用户名: 密码: 验证码:
铁磁谐振过电压非线性特性及其柔性抑制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能电网是世界电网未来的发展方向,其重要特征是“自愈”,即要求电网能够在线、实时并连续对系统安全性进行分析和评估,能够对系统进行在线诊断并能够对可能发生的系统故障进行及时预警,能够对已发生的系统故障进行预防、隔离和控制,使系统能够自我恢复,并能使电网各级防线之间紧密协调,能够抵御突发性事件和严重故障,并有效避免大范围连锁故障的发生,从而大幅提升电网的安全稳定性和供电可靠性,并大幅减少停电损失。
     铁磁谐振发生在非线性电感和电容回路,谐振过程可能产生稳定的过电压和过电流,会对输配电装备和运行人员安全构成威胁,虽然国内外对铁磁谐振的产生机理、基本特性、发展规律和抑制措施进行了大量的研究,但是由于其谐振回路的复杂性和谐振类型的多样性,铁磁谐振抑制措施在某些谐振情况下抑制作用有限,造成电力系统关键设备可能承受较长时间的铁磁谐振过电压,可能使其产生绝缘损伤,最终可能造成设备损坏,因而铁磁谐振问题仍然是一个长期困扰电力系统安全运行的复杂问题。随着电网的发展,一方面配电网的快速发展造成配电系统参数变化范围急剧增大,配电网操作更加频繁,促使铁磁谐振发生率升高;另一方面超特高压系统对内部过电压倍数要求更为严格,铁磁谐振过电压可能会超过超特高压系统内部过电压水平。因此电力系统中的铁磁谐振问题愈发突出,亟需对铁磁谐振的非线性特性和铁磁谐振过电压的抑制进行深入研究。
     目前铁磁谐振的基本特性分析和抑制方法研究大多基于铁磁谐振回路模型,该回路模型是对典型铁磁谐振回路简化而得到的,在一定程度上能够反映铁磁谐振的一般规律,为铁磁谐振研究奠定了基础,但是传统铁磁谐振模型需要精确的谐振电路模型和准确的系统参数,而在实际电力系统中,随着运行方式的改变谐振电路和系统参数都会随之发生变化,因此基于传统铁磁谐振模型的特性分析和抑制方法无法满足情况多变的现场应用。以目前研究成果为基础,本文提出了不依赖于铁磁谐振模型及参数,直接从铁磁谐振过电压时间序列入手进行铁磁谐振的非线性特性分析和抑制方法研究。首先针对铁磁谐振过电压时间序列的特点,选取适合铁磁谐振过电压的相空间重构算法,对铁磁谐振过电压时间序列进行相空间重构,可以挖掘铁磁谐振时间序列隐藏的系统信息,进而对铁磁谐振特有的非线性特性进行分析,从而对包含准周期和混沌在内的铁磁谐振过电压进行特征量提取和类型识别,能够为建立铁磁谐振过电压实时监测、在线分析以及主动抑制系统提供支持;其次在铁磁谐振过电压时间序列相空间重构的基础上,根据重构过程的关键参数建立铁磁谐振过电压时间序列的低阶多项式模型,并在此基础上研究铁磁谐振过电压时间序列的主动抑制策略,由此来论证直接通过铁磁谐振过电压时间序列得到抑制方法的可行性和有效性;最后基于以上研究,提出了一种采用高速全可控开关器件的铁磁谐振过电压灵活抑制方法也即柔性抑制方法,并分别搭建了考虑电压互感器(PT)铁芯磁滞效应的电磁暂态仿真模型和对应的实验室低压试验平台,基于仿真模型和试验平台详细分析了相关参数对铁磁谐振过电压抑制效果的影响,并对不同类型和不同谐振程度的铁磁谐振过电压进行了抑制研究。
     本文通过理论分析、仿真计算和试验研究对铁磁谐振过电压时间序列的非线性特性和柔性抑制方法进行了详细的研究,结果表明:本文采用互信息法和Cao氏算法直接对铁磁谐振过电压进行相空间重构后可以得到有效的关键重构参数,能够得出与原铁磁谐振系统拓扑等价的重构吸引子,可以获取铁磁谐振系统的基本非线性特征,该方法不但克服了传统分析方法对精确铁磁谐振模型和系统参数的高度依赖,而且分析结果与传统分析方法高度一致;基于相空间重构,获得不同类型铁磁谐振过电压的两个重要的非线性特征量:重构吸引子的平均灰度和序列的最大Lyapunov指数,两者可以作为非周期谐振分类器的重要特征量,能够有效识别准周期和混沌铁磁谐振过电压;直接采用重构参数和过电压时间序列进行铁磁谐振数学建模,辨识得到了其二阶多项式模型,能够反映原铁磁谐振系统的基本数学特征,基于该数学模型所得到的铁磁谐振过电压抑制方法能够有效抑制不同类型的铁磁谐振过电压;基于以上研究,本文采用全控电力电子开关调整高频阻尼电阻投入特性,构造了一个电网频率意义下的等效连续可调电阻,进而实现不同类型铁磁谐振过电压的柔性抑制,仿真和试验研究表明阻尼电阻和高速开关门信号的占空比对铁磁谐振过电压抑制效果影响显著;对比研究结果表明,本文所提出的铁磁谐振过电压柔性抑制方法能够有效抑制不同类型和不同铁芯饱和程度的铁磁谐振过电压,在不显著增大设备负担的前提下能够弥补传统抑制方法的不足,且不会对系统造成谐波负担。
Smart grid is the direction for the world's power grid in the future, an importantfeature of which is "self-healing grid". This feature means that the power grid shouldhave the following abilities: real-time, online, continuous safe assessment and analysis;early warning, prevention and control for power accidents; and automatic faultdiagnosis, fault isolation and self-recovery. With such abilities, the security, stabilityand reliability of power grid can be significantly enhanced. The various defence lines ofpower grid are coordinated well so that the power grid owns the ability to defend someunexpected events and serious failures, which can effectively prevent the occurrence ofa wide range of cascading failures and significantly improve power supply reliabilityand reduce power losses.
