用户名: 密码: 验证码:
微氧状态下EGSB反应器除污染性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨胀颗粒污泥床(Expanded Granular Sludge Bed),简称EGSB反应器,与普通厌氧反应器相比,具有传质效果好、处理效率高、耐冲击性强等优点。EGSB反应器对进水水质和运行环境的适应性较好,它不仅适于处理高浓度有机废水,对于低浓度废水、低温(15~20℃)和低溶解氧状态也表现出较好的适应性。微氧(microaerobic)指介于厌氧和好氧之间的兼性状态,微氧生物处理在较低的供氧条件下就能实现有机物和营养盐的同步去除,具有能源利用率高、剩余污泥少等优点。本文主要研究了EGSB反应器在微氧状态下的运行情况,其中包括颗粒污泥的培养、COD和氮磷去除效能、以及相关的影响因素。
     首先采用EGSB反应器厌氧培养颗粒污泥。用模拟污水(COD为400~1650mg/L)并在接种消化活性污泥中混以少量破碎颗粒污泥,在25℃条件下,以适宜的上升流速和逐步增加的容积负荷,快速完成污泥颗粒化。颗粒污泥形成以后,转为实际生活污水继续培养。在13~26℃、进水COD为144~618mg/L、水力停留时间(HRT)为0.6~1.6h、容积负荷为2.5~19.6kg/(m~3·d)的情况下运行3个多月,稳定运行期间COD平均去除率可达80%左右,出水COD低于100mg/L。培养成熟的厌氧颗粒污泥粒径大都在0.43~2mm;沉速为14~95m/h;比产甲烷活性为0.34~0.45LCH_4/(gVSS·d);颗粒污泥结构致密,内部杆菌和球菌聚集生长。在颗粒污泥培养过程中发现,温度、剪切强度、HRT和容积负荷都对运行效果和颗粒污泥性能产生影响。温度低于15℃或者平均剪切强度超过32.1×10~(-3)Pa都会加速颗粒污泥解体,降低处理效果;但当温度高于15℃时,缩短HRT和提高容积负荷反而能使颗粒污泥活性增强,处理效率有所提高。
     随后进行了微氧状态下的运行研究。试验用水仍为生活污水,运行温度为18~27℃。采用逐步增加溶解氧的方式对厌氧颗粒污泥进行微氧驯化。驯化成功后,污泥性能稳定,净化效果显著提高。在DO为0.3~0.5mg/L、HRT为8h、回流比为8:1~10:1、容积负荷为0.4~1.9kg/(m~3·d)的情况下,COD、氨氮、总氮、总磷和SS的平均去除率分别为94%、83%、81%、36%和89%。
     研究发现,溶解氧、HRT、回流比、污泥浓度和污泥负荷都对微氧状态下的除污染效果产生影响。经试验确定的最佳运行参数为:DO为0.3~0.4mg/L、HRT为8h、回流比为8:1、MLSS为11~16g/L、污泥负荷低于0.15kgCOD/(kgMLSS·d)。此时,COD、氨氮和总氮的平均去除率分别为93%、84%和82%。
     微氧条件下反应器能实现高效稳定的同时硝化反硝化脱氮,微氧环境和高污泥浓度都对污染物去除起到强化作用。与活性污泥法脱氮相比,工艺水力停留时间较短、容积负荷较高、净化效果好;可减少34%的耗氧量和四分之三的剩余污泥。
     在微氧条件下,溶解氧和污泥负荷对颗粒污泥性能影响较大。当DO低于0.4mg/L、平均污泥负荷低于0.12kgCOD/(kgMLSS·d)时,颗粒污泥结构致密,沉降迅速,产甲烷和脱氮活性良好。污泥中微生物种类丰富,丝状菌生长较少。提高溶解氧或增加污泥负荷都会造成污泥沉降性能下降、污泥解体和产甲烷活性降低。当平均污泥负荷增加到0.18kgCOD/(kgMLSS·d)时,颗粒污泥丝状化程度和解体数量明显增加。
     微氧状态下颗粒污泥内部以及污泥床不同高度分布着不同的优势种群,多种降解途径使除污染效果得到改善。动力学分析表明,同时硝化反硝化脱氮的最佳溶解氧为0.41mg/L。在同时硝化反硝化的基础上,建立了微氧颗粒污泥内氧的传质动力学模型,应用模型对颗粒污泥内氧的分布进行了模拟,并评价了内扩散作用对耗氧反应的影响。结果显示,DO越低、颗粒越大,越不易被氧渗透;内扩散对耗氧反应的影响越明显。用不同DO条件下的实测污泥耗氧速率对模型进行了验证,得到较好吻合。
     本研究通过各种运行参数的有效调节,用EGSB反应器厌氧颗粒污泥成功培养出净化效能良好的微氧颗粒污泥,为生产实践的运行调控提供依据。
Expanded Granular Sludge Bed (EGSB) reactor exhibits many advantanges such as better mass transffer, higher treatment efficiency and more resistance in shock load compared with conventional anaerobic reactors. EGSB reactor has a good adaptability for the changes of influent quality and operating condition, namely stable treatment can be obtained for both high and low strength wastewater even at low temperature(15-20℃) or low oxygen. Microaerobic condition is the transitional state betweent anaerobic and aerobic conditions. Microaerbic bio-treatment can remove organics and nutrients simultaneously with a high energy efficiency and low yield of excess sludge. This paper focuses on the performance of EGSB reactor in microaerobic condition, Study included the cultivation of granular sludge, removal efficiency of COD and nutrients as well as the related factors that influence the operation effect.
