用户名: 密码: 验证码:
分散式生活污水处理工艺开发及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对浙江省三个地级市五个取样点为期一年的生活污水水质调研的基础上,结合流体力学及化学反应工程学原理,对分散式生活污水厌氧生物处理反应器进行比选,确定了最优的填料式厌氧折流板反应器(CABR)。之后,以浙江大学华家池校区家属区生活污水作为CABR反应器进水,进行了为期4个月的运行试验,就其去污性能及三大类群厌氧微生物的演替规律进行了系统的研究。同时,详细研究了CABR反应器在不同温度下抗负荷冲击的性能及机理。此外,为解决厌氧工艺脱氮性能差的缺陷,开发了一种适合于分散式生活污水处理的无回流脱氮反应器,并对其性能及机理进行初步探讨和研究。
     本论文主要研究结论简述如下:
     (1)浙江省生活污水有机物和磷浓度较低,氮浓度较高,可生化性较好,但C/N相对较低,平均值仅为6.10,不利于常规生物脱氮;调查的生活污水水质季节变化明显,但地区差异不显著;污染物浓度1月份最高,7月份最低;据此对已有的模拟生活污水配置方法进行了优化,使优化配置的模拟污水4个特征比值(B/C,C/N,碱度/TN以及NH_4~+-N/TKN)接近实际生活污水。
     (2)CABR反应器总体呈现平推流流态,结构性能优良,总死区率仅为10%左右。但随着格数的增多,反应器内部流速增加,从而导致水力死区有上升趋势。以理想多釜全混合反应器为参照,综合考虑反应器效能和容积利用率,确定6格的CABR反应器为最优。
     (3)6格CABR反应器在温度为28±1℃、HRT为48h的条件下,以实际生活污水为进水,需要3周左右才能完成启动。CABR反应器稳定运行后,出水TCOD、SS等指标均能达到《污水综合排放标准中》(GB8978-1996)的一级排放标准,但对营养元素(N、P)的去除效能较差:单纯采用CABR反应器无法完全消除腐植酸在水体中形成“三致”物质的风险;尽管CABR反应器对于对粪大肠杆菌和蛔虫卵的去除率分别高达99.82%和98.87%,但仍需后续的消毒措施保证其出水的安全性。
     (4)对6格CABR反应器启动及运行过程的微生物机理研究表明,CABR反应器内微生物的优势种群随着运行阶段的变化而有所变化;CABR反应器不同格室的微生物相似性较高,没有出现明显的微生物相分离现象。在启动初期首先是发酵细菌和产氢产乙酸细菌的大量增殖,而当运行至4个月左右时产甲烷细菌数量才有较为明显的增加;达到稳定运行阶段时,三大类群厌氧微生物之间的数量差异几乎接近1/10。CABR反应器在启动阶段中约有63%的基质被用于细胞合成;而当进入稳定运行期后,大约只有1/5的基质被用于细胞合成。
     (5)系统研究了不同温度下水力、水质负荷冲击对CABR反应器处理低浓度生活污水性能的影响,结果表明,CABR反应器对负荷冲击有很好缓冲能力,但是这种缓冲能力随着温度的下降而下降:在温度较高时(28℃)无论是水力冲击还是水质冲击对反应器的运行性能均没有显著影响;但在10℃下运行时,负荷冲击会对CABR反应器的运行性能产生显著影响。综合微生物活性、中间产物、可溶性微生物产物、TCOD容积去除率等指标变化以及采用灵敏度比和均方差比的定量判别依据表明,CABR反应器在10-28℃下处理低浓度生活污水时,抗水质冲击的稳定性均要好于抗水力冲击的稳定性。
     (6)首次开发的一种无回流脱氮反应器通过约90天的运行,平均出水TCOD为42.3±12.8mg/L,低于《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级A排放标准。在本试验的五种水质运行工况下,TN和NH4_+~+-N去除性能良好,最高可达76%和89%。TN去除率受污水水质C/N决定,NH_4~+-N去除率主要与最后一级的污水投配比有关。对于浙江省生活污水而言,以NH_4~+-N达标的前提下尽量去除TN为原则,最后一级的配水比以不超过30%为宜。经济性分析表明,与传统的A~2/O工艺相比,无回流脱氮反应器至少能节省51.1%的动力消耗,是一种有效、经济和方便的分散式生活污水处理工艺。
The water quality of sewage in Zhejiang province was established by evaluating samples collected from five sites in three typical cities.Based on fluid mechanics and chemical reaction engineering principles,the best Carrier Anaerobic Baffled Reactor (CABR)was then chosen for decentralized sewage treatment.Subsequently,the removal effects on pollutants and the mechanism of anaerobe succession in the CABR were investigated using sewage from the residential district of the Huajiachi Campus of Zhejiang University as influent for four months.The performance and mechanisms of shock resistance to short-term changes in temperatures in the CABR were also evaluated while treating the sewage.Furthermore,to overcome deficient denitrification that often occurs in anaerobic biological reactors,a novel denitrifying reactor without circumfluence was developed and evaluated.The primary results of this study are summarized as follows:
     (1)The sewage produced in Zhejiang province is characterized by a low organic and phosphorus concentration and a high nitrogen level.This results in the sewage having good biodegradability,but poor microbial denitrification due to the low C/N ratio(approximately 6.10).In addition,the sewage water quality in Zhejiang province was found to vary significantly by season,but not by region.The pollutant concentration was found to be highest in January and lowest in July.Finally,the four typical ratios(B/C,C/N,Alkalinity/TN and NH_4~+-N/TKN)of the optimized synthesis wastewater were similar to those of actual domestic sewage.
     (2)The CABR has good structure and effect,with a dead zone of no more than 10%.In addition,the CABR shows a state of plug flow during operation.However,the hydraulic dead zone tended to increase as the number of chambers in the CABR increased in response to the increase in upflow velocity.When the effectiveness and capacity of the reactor was considered,a CABR with six chambers was found to be optimal.