     Ferroresonance can occur in nonlinear inductance and capacitance circuit, it causesovervoltage and over-current that lasts for a long time and can even exist stably.Overvoltage and over-current may cause equipment failure and damage in powersystem. Therefore, the mechanism, the basic characteristics, the development law andthe suppression method of the ferroresonance are studied by a lot of scholars at homeand abroad. However, owning to the extremely various ferroresonance circuits and thevarious ferroresonance types, the effect of the present suppression method on theferroresonance under some certain condition may be limited. For this reason, powersystem key equipments may endure a long time ferroresonance overvoltage, makes itmay cause insulation damage and equipment damage. So, ferroresonance problem isstill a complex problem for the safe operation of the power system for a long time. Withthe development of the power grid, the ferroresonance problem in power system isincreasingly prominent. On the one hand, the rapid development of power distributionnetwork makes the distribution system parameter variation range increase very sharpand the power distribution network operation is more frequent, which leads to a higherincidence of ferroresonance. On the other hand, the UHV system is very strict withinternal overvoltage, and ferroresonance overvoltage may exceed its internalovervoltage level and cause key equipment damage and even a wide range of accident.Therefore, it is urgent needed to study the nonlinear characteristics of ferroresonanceand then put forward a more feasible ferroresonance overvoltage suppression strategy.
     At present, most of the study on the basic ferroresonance nonlinear characteristics analysis and its suppression method are based a basic ferroresonance circuit model. Themodel is simplified by a typical ferroresonance circuit. To a certain extent, the simplifymodel can explain the basic principle of ferroresonance and lay a solid foundation forthe study of the ferroresonance. However, the traditional ferroresonance model can onlybe established before acquiring the ferroresonance circuit and precise system parameters.In the actual power system, the ferroresonance circuit and its parameters change withthe change of the operation mode. Therefore, the characteristics and the suppressionmethod obtained based on the traditional ferroresonance model cannot satisfy the fieldapplication.