     First, granular sludge was anaerobicly cultured in EGSB reactor. The feed water was simulative wastewater(with COD of 400~1650mg/L) and the inoculum was digested sludge mixed with a little disintegrated granular sludge. Sludge granulation was rapidly achieved with suitable upflow rate and step-up volumetric loading rate(VLR) at 25℃. As granules formed, the feed water was changed to domestic wastewater. During the three more months operation, temperature was 13-26℃and influent COD was 144-618mg/L, the hydraulic retention time (HRT) and VLR of COD were set at 0.6-1.6h and 2.5-19.6 kg/(m~3·d) respectively, and the average COD removal rate reached 80% with effluent COD below 100mg/L during stable stage. Most of the anaerobic granules were 0.43-2mm in diameter, with sedimentation velocity of 14-95m/h, and the specific methanogenic activity ranged in 0.34-0.45LCH_4/(gVSS·d). The anaerobic granules were compact with bacillus and coccus colonies inhabited at different zones. It was observed that temperature, hydrodynamic shear conditions, HRT and VLR had influence on running efficiency and sludge property. Either temperature down below 15℃or the average shear rate increased above 32.1×10~(-3)Pa accelerated degranulation thus deteriorated the effluent quality. Nevertheless, at above 15℃, better granular activity and higher treatment efficiency were obtained by shortening HRT and increasing VLR.
     Then miceoaerobic operation was carried out based on EGSB reactor. The experimental water was still domestic wastewater and the operating temperature was 18-27℃. By increasing the dissolved oxygen gradually in the reactor, microerobic granules developed from anaerobic ones. After startup, the microaerobic granules had stable characteristics and much enhanced decontaminating capability. When DO, HRT, reflux ratio and VLR of COD were set at 0.3-0.5mg/L, 8h, 8:1~10:1 and 0.4-1.9kg/(m3·d), respectively, the average removal rate for COD, ammonium, total nitrogen, phosphorus and SS were 94%, 83%, 81%, 36% and 89%, respectively.
     Study showed that pollutants removal was related to factors such as DO, HRT, reflux ratio, sludge concentration and sludge loading. The optimum parameters were proved to be: DO 0.3-0.4mg/L, HRT 8h, reflux ratio 8:1, MLSS 11-16g/L and COD sludge loading rate 0.15kgCOD/(kgMLSS·d). Under these conditions, the average removal rates of COD, NH4+-N and TN were 93%, 84% and 82%, respectively.
     Nitrogen was effectively removed through simultaneous nitrification and denitrification in microaerobic condition. Both the microaerobic environment and high sludge concentration benefited pollutants removal. As compared with the activated sludge techniques for nitrogen removal, this process had the features of shorter HRT, higher volumetric loading, and better decontaminating effect, cutting down 34% aeration and three-quarter excess sludge yield.
     Both DO and sludge loading influenced the granular property in microaerobic condition. When DO level was below 0.4mg/L and sludge loading rate was less than 0.12kgCOD/(kgMLSS·d), the granules were compact with good settling property and were activitive in methanogenesis and nitrogen removal. There were less filamentous bacteria in granules since the microbial groups distributed were relative abundant. However, increasing in either DO level or sludge loading resulted in worse settlement, accelerated degranulation and diminished methanogenesis. It was observed that more filamentous and disintegrated granules appeared when the average sludge loading of COD rose to 0.18kgCOD/(kgMLSS·d).