     (3)The CABR with six chambers started up successfully after approximately three weeks with the influent of actual domestic sewage at a 48 h HRT and 28±1℃. In addition,the TCOD and SS concentrations of the effluent water met the first integrated wastewater discharge standard(NEPA,GB8978-1996).However,this system showed poor removal of nutrients such as N and P.In addition,the CABR was not able to completely eliminate the risk of xenobiotic matter as a result of the formation of humic acid.Although this system was able to remove 99.82%and 98.87%of the fecal coliforms and ascaris eggs,respectively,it must be used in conjunction with appropriate post-disinfection processes to guarantee the safety of the effluent.
     (4)Evaluation of the microbe development during start-up and running stage revealed that the predominant community in the CABR varied as the process of acclimation.There was high microbe comparability in six chambers without appearance of biofacies separation.In addition,fermentative bacteria and hydrogen-producing acetogenic bacteria reproduce significantly during the initial stage of start-up,while methanogens breed obviously until the fourth month of operation. Furthermore,the concentrations of these three anaerobes differed by approximately 1/10 of an order of magnitude during the stable running stage.Finally,63%and 20% of the substrate in the wastewater was metabolized by these organisms during start-up and stable operation,respectively.
     (5)The CABR has good performance shock resistance.However,the shock resistance declined as the temperature decreased.Although there was little effect on performance observed at high temperatures(28℃),low temperatures(10℃) significantly reduced the performance of the CABR.In addition,the shock resistance of the CABR was greater when water quality was considered than when water quantity was considered at 10℃-28℃.These findings are based on sensitivity ratios and standard deviations,as well as the variation in indexes used to evaluate microbial activity,the formation of intermediate products,soluble microorganism products and the volume of TCOD removal.
     (6)The average TCOD of the effluent of the novel denitrifying reactor with no circumfluence was 42.3±12.8mg/L after 90 days of operation.This value is lower than the discharge standard for pollutants released from municipal wastewater treatment plants(GB18918-2002).In addition,when the five different experimental influents were evaluated,this system removed 76%and 89%of the TN and NH_4~+-N from the wastewater,respectively.The denitrifying reactor without circumfluence also showed a good effect on denitrification with the influent of high C/N ratio.The removal efficiency of TN in this system was dependant on the C/N ratio of the influent, whereas the NH_4~+-N removal was dependant on the last influent flow distribution ratio. For sewage in Zhejiang Province,it is reasonable to assume that the ratio of the last influent flow distribution was less than 30%.This would indicate that this system removed the highest amount of TN from the wastewater and that the NH_4~+-N concentration met the discharge standards for municipal wastewater.These findings indicate that the power consumption of the denitrifying reactor without circumfluence was lower than that of treatment facilities of conventional A~2/O processes,which would result in at least a 51.1%reduction in energy consumption.Consequently,the denitrifying reactor without circumfluence was found to be the most effective, economical and convenient system for the treatment of decentralized sewage.
引文
Amann R, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological reviews, 1995, 59(1): 143-169.
    Angenent L T, Banik G C, Sung S W. Anaerobic migrating blanket reactor treatment of low-strength wastewater at low temperatures. Water Environment Research, 2001, 73(5): 567-574.
    Aquino S F and Stuckey D C. Production of soluble microbial products (SMP) in anaerobic chemostats under nutrient deficiency. Journal of Environmental Engineering-ASCE, 2003,129(11): 1007-1014.
    Ayesa E, Goya B, Larrea A, Larrea L, Rivas A. Selection of operational strategies in activated sludge processes based on optimization algorithms. Water Science and Technology, 1998,37(12): 327-334.
    Ayesa E, Oyarbide G, Larrea L, Garcia-Heras J L. Observability of reduced order models -application to a model for control of alpha process. Water Science and Technology, 1995, 31(2): 161-170.
    Bachmann A, Beard V L, McCarty P L. Performance characteristics of the anaerobic baffled reactor. Water Research, 1985.19(1): 99-106.
    Baeza J A, Gabriel D, Lafuente J. Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A~2/O) wastewater treatment plant (WWTP). Process Biochemistry, 2004,39(11): 1615-1624.
    Baeza J A, Gabriel D, Lafuente J. Improving the nitrogen removal efficiency of an A~2/O based WWTP by using an on-line Knowledge Based Expert System. Water Research, 2002, 36(8): 2109-2123.
    Barber W P, Stuckey D C. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review. Water Research, 1999(a), 33(7): 1559-1578.
    Barker D J and Stuckey D C. A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research, 1999(b), 33(14): 3063-3082.
    Barker D J, Salvi S M L, Langenhoff A A M, Stuckey D C. Soluble microbial products in ABR treating low-strength wastewater. Journal of Environmental Engineering-ASCE, 2000,126(3): 239-249.
    Benkhelifa H, Legrand J, Legentilhomme P, Montillet A. Study of the hydrodynamic behaviour of the batch and continuous torus reactor in laminar and turbulent flow regimes by means of tracer methods. Chemical Engineering Science, 2000, 55(10): 1871-1882.
    Bertero M G, Rothery R A, Palak M, Hou C, Lim D, Blasco F, Weiner J H, Strynadka N C. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nature Structural $ Molecular Biology, 2003, 10(9): 681-687.
    Bhunia P, Ghangrekar M M. Effects of cationic polymer on performance of UASB reactors treating low strength wastewater. Bioresource Technology, 2008,99(2): 350-358.
    Bogte J J, Breure A M, Van Andel J G, Lettinga G. Anaerobic treatment of domestic sewage in small-scale UASB reactors. Water Science and Technology, 1993, 27(9): 75-82.
