用户名: 密码: 验证码:
低品质钾钠长石矿选矿提纯试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长石是陶瓷、玻璃等制造业的重要原料。随着玻璃、陶瓷产品日益高档化,对高纯低铁的长石原料需求量不断扩大。虽然我国长石资源丰富,但一般含铁都较高,必须经过除铁提纯才能应用。目前,我国长石加工提纯存在磨矿效率低、选矿工艺技术落后、生产设备陈旧等问题,没有形成规模化和产业化。
     针对上述问题,对江西宜春钾钠长石矿进行了原矿性质与特征研究,并采用高效率的湿法连续式磨矿代替传统的石质轮碾或间歇式砾磨等磨矿方式,探讨了瓷球、钢棒和钢球介质下的磨矿细度情况。针对铁、钛等杂质矿物主要富集在细粒级矿石中的特点,控制磨矿细度-74μm 55%~60%。基于上述试验结果,进行了实验室小型试验、半工业性试验及工业性试验,均获得令人满意的选别指标。
     实验室小型试验采用“选择性磨矿—浮选—脱泥—磁选”工艺流程,经选择性磨矿、丁基黄药浮选黄铁矿、脱泥分级和高梯度磁选,可有效除去矿石中的铁、钛矿物,获得产率72.70%、Fe_2O_30.17%、TiO_20.058%的优质长石精矿。
     半工业性试验采用“选择性磨矿—分级—黄铁矿浮选—磁选—云母浮选”工艺流程,经选择性磨矿与螺旋分级闭路、丁黄药浮选黄铁矿、弱磁选和高梯度磁选,以及十二胺浮选云母等工艺,可获得产率67.85%,Fe_2O_3 0.17%,TiO_2 0.06%的优质长石精矿。试验结果表明,在扩大试验规模和连续磨矿、选别条件下,实验室小型试验采用的工艺流程具有良好的适应性与稳定性。
     基于实验室小型试验和半工业性试验的试验结果,进行了工业性试验。最终长石精矿产率66.10%、Fe_2O_3含量0.10%、TiO_2含量0.03%、K_2O+Na_2O13.54%,达到我国长石特级品和出口品级标准。目前,该工艺已投入生产。
     通过本文及相关课题的研究,获得了低品质钾钠长石矿加工提纯新技术和合理的工艺路线,使我国江西宜春地区大量存在的二、三级低品质长石资源,通过加工提纯达到一级品或特级品标准,扩大了国内十分短缺的优质长石原料的资源量。
The feldspar is an important raw material for ceramics and glass manufacturing industry. With the top grade development of glass-ceramic products, the more high-purity ? low iron feldspar raw material is in demand. Although in our country feldspar resource is abundant, they must be got rid of the iron because of the high containing iron. At present, there are a lot of problems in our country feldspar ore processes, such as inefficient grinding efficiency, backwards of beneficiation technology, the old manufacture equipments and so on. Due to these weaknesses, feldspar ore processes in China is not taking form of large-scale and industrialization.
     Aiming at above problem, in this paper, the raw ore characters and property of a low-grade alkaline feldspar in Yichun of Jiangxi Province was studied. And efficient wet continuous grinding was adopted to instead stony weel-grind machine or intermittent pebble grinding. The ore grinding fineness test had been studied by using different grinding medium such as ceramic balls, steel bars and steel balls. According to harmful minerals such as iron and titanium mainly concentrated in fine-grained ore, ore grinding fineness should be controlled at -74μm 55%~60%. Based on the results of the testing, the laboratory experiments, semi-industrial experiments and industrial experiments had been done and the results obtained were satisfying.
     A reasonable beneficiation process flow of laboratory experiments about this alkaline feldspar ore is determined as "selective grinding-flotation-desliming-magnetic separation". It was effective to remove iron and color impurities from the ore after selective grinding, flotation of pyrite using butyl xanthate, desliming and high-gradient magnetic separation. From the experiments, a high-grade feldspar concentrate was obtained containing 0.17 percent Fe_2O_3 and 0.058 percent TiO_2 with the yield of 72.70 percent. This final feldspar concentrate is suitable for the ceramic industry.