     It was the diversity in microbial groups and metabolic pathways that improved treatment effect since kinds of populations dominanted in granules and different part of sludge bed. Kinetics analysis showed that the optimal DO was 0.41mg/L for simultaneous nitrification and denitrification to remove nitrogen. On the other hand, model of oxygen transfer was built to simulate oxygen distribution in granule based on simultaneous nitrification and denitrification. Moreover, the influence of internal diffusion on aerobic reaction within granule was evaluated. According to the calculating results, either lower DO or larger granule would prevent oxygen from penetrating thus aerobic reaction was much effected by internal diffusion. Simulating results were then applied to evaluate the oxygen consumption in different conidtion with well agreement between experiment and prediction.
     The present study cultured excellent microaerobic granules from anaerobic ones in EGSB reactor by controllong operating parameters, which provided reference for the practical operation and regulation.
引文
1杨凌波,曾思育,鞠宇平,等.我国城市污水处理厂能耗规律的统计分析与定量识别.给水排水. 2008,10(10): 42~45
    2聂梅生.水处理技术发展的重新认识.给水排水. 2007, 33(5):1,12
    3杭世珺,陈吉宁,郑兴灿,等. 2004年国际污泥无害化经验交流会议论文汇编. 2004: 2
    4郝晓地.可持续污水-废物处理技术.中国建筑工业出版社. 2006:3
    5 K.S. Singh. Municipal Wastewater Treatment by Upflow Anaerobic Sludge Blanket (UASB) Reactors. PHD thesis. University of Regina, Saskatchewan. National Library of Canada. 1999: I~II
    6 L. Seghezzo. Anaerobic Treatment of Domestic Wastewater in Subtropical Regins. PhD Thesis. Wagenigen University, Wagenigen, the Netherlands. 2004: 161
    7 T. Elmitwalli, G. Zeeman and G. Lettinga. Anaerobic Treatment of Domestic Sewage at Low Temperature.Water Science Technology. 2001, 44(4): 33~40
    8 J.A.álvarez, E. Armstrong, M. Gómez, et al. Anaerobic Treatment of Low-strength Municipal Wastewater by a two-stage Pilot Plant under Psychrophilic Conditions. Bioresource Technology. 2008, 99(15): 7051~7062
    9 S. Y. Bodkhe. A Modified Anaerobic Baffled Reactor for Municipal Wastewater Treatment. Journal of Environmental Management. 2009, 90(8): 2488~2493
    10 G. Krishna, P. Kumar, and P. Kumar. Treatment of Low Strength Complex Wastewater Using an Anaerobic Baffled Reactor (ABR). Bioresource Technology. 2008, 99(17): 8193~8200
    11 G. Krishna, P. Kumar, and P. Kumar. Treatment of Low-strength Soluble Wastewater Using an Anaerobic Baffled Reactor (ABR). Journal of Environmental Management. 2009, 90(1): 166~176
    12胡林林,王建龙,文湘华,等.低溶解氧条件下生物脱氮研究中的新现象.应用与环境生物学报. 2003, 9(4): 444~447
    13 D.C. Peng, N. Bernet, J.P. Delgenes, et al. Simultaneous Organic Carbon and Nitrogen Removal in an SBR Controlled at Low Dissolved Oxygen Concentration. J Chem Tech Biotech , 2001, 76: 553~558
    14初里冰,张兴文,李晓惠,等.微氧膜生物反应器同时去除有机物和氮的研究. 2005, 6(5): 78~82
    15蓝惠霞,邱献欢,隋冰冰,等.降解五氯酚(PCP)的微氧颗粒污泥的形成机理.环境科学学报. 2009, 29(1): 273~278
    16 D.C. Peng, N. Bernet, J.P. Delgenes, et al. Aerobic Granular Sludge a Case Report. Water Research. 1999, 33 (3): 890~893
    17 J. Gemitse and J.C. Gottschal. Two-membered Mixed Cultures Methanogenic and Aerobic Bactera in O2-limited Chemostate Journal of General Microbiology. 1993, 139: 1853~1860
    18 M.T. Kato, J.A. Field and G. Lettinga. The High Tolerance of Methanogens in Granular Sludge to Oxygen. Biotechnol Bioeng, 1993, 42(11): 1360~1366