     Based on the present research, this thesis proposes a new method to analyze thenonlinear characteristics of ferroresonance and then study the suppression method forferroresonance. The study is directly based the ferroresonance overvoltage time seriesand not relying on the accurate ferroresonance model and precise parameters. Firstly,aiming at the characteristics of the ferroresonance overvoltage, appropriate phase spacereconstruction methods are chosen to reconstruct the ferroresonance overvoltage timeseries. Base on the reconstruction, the hidden information of the overvoltage time seriescan be dig for ferroresonance nonlinear characteristics analysis. The nonlinearcharacteristics analysis can be used for extracting the nonlinear characteristics quantitiesof the ferroresonance, including quasi-periodic and chaotic ferroresonance, andidentifying their types. All of the study can be supported to establish an online real-timemonitoring, analysis and active suppression system. Secondly, based on the phase spacereconstruction of the ferroresonance overvoltage time series, a lower order polynomialmodel for ferroresonance is identified using the key parameters determined in phasespace reconstruction. Based on the model, an active suppression strategy based onovervoltage time series is studied to demonstrate that it is feasible and effective. Finally,based on the above research, a flexible suppression method by combining with thepower electronic technology for ferroresonance overvoltage is proposed. High-speedfully controllable switches are adopted in this method. Electromagnetic transientsimulation model considering the hysteresis characteristic of the PT and scale-downlaboratory test platform are established individually, based on that, the suppressioneffect of the changeable parameters on the ferroresonance overvoltage is analyzed indetail, and the suppressions on the different types and different resonance degrees offerroresonance overvoltage are investigated.
     In this thesis, the nonlinear characteristics of the ferroresonance overvoltage time series and its flexible suppression method are carried out in detail though theoreticalanalysis, simulation and experiment research. The results are as follows:
     Mutual information method and Cao method are adopted to reconstruct the pahsespace of the ferroresonance overvoltage. Based on the phase space reconstruction, thereconstructed attractor in sense of topological equivalent can be acquired, which can beused to analyze the nonlinear characteristics of the ferroresonance. The method used inthis thesis overcomes the traditional analysis method, which depends on the accurateferroresonance model and its precise parameters. The results of the method used in thisthesis are agreed with that of the traditional method. Based on the phase spacereconstruction, two important nonlinear characteristics quantities can be furtherobtained: the average gray value of the reconstructed attractor and the largest Lyapunovexponent of the overvoltage time series. The two nonlinear characteristics quantities ofthe ferroresonance overvoltage time series can be to classify the non-periodicferroresonance. A two-order polynomial model is identified using the reconstructionparameters and the ferroresonance overvoltage time series rather than extracting fromthe ferroresonance circuit. The model can represent the basic characteristics of theoriginal ferroresonance system. A feedback control method proposed based on theidentified model can suppress different types of ferroresonance overvoltage successfully.Fully controlled power electronic switches are adopted in this thesis to adjust the highfrequency damping resistance characteristics to realize ferroresonance suppression. Thesimulation and experiment research show that the damping resistance and duty cycle forputting into the damping resistor influence the suppression effect significantly.Comparison results show that the he proposed flexible ferroresonance overvoltagesuppression method can effectively restrain different types and different core saturationdegrees of ferroresonance overvoltage. The method can make up for the inadequacy oftraditional suppression method and not increase the burden to equipment. Moreover, themethod will not cause harmonic load for the system.
引文
[1]陈静思.国家电网首次公布智能电网计划,[EB/01].2009-05-21, http://www. chinapower.com. cn/newsarticle/1093/new1093599.asp
    [2] Sanaye-Pasand M, Rezaei-Zare A, Mohseni H, et al. Comparison of performance of variousferroresonance suppressing methods in inductive and capacitive voltage transformers[C].Power India Conference, New Delhi, India: IEEE,2006.
    [3]谢广润.电力系统过电压[M].北京:水利电力出版社,1985.
    [4]张纬钹,高玉明.电力系统过电压与绝缘配合[M].北京:清华大学出版社,1988.
    [5]王恒,消除电磁式PT引起铁磁谐振过电压的有效措施[J].高电压技术,1994,20(2):63-64.
    [6] Don R Seveik, Charles W Fromen.Experiences with Ferroresonance Problems on EHVEquipment [M]. Alington Texas:Houston Lighting&Power Compan,1980.
    [7]焦瑾,南京供电公司铁磁谐振事故分析[J].高电压技术,2004,30(8):68-69.
    [8]袁毅,一起变电所母线电压互感器铁磁谐振事故的分析[J].电网技术,1999,23(6):68-69+77.
    [9]曹海涛,刘建春.乐都变电站110kV母线谐振现象分析和防范措施[J].中国电力,2006,39(2):48-50.
    [10]江健武,赵灵,一起电磁式TV谐振事故的分析[J].电网技术,2004,30(136):177+133.