    Boiler M. Small wastewater treatment plants -- A challenge to wastewater engineers. Water Science and Technology, 1997, 35(6): 1-12.
    Borja R and Banks C J. Response of an anaerobic fluidized bed reactor treating ice-cream wastewater to organic, hydraulic, temperature and pH shocks. Journal of Biotechnology, 1995,39(3): 251-259.
    Borja R, Banik G C, Wang Z. Stability and performance of an anaerobic downflow filter treating slaughterhouse wastewater under transient changes in process parameters. Biotechnology and Applied Biochemistry, 1994,20(33): 371-383.
    Bratskaya S, Schwarz S, Chervonetsky D. Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate. Water Research. 2004, 36(12): 2955-2961.
    Broughton A, Pratt S, Shilton A. Enhanced biological phosphorus removal for high-strength wastewater with a low rbCOD:P ratio. Bioresource Technology, 2008, 99(5): 1236-1241.
    Burrell P C, Keller J, Blackall L L. Microbiology of a nitrite-oxidizing bioreactor. Applied and Environmental Microbiology, 1998,64(5): 1878-1883.
    Butler D, Fnedier E and Gatt K. Characterising the quantity and quality of domestic wastewater inflows. Water Science and Technology, 1995, 31(7): 13-24.
    Campos J L, Garrido-Fernandez J M, Mendez R, Lema J M. Nitrification at high ammonia loading rates in an activated sludge unit. Bioresource Technology, 1999,68(2): 141-148.
    Castelain C, Mokromi A, Legenflnomme P, Peerhossaini H. Residence time distribution in twisted pipe flows: helically coiled system and chaotic system. Experiments in Fluids, 1997,22(5): 359-368.
    Chan S Y, Tsang Y F, Cui L H, Chua H. Domestic wastewater treatment using batch-fed constructed wetland and predictive model development for NH_3-N removal. Process Biochemistry, 2008,43(3): 297-305.
    Chernicharo C A L and Cardoso M R. Development and evaluation of a partitioned upflow anaerobic sludge blanket (UASB) reactor for the treatment of domestic sewage from small villages. Water Science and Technology, 1999, 40(8): 107-113.
    Chua H, HuWF, Yu P H F. Cheung M W L. Responses of an anaerobic fixed-film reactor to hydraulic shock loadings. Bioresource Technology, 1997, 61(1): 79-83.
    Cohen A, Breure A M, van Andel J G. van Deursen A. Influence of phase separation on the anaerobic digestion of glucose-I maximum COD-turnover rate during continuous operation. Water Research, 1980,14(10): 1439-1448.
    Comin F A, Romero J A, Astorga V, Garcia C. Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural runoff. Water Science and Technology, 1997, 35(5): 255-261.
    Converti A, Del Borghi M, Ferraiolo G. Influence of organic loading rate on the
    anaerobic treatment of high strength semisynthetic waste waters in a biological fluidized bed. Chemical Engineering Journal, 1993. 52(1): B21-B28.
    Daigger G T and Parker D S. Enhancing nitrification in Nortj American activated sludge plants. Water Science and Technology, 2000,41(9): 97-105.
    Dalu J M and Ndamba J. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe). Physics and Chemistry of the Earth, Parts A/B/C, 2003,28(20-27): 1147-1160.
    de Beer D. Microelectrode studies in biofilms and sediments. The Netherland: Universiteit van Amsterdam.Amsterdam. 1990.
    Denac M and Dunn I J. Packed-and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment. Biotechnology and Bioengineering, 1988, 32: 159-173.
    Denac M, Miguel A, Dunn I J. Modeling dynamic experiments on the anaerobic degradation of molasses wastewater Biotechnology and Bioengineering, 1988, 31:1-7.
    Ding Y W, Wang L, Wang B Z, Wang Z. Removal of nitrogen and phosphorus in a combined A~2/O-BAF system with a short aerobic SRT. Journal of Environmental Sciences, 2006,18(6): 1082-1087.
    Drizo A, Frost C A, Grace J, Smith K A. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Research, 1999,33(17): 3595-3602.
    Elmitwalli T A, Oahn K L T, Zeeman G, Lettinga G. Treatment of domestic sewage in a two-step anaerobic filter/anaerobic hybrid system at low temperature. Water Research, 2002(a), 36(9): 2225-2232.
    Elmitwalli T A, Sklyar V, Zeeman G, Lettinga G.. Low temperature pre-treatment of domestic sewage in an anaerobic hybrid or an anaerobic filter reactor. Bioresource Technology, 2002(b), 82(3): 233-239.
    Elmitwalli T A, Sayed S, Groendijk L, van Lier J, Zeeman G, Lettinga G. Decentralised treatment of concentrated sewage at low temperature in a two-step anaerobic system: two upflow-hybrid septic tanks. Water Science and Technology, 2003, 48(6): 219-226.
    El-Shafai S A, El-Gohary F A, Nasr F A, Peter van der Steen N, Gijzen H J. Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system. Bioresource Technology, 2007,98(4): 798-807.
    Flora J R V, Suidan M T, Biswas P, Sayles G D. A modeling study of anaerobic biofilm system. I. detailed biofilm modeling. Biotechnology and Bioengineering, 1995, 46: 43-53.
    Fujii S. Theoretical analysis on nitrogen removal of the step-feed anoxic-oxic activated sludge process and its application for the optimal operation. Water Science and Technology, 1996,34(1-2): 459-466.
    Gali A, Dosta J, van Loosdrecht M C M, Mata-Alvarez J. Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process. Process Biochemistry, 2007, 42(4): 715-720.
    Garcia M L, Lapa K R, Foresti E, Zaiat M. Effects of bed materials on the performance of an anaerobic sequencing batch biofilm reactor treating domestic sewage. Journal of Environmental Management. doi:10.1016/j.jenvman.2007.07.015
    Gavrilescu M and Tudose R Z. Residence time distribution of the liquid phase in a concentric-tube airlift reactor. Chemical Engineering and Processing, 1999, 38(3): 225-238.