    19 D.H. Zitomer. Stoichiometry of Combined Aerobic and Methanogenic COD Transformantion. Water Research. 1998, 32(3): 669~676
    20 D.H. Zitomer. Feasibility and Benefits of Methanogensis under Oxygen-limited Conditions.Waste Management, 1998, 18(2): 107~116
    21 R.J. Stephenson, A. patoine and S.R. Guiot. Effects of Oxygenation and Upflow Liquid Velocity on a Coupled Anaerobic/aerobic reactor System. Water Research. 1999, 33(12): 2855~2863
    22 P. Fox, V. Venkatasubbiah. Coupled Anaerobic/aerobic Treatment of High-sulfate Wastewater with Sulfate Reduction and Biological Sulfide Oxidation. Water Science Technology. 1996, 34(5~6): 359~366
    23 J.J. Beun, M.C.M. van Loosdrecht and J.J. Heijnen. Aerobic Granulation in a Sequencing Batch Airlift Reactor. Water Research. 2002, 36(3): 702~712
    24 R.L. Meyer, A.M. Saunders, R.H. Zeng, et al. Microscale Structure and Function of Anaerobic–aerobic Granules Containing Glycogen Accumulating Organisms. FEMS Microbiol Ecol. 2003, 45(3): 253~261
    25 N. Kishida, J. Kim, S. Tsuneda, et al. Anaerobic/oxic/anoxic Granular Sludge Process as an Effective Nutrient Removal Process Utilizing Denitrifying Polyphosphate-accumulating Organisms. Water Research. 2006, 40(12): 2303~2310
    26 T.H. Ergüder, G.N. Demirer. Investigation of Granulation of a Mixture of Suspended Anaerobic and Aerobic Cultures under Alternating Anaerobic/microaerobic/aerobic Conditions. Process Biochemistry. 2005, 40 (12): 3732~3741
    27 C.F. Shen, S.R. Guiot. Long-term Impact of Dissolved O2 on the Activity of Anaerobic Granules. Biotechnology and Bioengineering. 1996, 49(66): 611~620
    28 S. Kato, S. Haruta, Z.J. Cui, et al. Stable Coexistence of Five Bacterial Strains as a Cellulose-degrading Community. Applied and Environmental Microbiology. 2005, 71(11): 7099~7106
    29 N. Okuda, K. Ninomiya, M. Takao, et al. Microaeration Enhances Productivity of Bioethanol from Hydrolysate of Waste House Wood Using Ethanologenic Escherichia coli KO11. Journal of Bioscience and Bioengineering. 2007, 103(4): 350~357
    30 M. Zhu, F. Lü, L.P. Hao, et al. Regulating the Hydrolysis of Organic Wastes by Micro-aeration and Effluent Recirculation. Waste Management. 2009, 29(7):2042~2050
    31 H.J. Laanbrokke, S. Gerards. Competition for Limiting Amounts of Oxygen between Nitrosomonas Europaea and Nitrobacteria Winogradskyi Grown in Mixed Continuous Cultures. Arch Microbiol. 1993, 159(6): 453~459
    32 X.D. Hao, J.J. Heijnen, M.C.M. Van Loosdrecht. Sensitivity Analysis of a Biofilm Model Describing a one-stage Completely Autotrophic Nitrogen Removal (CANON) Process. Biotechnology Bioengineering. 2002, 77(3): 266~277
    33 I. Schmidt, A.O. Slickers, M. Schmid, E. Bork, et al. New Concepts of Microbial Treatment Processes for the Nitrogen Removal in Wastewater. FEMS Microbiology Reviews. 2003, 27(4): 481~492
    34 R.J. Zeng, R. Lemaire, Z. Yuan, J. Keller. Simultaneous Nitrification, Denitrification, and Phosphorus Removal in a Lab-scale Sequencing Batch Reactor. Biotech.Biotech. 2003, 84(2): 170~178
    35 N. Wrage, G.L. Velthof, M.L. van Beusichem, et al. Role of Nitrifier Denitrification in the Production of Nitrous Oxide. Siol Biology & Biochemistry. 2001, 33(12-13): 1723~1732