    [11]路改强,220kV串联谐振过电压分析及对策[J].华中电力,2002,15(2):38-40.
    [12]董继民.500kV变电站35kV电压互感器爆炸事故分析[J].电力系统保护与控制,2008,36(13):82-85.
    [13]申长春,杨娜.铁磁谐振过电压及抑制措施[J].内蒙古科技与经济,2010(5):102-103.
    [14]刘春玲,耿卫星,刘建武,等.一起电力系统谐振事故分析[J].电力系统保护与控制,2010,38(2):108-110+117.
    [15]冉启鹏,陈欣.一起铁磁谐振事故的原因及预防措施[J].变压器,2011,48(3):71-73.
    [16]冯平.一种混沌分析与抑制方法及在电力系统铁磁谐振中的应用研究[D].沈阳工业大学,2010.
    [17] Ferracci P. Ferroresonance. Group Schneider: Cahier, no.190, pp.1–28, Mar.1998.
    [18] Rezaei-Zare A, Sanaye-Pasand M, Mohseni H, et al. Analysis of ferroresonance modes inpower transformers using Preisach-type hysteretic magnetizing inductance[J]. Power Delivery,IEEE Transactions on,2007,22(2):919-929.
    [19] Val Escudero M, Dudurych I, Redfern M A. Characterization of ferroresonant modes in HVsubstation with CB grading capacitors[J]. Electric power systems research,2007,77(11):1506-1513.
    [20]范毅,谢俊,杜泽明,等.小波变换在电缆故障定位中的应用[J].高电压技术,2000,26(4):9-10.
    [21]杜林,郭良峰,司马文霞,等.采用小波多分辨率能量分布分析电网过电压特征[J].高电压技术,2009,35(8):1927-1932.
    [22] Robertson D C, Camps O I, Mayer J S, et al. Wavelets and electromagnetic power systemtransients[J]. Power Delivery, IEEE Transactions on,1996,11(2):1050-1058.
    [23]段建东,任晋峰,张保会,等.超高速保护中雷电干扰识别的暂态研究[J].中国电机工程学报,2006,26(23):7-13.
    [24]王钢,李海峰,赵建仓,等.基于小波多尺度的输电线路直击雷暂态识别[J].中国电机工程学报,2004,24(4):139-144.
    [25]司马文霞,谢博,杨庆,等.特高压输电线路雷电过电压分类识别方法[J].高电压技术,2010,36(2):306-312.
    [26]全惠敏,戴瑜兴.基于S变换模矩阵的电能质量扰动信号检测与定位[J].电工技术学报,2007,22(8):119-125.
    [27]杨洪耕,刘守亮,肖先勇,等.基于S变换的电压凹陷分类专家系统[J].中国电机工程学报,2007,27(1):98-104.
    [28]刘凡,司马文霞,孙才新,等.多重分形在铁磁谐振过电压信号分析中的应用[J].中国电机工程学报,2006,26(18):138-142.
    [29]伏进,司马文霞,李建标,等.基于分形理论的超特高压线路绕击耐雷性能评估[J].高电压技术,2009,35(6):1274-1278.
    [30] Wang S B, Sun C X, Zhang L, et al. Identifying the internal and the external overvoltage ofdistribution networks based on fisher discriminate method[C]. Power System Technology,2006. PowerCon2006. International Conference on. IEEE,2006:1-4.
    [31] DU L, DAI B, SIMA W, et al. Overvoltage identifi-cation in distribution networks based onsupport vector machine[J]. High Voltage Engineering,2009,35(3):521-526.
    [32]郭良峰.基于遗传算法的电力系统过电压分层模糊聚类识别[D].重庆大学,2009.
    [33]代姚.配电网铁磁谐振及弧光接地过电压特征识别与抑制方法[D].重庆大学,2010.
    [34]杜林,李欣,吴高林,邓邦飞.采用3类特征参量比值法的铁磁谐振过电压识别[J].高电压技术,2011,37(9):2241-2249.
    [35]王荆.电力系统过电压识别方法及混合过电压分解方法研究[D].重庆大学,2011.
    [36]刘凡.中性点直接地系统铁磁谐振过电压的混沌特性与控制及检测方法研究[D].重庆大学,2006.
    [37]殷铭宏.企业配电网的铁磁谐振故障诊断专家系统的研制[D].南昌大学,2006.