    Gernaey K, Verschuere L, Luyten L, Verstraete W. Fast and sensitive acute toxicity detection with an enrichment nitrifying culture Water Environment Research, 1997,69(6): 1163-1169.
    Gorgun E, Artan N, Orhon D, Sozen S. Evaluation of nitrogen removal by step feeding in large treatment plants. Water Science and Technology, 1996, 34(1-2): 253-260.
    Gossett J M, Belser R L. Anaerobic digestion of waste activated sludge. Journal of Environmental Engineering-ASCE, 1982,108: 1101-1120.
    Grobicki A and Stuckey D C. Hydrodynamic characteristics of the anaerobic baffled reactor. Water Research, 1992,26(3): 371-378.
    Guiot S R, Podruzny M F, Mclean D D. Assessment of macroenergetic parameters for an anaerobic upflow biomass and filter (UBF) reactor. Biotechnology and Bioengineering, 1989, 34: 1277-1288.
    Hagopian D S and Riley J G. A closer look at the bacteriology of nitrification. Aquacultural Engineering, 1998,18(4): 223-244.
    Harper S R, Pohland F G. Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnology and Bioengineering, 1986,28(4): 585-602.
    Hayes E, Upton J, Batts R, Pickin S. On-line nitrification inhibition monitoring using immobilised bacteria. Water Science and Technology, 1998, 37(12): 193-196.
    Hellinga C, Schellen A A J C, Mulder J W, van Loosdrecht M C M, Heijnen J J. The sharon process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology, 1998, 37(9): 135-142.
    Hu A Y and Stuckey D C. Treatment of dilute wastewaters using a novel submerged anaerobic membrane bioreactor. Journal of Environmental Engineering-ASCE, 2006,132(2): 190-198.
    Inanc B, Matsui S, Ide S. Propionic acid accumulation and controlling factors in anaerobic treatment of carbohydrate: effects of H_2 and pH. Water Science and Technology, 1996, 34(5-6): 317-325.
    John F, Vasil D, Luis A C. Lawrence R. Full-scale evaluation of biological nitrogen removal in the step-feed activated sludge process. Water Environment Research, 1996,68(2): 132-142.
    Kalogo Y, Verstraete W. Technical feasibility of the treatment of domestic wastewater by a CEPS-UASB system. Environmental Technology, 2000,21: 55-65.
    Kaspar H F, Wuhrmann K. Kinetic parameters and relative turnovers of some important catabolic reaction in digesting aludge. Applied and Environmental Microbiology, 1978,36: 1-7.
    Kato M T, Field J A, Lettinga G. The anaerobic treatment of low strength wastewaters in UASB and EGSB reactors. Water Science and Technology, 1997, 36(6-7): 375-382.
    Kayombo S, Mbwette T S A, Katima J H Y, Jorgensen S E. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds. Water Research, 2003, 37(12): 2937-2943.
    Kim Y, Mikawa K, Saito T, Tanaka K, Emori H. Development of novel anaerobic/aerobic filter process for nitrogen removal using immobilized nitrifier pellets. Water Science and Technology, 1997,36(12): 151-158.
    Kuniyasu K, Ohmori H. Anaerobic and aerobic submerged bio-filter for small scale on-site domestic sewage treatment. Water Science and Technology, 1993, 27(11): 51-57.
    Kuo W C, Sneve M A, Parkin G F. Formation of soluble microbial products during anaerobic treatment. Water Environment Research, 1996a, 68:279-285.
    Kuo W C, Parkin G F. Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties. Water Research, 1996b, 30(4): 915-922.
    Langenhoff A A M, and Stuckey D C. Treatment of dilute wastewater using an anaerobic baffled reactor: Effect of low temperature. Water Research, 2000(a), 34(15): 3867-3875.
    Langenhoff A A M, Intrachandra N, Stuckey D C. Treatment of dilute soluble and colloidal wastewater using an anaerobic baffled reactor: Influence of hydraulic retention time. Water Research(b), 2000,34(4): 1307-1317.
    Larrea L, Larrea A, Ayeasa E, Rodrigo J C. Development and verification of design and operation criteria for step feed process with nitrogen removal Water Science and Technology, 2001,43(1): 261-268.
    Leitao R C, van Haandel A C, Zeeman G, Lettinga G. The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review. Bioresource Technology, 2006,97(9): 1105-1118.
    Lerman L S, Fischer S G, Hurley I, Silverstein K, Lumelsky N. Sequence-determined DNA separation. Annual Review of Biophysics and Bioengineering, 1984, 13: 399-423.
    Lesage E, Rousseau D P L, Meers E, Tack F M G,De Pauw N. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Science of the Total Environment, 2007, 380(1-3): 102-115.
    Lesouef A, Payraudeau M, Rogalla F. Optimizing nitrogen removal reactor configuration by on-site calibration of the IAWPRC activated sludge model. Water Science and Technology, 2002,25(6): 105-123.
    Lettinga G, Field J, van Lier J, Zeeman G, Pol L W H. Advanced anaerobic wastewater treatment in the near future. Water Science and Technology, 1997,35(10): 5-12.
    Lettinga G. Anaerobic treatment of sewage and low strength wastewater. In: Hughes, et al.(Ed.),. In: Anaerobic Digestion. Vol.1. Elsevier Biomedical Press. 1981.
    Lettinga G. Use of upflow sludge blanket (USB) reactor concept for biological wastewater treatment. Biotechnology and Bioengineering, 1980, 22(4): 699-734.
    Lettinga G, Roersma R, Grin P. Anaerobic treatment of raw domestic sewage at ambient temperature using a granular bed UASB reactor. Biotechnology and Bioengineering, 1983,25:1701-1723.