    36 E. Matsuzaka, N. Nomura, T. Nakajima-Kambe, et al. A Simple Screening Procedure for Hetertrophic Nitrifying Bacteria with Oxygen-tolerant Denitrification Activity. Journal of Bioscience and Bioengineerin. 2003, 95(4): 409~411
    37 H.S. Joo, M. Hirai, M. Shoda. Piggery Wastewater Treatment Using Alcaligenes Faecalis Strain No. 4 with Heterotrophic Nitrification and AerobicDenitrification. Water research. 2006, 40(16): 3029-3036
    38朱静平,胡勇有.厌氧氨氧化工艺技术研究进展.水处理技术. 2006, 3(28):1~4
    39 Z. Gong, F. Yang, S. Liu, et al. Feasibility of a Membrane-aerated Biofilm Reactor to Achieve Single-stage Autotrophic Nitrogen Removal Based on Anammox. Chemosphere. 2007, 69 (5): 776~784
    40 H.P. Chuang, A. Ohashi, H. Imachi, et al. Effective Partial Nitrification to Nitrite by Down-flow Hanging Sponge Reactor under Limited Oxygen Condition. Water Research. 2007, 41(2): 295 ~302
    41 W.R.L. van der Star, W.R. Abma, D. Blommers, et al. Startup of Reactors for Anoxic Ammonium Oxidation: Experiences from the First Full-scale Anammox Reactor in Rotterdam. Water Research. 2007, 41(18): 4149~4163
    42张丹,徐慧,李相力,等.限氧自养硝化—反硝化生物脱氮新技术.应用生态学报. 2003, 14 (12): 2333~2336
    43 A.O. Sliekers, N. Derwort, J.L.C. Gomez, et al. Completely Autotrophic Nnitrogen Removal over Nitrite in one Single Reactor. Water Research. 2002, 36(10): 2475~2482
    44 Y.H. Ahn, H.C. Choi. Autotrophic Nitrogen Removal from Sludge Digester Liquids in Upflow Sludge Bed Reactor with External Aeration. Process Biochemistry. 2006, 41(9): 1945~1950
    45 K. Nootong, W.K. Shieh. Analysis of an Upflow Bioreactor System for Nitrogen Removal via Autotrophic Nitrification and Denitrification. Bioresource Technology. 2008, 99(14): 6292~6298
    46 E. Houbron, M. Torrijos, B. Capdeville. An Alternative Use of Biogas Applied at the Water Denitrification. Water Science Technology. 1999, 40 (8): 115~122
    47 A. Eisentraeger, P. Klag, B. Vansbotter, et al. Denitrification of Groundwater with Methane as Sole Hydrogen Donor. Water Research. 2001, 35(9): 2261~2267
    48 A.A. Raghoebarsing, A. Pol, K.T. van de Pas-Schoonen, et al. A Microbial Consortium Couples Anaerobic Methane Oxidation to Denitrification. Nature. 2006, 440(13): 918~921
    49 T. Khin, A.P. Annachhatre. Nitrogen Removal in a Fluidized Bed Bioreactor by Using Mixed Culture under Oxygen-limited Conditions. Water Science Technology. 2004, 50 (6): 313~320
    50 M. Waki, Y. Tanaka, T. Osada, et al. Effects of Nitrite and Ammonium on Methane-dependent Denitrification. Appl. Microbiol. Biotechnol. 2002, 59 (2~3): 338~343
    51 M. Waki, H. Yokoyama, A. Ogino, et al. Nitrogen Removal from Purified Swine Wastewater Using Biogas by Semi-partitioned Reactor. Bioresource Technology. 2008, 99 (13): 5335~5340
    52 D. Zhang, P. Lu, T. Long, et al. The Integration of Methanogensis with Simultaneous Nnitrification and Denitrification in a Membrane Bioreactor. Process Biochemistry. 2005, 40(2): 541~547
    53胡颖华,孙丰霞,高廷耀,等.活性污泥法污水厂剩余污泥微氧消化的试验研究.中国沼气. 2005, 23(1):3~6
    54李亚新,连瑛秀.限氧产甲烷系统废水处理新技术.中国沼气. 2001, 19(4):7~10
    55孙艳玲,杜兵,司亚安,等.城市污水水解-厌氧-微氧联合处理工艺.环境科学. 2000, 21(6):77~79
    56董春娟,吕炳南,陈志强.微氧条件下厌氧颗粒污泥和消化污泥特性研究.南京理工大学学报. 2005, 29(2): 216~222
    57 D.H. Zitomer, J.D. Shrout. High-sulfate, High-chemical Oxygen Demand Wastewater Treatment Using Aerated Methanogenic Fluidized Beds. Water Environ. Res. 2000, 72(1):90~97