    [38]李旭洋,董新洲,薄志谦.电力变压器铁磁谐振检测方法研究[J].电力系统保护与控制,2011,09:102-107.
    [39]王超.基于PRONY算法的铁磁谐振和单相接地故障判别的研究[D].山东理工大学,2012.
    [40]谢家安,李天云,贺建伟,等. HHT在铁磁谐振过电压辨识中应用[J].电力自动化设备,2009,01:75-78.
    [41] Chen L, Yang Q, Wang J, et al. Classification of Fundamental Ferroresonance, SinglePhase-to-Ground and Wire Breakage Over-Voltages in Isolated Neutral Networks[J]. Energies,2011,4(9):1301-1320.
    [42]杨秋霞,宗伟,田璧元.基于小波分析的铁磁谐振检测[J].电网技术,2001,25(11):55-61.
    [43] Mokryani G, Siano P, Piccolo A. Identification of ferroresonance based on S-transform andsupport vector machine[J]. Simulation Modelling Practice and Theory,2010,18(9):1412-1424.
    [44] Mokryani G, Haghifam M R, Esmaeilpoor J. Identification of ferroresonance based on wavelettransform and artificial neural network[J]. European Transactions on Electrical Power,2009,19(3):474-486.
    [45] Mokryani G, Haghifam M R, Latafat H, et al. Wavelet Based Kernel Fisher Classifier ForFerroresonance Identification[C]. Intelligent System Applications to Power Systems,2009.ISAP'09.15th International Conference on. IEEE,2009:1-6.
    [46] Mokryani G, Haghifam M R. Application of wavelet transform and MLP neural network forFerroresonance identification[C]. Power and Energy Society General Meeting-Conversion andDelivery of Electrical Energy in the21st Century,2008IEEE. IEEE,2008:1-6..
    [47] Lee B, Ajjarapu V. Period-doubling route to chaos in an electrical power system[C]. IEEProceedings C (Generation, Transmission and Distribution). IET Digital Library,1993,140(6):490-496.
    [48] Wornle F, Harrison D K, Zhou C. Analysis of a ferroresonant circuit using bifurcation theoryand continuation techniques[J]. Power Delivery, IEEE Transactions on,2005,20(1):191-196.
    [49] Duchesne L. Using characteristic multiplier loci to predict bifurcation phenomena and chaos-atutorial[J]. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactionson,1993,40(10):683-688.
    [50] Klausmeier C A. Floquet theory: a useful tool for understanding nonequilibrium dynamics[J].Theoretical Ecology,2008,1(3):153-161.
    [51] Tran-Quoc T, Pierrat L. An efficient non linear transformer model and its application toferroresonance study[J]. Magnetics, IEEE Transactions on,1995,31(3):2060-2063.
    [52] Tran-Quoc T, Pierrat L. An efficient non linear transformer model and its application toferroresonance study[J]. IEEE transactions on magnetics,1995,31(3):2060-2063.
    [53] Emin Z, Al Zahawi B A T, Tong Y K, et al. Quantification of the chaotic behavior offerroresonant voltage transformer circuits[J]. Circuits and Systems I: Fundamental Theory andApplications, IEEE Transactions on,2001,48(6):757-760.
    [54] Mork B A, Stuehm D L. Application of nonlinear dynamics and chaos to ferroresonance indistribution systems[J]. Power Delivery, IEEE Transactions on,1994,9(2):1009-1017.
    [55] Mozaffari S, Sameti M, Soudack A C. Effect of initial conditions on chaotic ferroresonance inpower transformers[J]. IEE Proceedings-Generation, Transmission and Distribution,1997,144(5):456-460.
    [56] Milicevic K, Emin Z. Initiation of Characteristic Ferroresonance States Based on FluxReflection Model[J].2013,60(1):51-55.
    [57] Mozaffari S, Henschel S, Soudack A C. Chaotic ferroresonance in power transformers[C].Generation, Transmission and Distribution, IEE Proceedings-. IET,1995,142(3):247-250.
    [58] Al Zahawi B A T, Emin Z, Tong Y K. Chaos in ferroresonant wound voltage transformers:effect of core losses and universal circuit behaviour[C]. Science, Measurement andTechnology, IEE Proceedings-. IET,1998,145(1):39-43.