    Li H, Chen Y, Gu G. The effect of propionic to acetic acid ratio on anaerobic-aerobic (low dissolved oxygen) biological phosphorus and nitrogen removal. Bioresource Technology, 2008, 99(10): 4400-4407.
    Li X M, Guo L, Yang Q, Zeng G M, Liao D X. Removal of carbon and nutrients from low strength domestic wastewater by expanded granular sludge bed-zeolite bed filtration (EGSB-ZBF) integrated treatment concept. Process Biochemistry, 2007,42(8): 1173-1179.
    Lin Y F and Jing S R. Characterization of denitrification and nitrification in a step-feed alternating anoxic-oxic sequencing batch reactor. Water Environment Research, 2001, 73(5): 526-533.
    Liu J X, Wang B Z, Li W G, Jin C J, Cao X D, Wang L. Removal of nitrogen from coal gasification and coke plant wastewaters in A/O submerged biofilm-activated sludge (SBF-AS) hybrid system. Water Science and Technology, 1996. 34(10): 17-24.
    Manariotis I D, Grigoropoulos S G. Low-strength wastewater treatment using an anaerobic baffled reactor. Water Environment Research, 2002,74(2): 170-176.
    Masse L andMasse D I. Effect of soluble organic, particulate organic, and hydraulic shock loads on anaerobic sequencing batch reactors treating slaughterhouse wastewater at 20℃. Process Biochemistry, 2005,40(3-4): 1225-1232.
    McCarty P L and Smith D P. Anaerobic wastewater treatment. Environmental Science and Technology, 1996,20(12): 1200-1206.
    McCarty P L. One hundred years of anaerobic treatment. In: Hughes, et al.(Ed.),. In: Anaerobic Digestion. Vol.1. Elsevier Biomedical Press. 1981.
    Miron Y, Zeeman G, van Lier J B, Lettinga G. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Research, 2000, 34(5): 1705-1713.
    Moliner-Martinez Y, Campins-Falco P. Herraez-Hernandez R. Influence of the presence of surfactants and humic acid in waters on the indophenol-type reaction method for ammonium determination. Talanta. 2006, 69(4): 1038-1045.
    Moriguchi T, Yano K, Tahara M, Yaguchi K. Metal-modified silica adsorbents for removal of humic substances in water. Journal of Colloid and Interface Science. 2005,300-310.
    Mosey F E, Femandes X A. Patterns of hydrogen in biogas from the anaerobic digestion of milk-sugars. Water Science and Technology, 1989,21: 187-196.
    Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695-700.
    Muyzer G and Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek, 1998, 73(1): 127-141.
    Nachaiyasit S and Stuckey D C. The effect of shock loads on the performance of an anaerobic baffled reactor (ABR).l. Step changes in feed concentration at constant retention time. Water Research, 1997,31(11): 2737-2746.
    Nachaiyasit S, andStuckey D C. Effect of low temperatures on the performance of an anaerobic baffled reactor (ABR). Journal of Chemical Technology and Biotechnology, 1997,69(2): 276-284.
    Naffrechoux E, Combet E, Fanget B, Petrier C. Reduction of chloroform formation potential of humic acid by sonolysis and ultraviolet irradiation. Water Research. 2003,37(8): 1948-1952.
    Ndon U J and Dague R R. Effects of temperature and hydraulic retention time on anaerobic sequencing batch reactor treatment of low-strength wastewater. Water Research, 1997,31(10): 2455-2466.
    Noguera D R, Araki N, Rittmann B E. Soluble microbial products (SMP) in anaerobic chemostats. Biotechnology and Bioengineering, 1994,44(9): 1040-1047.
    Obaya M C, Valdes E, Ramos J. Stability studies of thermophilic anaerobic sludges under suboptimal feeding conditions and temperatures. Acta Biotechnologica, 1994,14:193-198.
    Orhon D, Ates E, Sozen S, Cokgor E,U. Characterization and COD fractionation of domestic wastewaters. Environmental Pollution, 1997,95(2): 191-204.
    Ostgaard K, Christensson M, Lie E, Jonsson K, Welander T. Anoxic biological phosphorus removal in a full-scale UCT process. Water Research, 1997, 31(11): 2719-2726.
    Ouyang C F and Chou Y J. Optimization of enhanced biological wastewater treatment process using a step-feed approach. Water Science and Technology, 2001, 43(3): 295-304.
    Panswad T and Komolmethee L. Effects of hydraulic shock loads on small on-site sewage treatment unit. Water Science and Technology, 1997,35(8): 145-152.
    Peng Y Z, Ma Y, Wang S Y. Improving nitrogen removal using on-line sensors in the A/O process. Biochemical Engineering Journal, 2006,31(1): 48-55.
    Ren N Q, Guo W Q, Wang X J, Zhang L S. Hydrogen energy recovery from high strength organic wastewater with ethanol type fermentation using acidogenic EGSB reactor. Journal of Harbin institute of technology. 2005,12(6): 604-607.
    Ren N Q, Wang B Z, Huang G J. Ethanol-Type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnology and Bioengineering, 1997, 54(5): 428-433.
    Roose-Amsaleg C L, Garnier-Sillam E, Harry M. Extraction and purification of microbial DNA from soil and sediment samples Applied Soil Ecology, 2001, 18(1): 47-60.
    
    Rogers D. Osmotic Pools in Escherichia coli. Science, 1968, 159(3814): 531-532.
    Saiki R K, Scharf S, Faloona F, Mullis K B, Horn G T, Erlich H A, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, 230(4732): 1350-1354.
    Sanchez E, Borja R, Travieso L, Martin A, Colmenarejo M F. Effect of organic loading rate on the stability, operational parameters and performance of a secondary upflow anaerobic sludge bed reactor treating piggery waste. Bioresource Technology, 2005,96(3): 335-344.
