng L. He, M. C. Shannon and L. H. Zeng.2000.Salinity effects on seedling growth and yieldcomponents of rice. Crop Sci,40(4):996-1003.
    [174] Zhang Z. H, L. Su, W. Li, W. Chen and Y. G. Zhu.2005. A major QTL conferring cold tolerance at theearly seedling stage using recombinant inbred lines of rice (Oryza sativa L.). Plant Sci,168:527-534.
    [175] Zhou L, Y. Zeng, W. W. Zheng, B. Tang, S. Yang, H. L. Zhang, J. J. Li and Z. C. Li.2010. Finemapping a QTL qCTB7for cold tolerance at the booting stage on rice chromosome7using anear-isogenic line. Theor Appl Genet,121:895-905.
    [176] Zhu C. L, Y. H. Xiao, C. M. Wang, L. Jiang, H. Q. Zhai and J. M. Wan.2005. Mapping QTL for heattolerance at grain filling stage in rice. Rice Sci,1:33-38.
    [177] Zhu J. K.2001. Plant salt tolerance. Trends Plant Sci,6(2):56-71.
    [178] Zhu J. K.2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology,6:441-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700