    [59] Jacobson D A N, Swatek D R, Mazur R W. Mitigating potential transformer ferroresonance ina230kV converter station[C]. Transmission and Distribution Conference,1996. Proceedings.,1996IEEE. IEEE,1996:269-275.
    [60] Huang S J, Hsieh C H. Relation analysis for ferroresonance of bus potential transformer andcircuit breaker grading capacitance[J]. International Journal of Electrical Power&EnergySystems,2013,51:61-70.
    [61] Kieny C. Application of the bifurcation theory in studying and understanding the globalbehavior of a ferroresonant electric power circuit[J]. Power Delivery, IEEE Transactions on,1991,6(2):866-872.
    [62] Varaiya P P, Wu F F, Lauby M G. Chaos in a Simple Power System[J]. Power Systems, IEEETransactions on,1993,8(4):1407.
    [63] Emin Z, Al Zahawi B A T, Auckland D W, et al. Ferroresonance in electromagnetic voltagetransformers: A study based on nonlinear dynamics[J]. IEE Proceedings-Generation,Transmission and Distribution,1997,144(4):383-387.
    [64] Araujo A E A, Soudack A C, Marti J R. Ferroresonance in power systems: chaoticbehaviour[C]. IEE Proceedings C (Generation, Transmission and Distribution). IET DigitalLibrary,1993,140(3):237-240.
    [65] Flegar L, Fischer D, Pelin D. Identification of chaos in a ferroresonant circuit[C]. ElectricPower Engineering,1999. PowerTech Budapest99. International Conference on. IEEE,1999:201.
    [66] Abbasi A, Fathi S H, Gharehpatian G B, et al. Voltage transformer ferroresonance analysisusing multiple scales method and chaos theory[J]. Complexity,2013,18(6):34-45.
    [67] Abbasi Fordoei H R, Gholami A, Fathi S H, et al. Chaotic oscillations control in the voltagetransformer including nonlinear core loss model by a nonlinear robust adaptive controller[J].International Journal of Electrical Power&Energy Systems,2013,47:280-294.
    [68] Xia P, Chong-Xin L. Analysis of ferromagnetic chaotic circuit with nonlinear potentialtransformer[J].2013,62(15):150504-1-150504-6.
    [69] Moses P S, Masoum M A S, Toliyat H A. Dynamic modeling of three-phase asymmetric powertransformers with magnetic hysteresis: no-load and inrush conditions[J]. Energy Conversion,IEEE Transactions on,2010,25(4):1040-1047.
    [70] Moses P S, Masoum M A S. Modeling ferroresonance in asymmetric three-phase powertransformers[C]. Power Engineering Conference,2009. AUPEC2009. AustralasianUniversities. IEEE,2009:1-6.
    [71] Paul S. Moses and Mohammad A. S. Masoum. Modeling ferroresonance in single-phasetransformer cores with hysteresis.8th WSEAS International Conference on System Scienceand Simulation in Engineering, ICOSSSE '09, October17-19,2009, Genova, Italy.
    [72] Moses P S, Masoum M A S. Experimental and simulation analysis of ferroresonance insingle-phase transformers considering magnetic hysteresis effects[C]. Power and EnergySociety General Meeting,2010IEEE. IEEE,2010:1-6.
    [73] Moses P S, Masoum M A S, Toliyat H A. Impacts of hysteresis and magnetic couplings on thestability domain of ferroresonance in asymmetric three-phase three-leg transformers[J].Energy Conversion, IEEE Transactions on,2011,26(2):581-592.
    [74] Saravanaselvan R, Ramanujam R, Al-Anbarri K, et al. Ferroresonant oscillations in atransformer terminated line due to an energised parallel line on the same right-of-way[J]. IEEProceedings-Generation, Transmission and Distribution,2005,152(4):475-482.
    [75] Chakravarthy S K. Nonlinear oscillations due to spurious energisation of transformers[C].Electric Power Applications, IEE Proceedings-. IET,1998,145(6):585-592.
    [76] Chakravarthy S K, Nayar C V. Frequency-locked and quasiperiodic (QP) oscillations in powersystems[J]. Power Delivery, IEEE Transactions on,1998,13(2):560-569.
    [77] Akinci T C, Ekren N, Seker S, et al. Continuous wavelet transform for ferroresonancephenomena in electric power systems[J]. International Journal of Electrical Power&EnergySystems,2013,44(1):403-409.