    Scandura J E and Sobsey M D. Viral and bacterial contamination of groundwater from on-site sewage treatment systems. Water Science and Technology, 1997, 35(11-12): 141-146.
    Schiener P, Nachaiyasit S, Stuckey D C. Production of soluble microbial products (SMP) in an anaerobic baffled reactor: Composition, biodegradability, and the effect of process parameters. Environmental Technology, 1998,19(4): 391-399.
    Seghezzo L, Zeeman G, van Lier J B, Hamelers H V M, Lettinga G. A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology, 1998, 65(3): 175-190.
    Seida Y and Nakano Y. Removal of humic substances by layered double hydroxide containing iron. Water Research. 2000,34(5): 1487-1494.
    Show K Y, Wang Y, Foong S F, Tay J H. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors. Water Research, 2004, 38(9): 2293-2304.
    Sliekers A O, Third K A, Abma W, Kuenen J G, Jetten M S M. CANON and Anammox in a gas-lift reactor. FEMS Microbiology Letters, 2003,218(2): 339-344.
    Smeaton J R, Elliot W H. Selective release of ribonuclease inhibitor from B.subtilis cells by cold shock treatment. Biochemical and Biophysical Research Communications, 1967,26(1): 75-81.
    Stams A J M and Oude Elferink S J W H. Understanding and advancing wastewater treatment. Current Opinion in Biotechnology, 1997, 8(3): 328-334.
    Steer D, Fraser L, Seibert B. Cell-to-cell pollution reduction effectiveness of subsurface domestic treatment wetlands. Bioresource Technology, 2005, 96(8): 969-976.
    Tebbe C C, Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Applied and Environmental Microbiology, 1993, 59(8): 2657-2665.
    Third K A, Sliekers A O, Kuenen J G, Jetten M S M. The CANON System (Completely Autotrophic Nitrogen-removal Over Nitrite) under Ammonium Limitation: Interaction and Competition between Three Groups of Bacteria. Systematic and Applied Microbiology, 2001,24(4): 588-596.
    Thurman E M, Malcolm R L. Preparative isolation of aquatic humic substance. Environmental Science & Technology, 1981,15(4): 463-466.
    Tomlinson E J and Chambers B. The effect of longitudinal mixing on the settleability of activated sludge. Technical Report TR 122, 1979, Water Research Centre p. Stevenage.
    Tsai Y L and Olson B H. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Applied and Environmental Microbiology, 1992, 58(2): 754-757.
    Tsai Y L and Olson B H. Rapid method for direct extraction of DNA from soil and sediments. Applied and Environmental Microbiology, 1991, 57(4): 1070-1074.
    Uemura S and Harada H. Treatment of sewage by a UASB reactor under moderate to low temperature conditions. Bioresource Technology, 2000, 72(3): 275-282.
    Vaiopoulou E, Melidis P, Aivasidis A. Growth of filamentous bacteria in an enhanced biological phosphorus removal system. Desalination, 2007,213(1-3): 288-296.
    Van Loosdrecht M C M and Jetten M S M. Microbiological conversions in nitrogen removal. Water Science and Technology, 1998, 38(1): 1-7.
    Verstraete W and Philips S. Nitrification-denitrification processes and technologies in new contexts. Environmental Pollution, 1998,102(1, Supplement 1): 717-726.
    Villez K, Rosen C, Stijn V H, Yoo C, Vanrolleghem P A, Luis P, Antonio E. On-line dynamic monitoring of the SHARON process for sustainable nitrogen removal from wastewater. In: Proceedings 15~(th) European Symposium on Computer Aided Process Engineering(ESCAPE15). 2005:1297-1302.
    Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems. Current Opinion in Biotechnology, 2002,13(3): 218-227.
    Wang D B, Li X M, Yang Q, Zeng G M, Liao D X, Zhang J. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresource Technology. doi:10.1016/j.biortech.2007.11.007.
    Wang J L, Huang Y H, Zhao X. Performance and characteristics of an anaerobic baffled reactor. Bioresource Technology, 2004, 93(2): 205-208.
    Wilderer P A, Bungartz H J, Lemmer H, Wagner M, Keller J, Wuertz S. Modern scientific methods and their potential in wastewater science and technology. Water Research, 2002, 36(2): 370-393.
    Windey K, De Bo I, Verstraete W. Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water Research, 2005, 39(18): 4512-4520.
    Xing J, Tilche A. The effect of hydraulic retention time on the hybrid anaerobic baffled reactor performance at constant loading. Biomass and Bioenergy, 1992, 3(1): 25-29.
    Young H W and Young J C. Hydraulic characteristics of upflow anaerobic filters. Journal of Environmental Engineering-ASCE, 1988, 114: 621-638.
    Zeeman, G and Lettinga, G, 1999. The role of anaerobic digestion of domestic sewage in closing the water and nutrient cycle at community level. Water Science and Technology, 39(5): 187-194.
    Zhou J L. Biosorption and desorption of humic acid by microbial biomass. Chemosphere. 1992,24(11): 1573-1589.
    Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 1996,62(2): 316-322.
    Zhu G, Peng Y, Wang S, Wu S, Ma B. Effect of influent flow rate distribution on the performance of step-feed biological nitrogen removal process. Chemical Engineering Journal, 2007,131(1-3): 319-328.
    Zimmo O R, van der N P, Steen N P, Gijzen H J. Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater. Water Research, 2003, 37(19): 4587-4594.
    Zimmo O R, van der Steen N P, Gijzen H J. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds. Water Research, 2004,38(4): 913-920.
    
    白晓慧.稳定塘系统与城镇污水资源化.西北水资源与水工程,1998,9(2):20-24.