     Based on the laboratory experiment results, the beneficiation process flow of "selective grinding-classification-pyrite flotation-magnetic separation-mica flotation" was adopted in the semi-industrial experiments. A high-grade feldspar concentrate was obtained containing 0.17 percent Fe_2O_3 and 0.06 percent TiO_2with the yield of 67.85 percent by using a closed-circuit process composed of selective grinding and classification operations, flotation of pyrite using butyl xanthate, high-gradient magnetic separation and flotation of mica using dodecylamine(DDA). The results of the experiments showed that beneficiation process flow of laboratory experiments had a fine adaptability and stability under large-scale and continuous production condition.
     Based on the laboratory experiment and semi-industrial experiment results, industrial experiments were carried out finally. From the experiments, final feldspar concentrate was containing 0.10 percent Fe_2O_3 0.03 percent TiO_2 and 13.54 percent K_2O+Na_2O with the yield of 67.85 percent. Its product index corresponds to the super grade to Chinese factory's standard and export grade standard. At present, such technique had already been in practical production application.
     A new process purification technique of low-grade alkaline feldspar ore had been gained through this paper and researches concerned, which had changed the quality of feldspar from low-grade product to high-grade one in Yichun of Jiangxi Province and expanded the source of shortage high-grade feldspar as raw material in our country.
引文
[1] Ribbe, P. H. Feldspar Mineralogy[M]. Washington: Mineralogical Society of America, 1983
    [2] Smith, J. V. Feldspar Minerals, Vol. Ⅰ, Ⅱ,Ⅲ[M]. Berlin: Springer Verlag, 1988
    [3] 任觉世.工业矿产资源开发利用手册[M].武汉:武汉工业大学出版社,1993.943-957
    [4] 马鸿文.工业矿物与岩石(第二版)[M].北京:化学工业出版社,2005.44-52
    [5] Wenk, H. R, Bulakh A. Minerals: Their Constitution and Origin[M]. London: Cambridge University Press, 2004. 646
    [6] Smith, J. V. Feldspar Minerals: Crystal Structure and Physical Properties, Vol. Ⅰ [M]. New York: Springer-Verlag, 1974
    [7] 李玉书,吴落义,李瑛.电瓷工艺与技术[M].北京:化学工业出版社,2007.95-99
    [8] 黄强,邸素梅.长石与市场[J].中国非金属矿工业导刊,2000,(02):42-44
    [9] 《非金属矿工业手册》编委会.非金属矿工业手册(下)[M].北京:冶金工业出版社,1991.867-876
    [10] 李小静,张福存,方大文.长石精加工现状及发展趋势[J].金属矿山,2003,(02):46-48
    [11] Murray Lines.亚洲长石生产及消费[J].非金属矿,2005,(03):5-7
    [12] 汪镜亮.长石和霞石正长岩生产和应用[J].矿产保护与利用,1995,(5):36-41
    [13] 姜宏,王桂荣,韩新生等编著.浮法玻璃原料[M].北京:化学工业出版社,2006.29-32
    [14] 小营,古林.漫谈长石的性质、用途和综合利用[J].广东建材,1994,(04):33-36
    [15] 刘伯元.生产玻璃、陶瓷的原料-钾长石《长石粉》[J].地质与勘探,1997,(03):36-37
    [16] 方邺森.中国陶瓷矿物原料[M].南京:南京大学出版社,1990.152-163
    [17] 曹明礼,高惠民,于阳辉等.陶瓷原料长石精选除铁试验研究[J].矿产保护与利用,1999,(03):16-18
    [18] 高惠民,袁继祖,张凌燕等.长石选矿工艺研究[J].中国非金属矿工业导刊,1999,(04):24-25
    [19] 罗中平,徐星佩,周岳远.德昌南山长石矿分选除铁工艺研究[J].矿冶工程,2000,(4):42-44.