    [78]周浩,余宇红,张利庭,等.10kV配电网铁磁谐振消谐措施的仿真比较研究[J].电网技术,2005,29(22):24-34.
    [79]邓万婷.某500kV线路电容式电压互感器二次回路铁磁谐振分析[J].电力电容器与无功补偿,2011,32(1):63-65.
    [80]李峰,王永梅,姜丽.220kV电容式电压互感器过热的分析及处理[J].中国新技术新产品,2011(18):125-126.
    [81]王江宁.中性点不接地系统铁磁谐振及抑制措施的研究[D].西安科技大学,2012.
    [82]董维.中压配电网铁磁谐振及抑制措施研究[D].华北电力大学,2012.
    [83]王鹏,郭洁,齐兴顺,等.35kV中性点经消弧线圈接地系统几种铁磁谐振消谐措施有效性分析[J].电磁避雷器,2010,6:34-37.
    [84] Al-Anbarri K, Ramanujam R, Keerthiga T, et al. Analysis of nonlinear phenomena in MOVconnected transformer[C]. Generation, Transmission and Distribution, IEE Proceedings-. IET,2001,148(6):562-566.
    [85] Radmanesh Hamid,Fathi Seyed Hamid.Controlling Ferroresonance Oscillations in PotentialTransformer:part II[C].Electrical Engineering (ICEE)201119th Iranian Conference.2011:1-5.
    [86] Radmanesh H, Gharehpetian G B. Ferroresonance suppression in power transformers usingchaos theory[J]. International Journal of Electrical Power&Energy Systems,2013,45(1):1-9.
    [87]杨庆,郑哲人,司马文霞,等.避雷器对具有混沌效应铁磁谐振过电压的影响[J].高电压技术,2011,37(1):40-49.
    [88]郑哲人.铁磁谐振过电压非线性特性分析及其混沌同步抑制措施研究[D].重庆大学,2011.
    [89]李云阁,施围.应用解析法分析中性点接地系统中的工频铁磁谐-振谐振判据和消谐措施[J].中国电机工程学报,2003,23(9):141-145.
    [90] Radmanesh H. Controlling Chaotic Ferroresonance in Autotransformer connecting MetalOxide Surge Arrester and Neutral Earth Resistance[J]. ECTI Trans. EEC,2012,10(1):72-80.
    [91] Li Y, Shi W, Qin R, et al. A systematical method for suppressing ferroresonance atneutral-grounded substations[J]. Power Delivery, IEEE Transactions on,2003,18(3):1009-1014.
    [92] Moses P S, Masoum M A S. Modeling and analysis of the suppression of ferroresonance innonlinear three-phase three-leg transformers[C]. Power and Energy Society General Meeting,2011IEEE. IEEE,2011:1-6.
    [93] Stojkovska B, Stefanovska A, Golob R, et al. Time-delay feedback control of ferroresonantchaotic oscillations[C]. Power Tech Proceedings,2001IEEE Porto. IEEE,2001,2:6pp. vol.2.
    [94]刘凡,司马文霞,孙才新,等.基于常值脉冲法的铁磁谐振过电压混沌抑制[J].电网技术,2006,30(3):57-61.
    [95]司马文霞,刘凡,孙才新,廖瑞金,杨庆.基于改进的径向基函数神经网络的铁磁谐振系统混沌控制[J].物理学报,2006,11:5714-5720.
    [96] Liu Fan, Sun Caixin, Sima Wenxia, et al. Chaos control of ferroresonance system based onRBF-maximum entropy clustering algorithm[J]. Physics Letters A,2006,357(3):218-223.
    [97]代姚,司马文霞,孙才新,等.应用T-S模糊方法对铁磁谐振过电压的混沌抑制[J].高电压技术,2010,36(4):878-883.
    [98]司马文霞,郑哲人,杨庆,等.用参数不匹配混沌系统的脉冲同步方法抑制铁磁谐振过电压[J].电工技术学报,2012,27(6):218-225.
    [99]王丽.中性点直接接地系统铁磁谐振过电压混沌控制及抑制研究[D].南京理工大学,2013.
    [100]何波.中性点直接接地系统铁磁谐振混沌同步与抑制研究[D].西南交通大学,2013.
    [101] Bethenod J. Sur le transformateur et résonance[J]. L’Eclairae Electrique,1907,30:289-296.