    曹杰.人工湿地对农村生活污水的处理效果研究[硕士论文].杭州:浙江大学.2007.
    柴世伟,裴晓梅,张亚雷,李建华,赵建夫.农业面源污染及其控制技术研究.水土保持学报,2006,20(6):192-195.
    陈甘棠主编,化学反应工程(第二版).北京:化学工业出版社.1990.
    陈浩.分散式污水处理再生利用模式研究[硕士论文].西安:西安建筑科技大学.2007.
    陈坚,卫功元.新型高效废水厌氧生物处理反应器研究进展.无锡轻工大学学报:食品与生物技术,2001,20(3):323-329.
    陈钧辉,陶力,李俊,朱婉华,袁玉荪.生物化学实验.北京:科学出版社.2003。
    杜战鹏,李冬雪,赵敏,马金亮.EGSB反应器的生物特性及研究进展.工业安全与环保,2006,32(10):8-10.
    范旭红.人工湿地污水处理系统及其应用[硕士论文].南京:东南大学.2005.
    方卫,许玫英,岑英华,李云路,孙国萍.废水处理中的可溶性微生物产物.微生物学通报,2006,33(6):112-116.
    冯华军,胡立芳,邱才娣,沈东升.3类金属离子对活性污泥吸附水体腐殖酸的影响.环境科学,2008,29(1):77-81.
    冯华军,沈东升.低浓度生活污水厌氧处理技术的认识误区.中国沼气,2005,23(4):10-13.
    冯华军,沈东升,郑元格.具有脱氮功能的污水处理装置(ZL 200720108624.0).中国.2007.
    冯叶成,王建龙.生物脱氮新工艺研究进展.微生物学通报,2001,28(4):88-91.
    管锡珺,郑西来.从厌氧生物反应器的发展谈UASB反应器的改良.中国海洋大学学报,2004,34(2):261-268.
    郭静,王冬云.ABR反应器的性能及水力特性研究.中国给水排水,1997,13(4):17-20.
    国家环保总局,水和废水监测分析方法(第三版).北京:中国环境科学出版社.1997.
    国家环保总局.污水综合排放标准(GB8978-1996),.中国:中国国家标准.1996.
    国家环保总局.农田灌溉水质标准(GB5084-92).中国:中国国家标准.1992.
    国家环保总局.城镇污水处理厂污染物排放标准(GB 18918-2002).中国:中华人民共和国国家标准.2002.
    国家环保总局.2006年中国环境状况公报.北京:中国环境科学出版社.2007.
    国家质量家属监督局,游泳水种尿素测定方法(GB/T 18204.29-2000).中国:中国国家标准.2000.
    国务院办公厅.国务院关于印发节能减排综合性工作方案的通知.2007.
    何萍,王家骥.非点源(NPS)污染控制与管理研究的现状,困境与挑战.农业环境保护,1999,18(5):234-237.
    何少林.高效藻类塘处理农村生活污水氮磷去除机理及工艺研究[博士论文].上海:同济大学.2006.
    贺墨梅,刘焱.污水集中式与分散式处理技术的比较研究.西南给排水,2006,28(4):20-23.
    胡启春.国外厌氧处理城镇生活污水技术的应用现状和发展趋势.中国沼气,1998,16(2):11-15.
    黄海凤,李非里,叶俊,汤绯.浙江省城市污水处理设施运营现状及对策研究.环境污染与防治,2004,26(2):136-138.
    黄学平,万金保,高延红.稳定塘常见问题与解决方法探讨.江西化工,2004,4:41-43.
    金仁村,胡宝兰,郑平,陈旭良.厌氧氨氧化反应器性能的稳定性及其判据.化工学报,2006,57(5):1166-1170.
    Lens P,Zeeman G,LeRinga G著;王晓昌,彭党聪,王廷林译.分散式污水处理和再利用--概念、系统和实施.北京:化学工业出版社.2004.
    李宝贵,尹呈请,周怀东.中国“三湖”的水环境问题和防治对策与管理.水环境论坛,2001,3:36-39.
    李慧君,岳晓勤,王蔚蔚,王韬,王磊,杨永哲.废水好氧生物处理中曝气技术的现状和研究动向.西安建筑科技大学学报,2003,35(3):268-271,276.
    梁英娟,罗湘南,付红霞.PCR-DGGE技术在微生物生态学中的应用.生物学杂志,2007,24(6):58-60.
    刘超翔,胡洪营.人工复合生态床处理低浓度农村污水.中国给水排水,2002,18(7):1-4.
    Ming C H.美国管理分散污水处理系统的政策和经验.中国给水排水,2004,20(6):104-106.
    马勇,彭永臻.A/O生物脱氮工艺的反硝化动力学试验.中国环境科学,2006,26(4):464-468.
    秦冰,陈东辉,陈亮,陈丽.壳聚糖强化生物作用的机理研究.环境污染与防治,2004.26(2):158-158.
    秦智,任南琪,李建政.丁酸型发酵产氢的运行稳定性.太阳能学报,2004,25(1):46-51.
    邱慎初,丁堂堂.分段进水的生物除磷脱氮工艺.中国给水排水,2003,19(4):32-36.
    Riumann B E,McCarty P L著,文湘华,王建龙等译.环境境生物技术原理与应用.北京:清华大学出版社.2004.
    任南琪 主编.产酸发酵微生物生理生态学.北京:科学出版社.2005.
    任南琪,王爱杰等编著,厌氧生物技术原理与应用.北京:化学工业出版社.2004.
    沈东升,吴中良,冯华军,孙刚.生活污水处理装置(ZL 200620106513.1).中国.2006.
    沈耀良,杨铨大.新型废水处理技术-人工湿地.污染防治技术,1996,9(1):1-8.
    斯皮思著,李亚新译.工业废水的厌氧生物技术.北京:中国建筑工业出版社.2001.