    [20] 陈国安.长石选矿工艺流程除铁试验研究[J].矿产保护与利用,2000,(6):21-23
    [21] 李小静.CRIMM稀土永磁辊式强磁选机在化念铁矿的应用研究[J].金属矿山,2001,(8):26-27
    [22] 吕一波.钾长石深加工及综合利用[J].中国非金属矿工业导刊,2001,(4):23-25
    [23] 王会云,李小静.超纯长石粉磁选工艺及设备研究[J].矿产保护与利用,2004,(3):37-38
    [24] 王兆元.SLon立环脉动高梯度磁选机在长石及霞石非金属矿除铁提纯的工业试验及应用[J].江西有色金属,1998,12(2):24-27
    [25] Bayat, O. Combined application of different collectors in the floatation concentration of Turkish feldspars[J]. Minerals Engineering, 2006, (1) 98-101
    [26] Celik, M. S. Removal of titanium impurities from feldspar ores by new flotation collectors[J]. Minerals Engineering, 1998, (12): 1201-1208
    [27] Agus, M. Beneficiation of Low Grade Feldspar Ores for the Ceramics Industry[C]. Proceedings of. the ⅩⅪ International Mineral Processing Congress, Rome, 2000:23-27
    [28] 宋翔宇.某地钾长石选矿试验及机理[J].非金属矿,2002,(5):39-40
    [29] 冶金工业部马鞍山矿山研究院.长石除铁选矿工艺[P].中国专利:CN1149510,1996-08-01.
    [30] Gulsoy, O. Y. Two stage flotation of sodium feldspar- From laboratory to industrial application[J]. Mineral Processing and Extractive Metallurgy, 2004, (3): 139-144
    [31] Vidyadhar, A; Hanumantha Rao, K. Separation of feldspar from quartz: Mechanism of mixed cationic/anionic collector adsorption on minerals and flotation selectivity[J]. Minerals and Metallurgical Processing, 2002, (3): 128-136
    [32] 戴强,唐甲莹,程正柄.石英—长石浮选分离的进展[J].非金属矿,1996,(2):16-18
    [33] 张兄明,郭银祥,孙学成.硅砂浮选新工艺——中、碱性介质中分离长石和石英[J].中国非金属矿工业导刊,2004,(2):18-20
    [34] Amarante, M. A. Beneficiation of a feldspar ore for application in the ceramic industry[J]. Journal of The South African Institute of Mining and Metallurgy, 1997, (4): 193-196
    [35] 于福顺,王毓华,黄传兵.石英—长石无氟浮选分离工艺研究现状[J].中国非金属矿工业导刊,2005,(2):41-43
    [36] Demir, C. Differential separation of albite from microcline by monovalent salts in HF medium[J]. Minerals and Metallurgical Processing, 2003, (3): 120-124
    [37] Demir, C. Flotation separation of Na-feldspar from K-feldspar by monovalent salts[J]. Minerals Engineering, 2001, (7): 733-740
    [38] Karaguzel, C. Concentration of K-feldspar from a pegmatitic feldspar ore by flotation[J]. International Journal of Mineral Processing, 2006, (2): 122-132
    [39] 许时.矿石可选性研究.[M]北京:冶金工业出版社,1981.
    [40] 杨南如.无机非金属材料测试技术(修订版)[M].武汉:武汉理工大学出版社,1993.2-11
    [41] 周乐光.工艺矿物学(第三版)[M].北京:冶金工业出版社,2007.19-20
    [42] 万朴,周玉林,彭同江.非金属矿产物相及性能测试与研究[M].武汉:武汉工业大学出版社,1992.26-52
    [43] S. J. B. Reed. Electron Microprobe Analysis[M]. London: Cambridge University Press, 1975
    [44] Wenk, H. R. Electron Microscopy in Mineralogy[M]. Berlin: Springer Verlag, 1976
    [45] 谢广元.选矿学[M].徐州:中国矿业大学出版社,2001.404-411
    [46] 王淀佐.浮选剂作用原理及应用(第二版)[M].北京:冶金工业出版社,1994.28-29
    [47] Bulut, G. Role of dixanthogen on pyrite flotation: Solubility, adsorption studies and Eh, FTIR measurements[J]. Minerals and Metallurgical Processing, 2002, (2) 81-86
    [48] 冯其明.硫化矿物浮选电化学[M].长沙:中南工业大学出版社,1992.69-100
    [49] 胡熙庚,黄和慰,毛钜凡等.浮选理论与工艺[M].长沙:中南工业大学出版社,1991.129-136
    [50] 朱玉霜,朱建光.浮选约剂的化学原理[M].长沙:中南工业大学出版社,1996.112-114
    [51] 卢寿慈,翁达.界面分选原理及应用[M].北京:冶金工业出版社,1992.518-529
    [52] 项斯芬.无机化学丛书(第四卷)[M].北京:科学出版社,1998.328-331
    [53] 夏启斌,李忠,邱显扬.大偏磷酸钠对蛇纹石的分散机理研究[J].矿冶工程,2002,(02):51-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700