    [102] Boucherot P. Existence de deux régimes en ferro-résonance[J]. Rev. Gen. de L’élec,1920,8(24):827-828.
    [103] Jacobson D A N. Examples of Ferroresonance in a High Voltage Power System [C]. PowerEngineer Society General Meeting. Toronto, Canada,2003:1206-1212.
    [104] Slow Transients Task Force of the IEEE Working Group on Modeling and Analysis of SystemsTransients Using Digital Programs. Modeling and Analysis Guidelines for SlowTransients—Part III: The Study of Ferroresonance[J]. Power Delivery, IEEE Transactions on,2000,15(1):255-265.
    [105]李云阁,施围.应用解析法分析中性点接地系统中的工频铁磁谐振—非线性电感工频励磁特性的求取[J].中国电机工程学报,2003,23(10):94-98.
    [106] GB/T4787-1996.断路器电容器[S].
    [107]张博,鲁铁成,杜晓磊.中性点接地系统铁磁谐振非线性动力学分析[J].高电压技术,2007,33(1):31-35.
    [108]陈士华,陆君安.混沌动力学初步[M].武汉水利电力大学出版社,1998.
    [109]刘秉正,彭建华.非线性动力学[M].高等教育出版社,2004.
    [110] Packard N H, Crutchfield J P, Farmer J D etc. Geometry from a time series. Phys Rev Lett,1980,45:712-715.
    [111] Takens F. Detecting strange attractors in turbulence In lecture Notes in Mathematica. Vol898(Rand D A, Young L S, eds.). New York: Springer-Verglag,1981.
    [112] Sauer T, Yorke J A, Casdagli M. Embedology[J]. Journal of statistical Physics,1991,65(3-4):579-616.
    [113] Albano A M, Muench J, Schwartz C, et al. Singular-value decomposition and theGrassberger-Procaccia algorithm[J]. Physical Review A,1988,38(6):3017-3026.
    [114] Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutualinformation[J]. Physical review A,1986,33(2):1134-1440.
    [115] Jiang A H, Huang X C, Zhang Z H, et al. Mutual information algorithms[J]. MechanicalSystems and Signal Processing,2010,24(8):2947-2960.
    [116] Grassberger P, Procaccia I. Characterization of strange attractors[J]. Physical review letters,1983,50(5):346-349.
    [117] Abarbanel H D I, Brown R, Sidorowich J J, et al. The analysis of observed chaotic data inphysical systems[J]. Reviews of modern physics,1993,65(4):1331.
    [118] Cao L. Practical method for determining the minimum embedding dimension of a scalar timeseries[J]. Physica D: Nonlinear Phenomena,1997,110(1-2):43-50.
    [119] Lai D, Chen G. Statistical analysis of Lyapunov exponents from time series: A Jacobianapproach[J]. Mathematical and computer modelling,1998,27(7):1-9.
    [120]Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J].Physica D: Nonlinear Phenomena,1985,16(3):285-317.
    [121] Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest Lyapunovexponents from small data sets[J]. Physica D: Nonlinear Phenomena,1993,65(1):117-134.
    [122] Chen G, Chen G, de Figueiredo R J P. Feedback control of unknown chaotic dynamicalsystems based on time-series data[J]. Circuits and Systems I: Fundamental Theory andApplications, IEEE Transactions on,1999,46(5):640-644.
    [123]张家忠.非线性动力系统的运动稳定性、分岔理论及其应用[M].西安交通大学出版社,2010.
    [124]汪伟,汲胜昌,曹涛.基波铁磁谐振理论分析及实验验证[J].电网技术,2009,33(17):226-230.
    [125] Marti J R, Soudack A C. Ferroresonance in power systems: Fundamental solutions[C].Generation, Transmission and Distribution, IEE Proceedings C. IET,1991,138(4):321-329.
    [126] Walling R A, Barker K D, Compton T M, et al. Ferroresonant overvoltages in groundedwye-wye padmount transformers with low-loss silicon steel cores[J]. Power Delivery, IEEETransactions on,1993,8(3):1647-1660.
    [127] Horak J. A review of ferroresonance[C]. Protective Relay Engineers,200457th AnnualConference for. IEEE,2004:1-29.
    [128] Recommended Practice for Harmonic Control in Electric Power Systems, IEEE Standard519,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700