    宋铁红,赵勇胜,崔玉波,韩相奎,董婵.吉林大学学报(地球科学版),2006.36(3):429-432.
    宋忠喜,刘志强,杨志生,污泥浓度、pH、NO_2~--N对反亚硝化脱氮的影响.天津理工大学学报,2007,23(5):25-28.
    孙桂琴,董瑞斌,潘乐英,王见华.人工湿地污水处理技术及其在我国的应用.环境科学与技术,2006,29(B08):144-146,150.
    田猛,周律.城市污水的不完全厌氧过程工艺分折.环境工程,2003,21(6):27-30.
    王宝贞,王琳.水污染治理新技术--新工艺、新概念、新理论.北京:科学出版社.2004.
    王春丽,马放,刘慧,米海蓉.泥龄对反硝化除磷效能的影响.东北农业大学学报,2007,38(5):637-640.
    王春荣,王宝贞,王琳.曝气生物滤池内的自养反硝化作用.中国环境科学,2004,24(6):746-749.
    王社平,于莉芳,韩光辉,朱海荣,彭党聪.A/O工艺分段进水生物脱氮技术分析.工业用水与废水,2006,37(1):7-9,26.
    王社平,彭党聪,朱海荣,单巧莉,马亮,鞠兴华,黄利彬.城市污水分段进水A/O脱氮工艺试验研究.环境科学研究,2006,19(3):75-80.
    王守中,张统,侯瑞琴,刘士锐.CASS工艺在处理低温生活污水中的应用研究.给水排水技术动态,2002,4:57-61.
    王涛,楼上游.多级A/O工艺理论的探讨-A/O工艺、非稳态理论与多级A/O 理论之间的关系.中国机械工程,2001,12(3):339-342.
    王维斌.污水处理中减少污泥产量的方法和机理.给水排水,2001,27(10):38-42.
    王伟,彭永臻,王海东,张树军,令云芳.溶解氧对分段进水生物脱氮工艺的影响.中国环境科学,2006,26(3):293-297.
    王伟,王淑莹.连续流分段进水生物脱氮工艺控制要点及优化.环境污染治理技术与设备,2006,7(10):83-87.
    王一明,彭光浩.异养硝化微生物的分子生物学研究进展.土壤,2003.35(5):378-386.
    温东辉,唐孝炎.异养硝化及其在污水脱氮中的作用.环境污染与防治,2003,25(5):283-285.
    吴淑云,祝贵兵,彭永臻.分段进水生物脱氮工艺最高脱氮率的探讨.哈尔滨工业大学学报,2007,39(4):594-598.
    吴晓磊.人工湿地废水处理机理.环境科学,1995,16(3):83-86.
    项学敏,宋晨,周集体,周笑白,杨凤林.人工湿地水处理技术研究进展存在问题与改进.环境科学与技术,2006,29(10):101-102.
    谢雄飞,肖锦.厌氧-交替好氧缺氧工艺(AAA)处理城市污水的研究.环境科学与技术,2000,1:5-9.
    徐伟锋,陈银广,张芳,顾国维.污泥龄对A/A/O工艺反硝化除磷的影响.环境科学,2007,28(8):1693-1696.
    许保玖.当代给水与废水处理原理.北京:高等教育出版社.1990.
    许晓路,申秀英.活性污泥活性参数指标的选评.环境科学,1993.14(2):58-62.
    杨柳燕,肖琳主编,环境微生物技术.北京:科学出版社.2003.
    杨莎莎,宋英豪,赵宗升,贾立敏.pH值和碳氮比对亚硝酸型反硝化影响的研究.环境工程学报,2007,1(12):15-19.
    叶建锋.废水生物脱氮处理新技术.北京:化学工业出版社.2006.
    余萍,于鑫,戢启宏,齐枝花,魏谷,翟建平.废水生物处理出水中溶解性微生物产物的形成机制与特征.环境污染与防治,2006,28(5):352-355.
    于荣丽,李亚峰,孙铁珩.人工湿地污水处理技术及其发展现状.工业安全与环保,2006,32(9):29-31.
    于少鹏,王海霞,万忠娟,孙广友.人工湿地污水处理技术及其在我国发展的现状与前景.地理科学进展,2004,23(1):22-29.
    张甲耀,夏盛林.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究.环境科学学报,1999,19(3):323-327.
    张开龙.分点进水好氧生物转盘的脱氮过程及动力学研究[硕士论文].西安:西安建筑科技大学.2006.
    张青.UASB-磁化-生物复合系统处理生活污水试验研究[博士论文].武汉:武汉大学.2005.
    张自杰,林荣忱,金儒霖.排水工程[第四版].北京:中国建筑工业出版社.2000.
    赵丹,任南琪.pH、ORP制约的产酸相发酵类型及顶级群落.重庆环境科学,2003,25(2):33-35,38.
    浙江省环境保护局.2006年度浙江省环境状况公报.杭州:浙江省环境保护局.2007.
    郑兰香,鞠兴华.温度和C/N比对生物膜反硝化速率的影响.西南给排水,2005,27(2):31-33.
    郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社 2004.
    国家环保总局.2006年中国环境状况公报.北京:中国环境科学出版社.2007.
    周琪.UASB反应器处理低浓度有机废水的机理研究.同济大学学报:自然科学版,1995,23(2):192-196,215.
    朱南文,闵航.TTC-脱氢酶测定方法的探讨.中国沼气,1996,14(2):3-5.
    祝贵兵,彭永臻,吴淑云,马斌,王亚宜.分段进水生物脱氮工艺的优化控制运行研究.中国给水排水,2006,22(21):1-5.
    祝贵兵,彭永臻,吴淑云,王淑莹.碳氮比对分段进水生物脱氮的影响.中国环境科学,2005,25(6):641-645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700