    58丁雷,祁佩时,黄华山,等.微氧环境抑制硫酸盐还原反应作用研究.哈尔滨商业大学学报. 2007, 23(2): 153~157
    59 F.P. van der Zee, S. Villaverde, P.A. Garc?a, et al.Sulfide Removal by Moderate Oxygenation of Anaerobic Sludge Environments. Bioresource Technology. 2007, 98(3): 518~524
    60 Y.C. Chen, H.X Lan, H.Y. Zhan, et al. Simultaneous Anaerobic-aerobic Biodegradation of Halogenated Phenolic Compound under Oxygen-limited Conditions. Journal of Environmental Sciences. 2005, 17(5): 873~875
    61 B. Tartakovsky, J. Hawari, S.R. Guiot. Degradation of Aroclor 1242 in a Single-stage Coupled Anaerobic/aerobic Bioreactor. Water Research. 2001, 35(18): 4323~4330
    62 W. Zhou, T. Imai, M. Ukita, et al. Effect of Limited Aeration on the Anaerobic Treatment of Evaporator Condensate from a Sulfite Pulp Mill. Chemosphere. 2007, 66 (5): 924~929
    63陈元彩,陈竹,蓝慧霞,等.微氧条件下固定化颗粒污泥的氯酚降解及菌群结构.华南理工大学学报. 2006, 34(9):128~132
    64董春娟,吕炳南,马立.采用微氧产甲烷技术降解水中的毒性物质.中国给水排水. 2003, 8(19): 19~22
    65陈元彩,蓝惠霞,陈中豪.固定化好氧茵和厌氧颗粒污泥在不同供氧条件下降解氯酚的研究.环境科学学报. 2005, 25(2): 172~175
    66 J.E. Johansen, R. Bakke. Enhancing Hydrolysis with Microaeration. Water Science and Technology. 2006. 53(8): 43~50
    67祁佩时,丁雷,刘云芝.微氧水解酸化工艺处理高浓度抗生素废水.环境科学. 2005, 26(3): 106~111
    68 J. Ejlertsson, A. Karlsson, A. Lagerkvist, et al. Effects of Co-disposal of Wastes Containing Organic Pollutants with Municipal Solid Waste–a Landfill Simulation Reactor Study. Advances in Environmental Research. 2003. 7(4): 949~960
    69 A. Mshandete, L. Bjornsson, A.K. Kivaisi, et al. Enhancement of Anaerobic Batch Digestion of Sisal Pulp Waste by Mesophilic Aerobic Pre-treatment. Water Research. 2005, 39(8): 1569~1575
    70 K.A. Third, B. Gibbs, M. Newland, et al. Long-term Aeration Management for Improved N-removal via SND in a Sequencing Batch Reactor. Water Research. 2005, 39(15): 3523~3530
    71高守有. Orbal氧化沟强化生物脱氮的中试研究.哈尔滨工业大学博士学位论文. 2006: 58~60
    72 Y.A. Li, Y.L. He, D.G. Ohandja, et al. Simultaneous Nitrification-denitrification Achieved by an Innovative Interal-loop Airlift MBR: Comparative Study. Bioresource Technology. 2008, 99(13): 5867~5872
    73 M. Sarioglu, G. Insel, N. Artan, et al. Model Evaluation of Simultaneous Nitrification and Denitrification in a Membrane Bioreactor Operated without an Anoxic Reactor. Journal of Membrane Science. 2009, 337 (1~2,15): 17~27
    74 G. Nakhl, S. Farooq. Simultaneous Nitrification-denitrification in Slow Sand Filters. Journal of Hazardous Materials. 2003, 96(2/3): 291~303
    75 A.O. Sliekers, K.A. Third, W. Abma, et al. CANON and Anammox in a Gas-lift Reactor. FEMS Microbiol Lett. 2003, 218(2): 339~344
    76 K. Pynaert, R. Sprengers, J. Laenen, et al. Oxygen-limited Nitrification and Denitrification in a Labscale Rotating Biological Contactor. Environ. Technol.2002, 23(3): 353~362
    77 K. Windey, I. De Bo, W. Verstraete. Oxygen-limited Autotrophic Nitrification-denitrification (OLAND) in a Rotating Biological Contactor Treating High-salinity Wastewater. Water Research. 2005, 39(18): 4512~4520
    78 C. Wang, Y. Zeng, J. Lou, et al. Dynamic Simulation of a WWTP Operated at low Dissolved Oxygen Condition by Integrating Activated Sludge Modle and Floc Model. Biochemical Engineering Journal. 2007, 33(3): 217~227
    79 H.D. Park, D.R. Noguera. Evaluating the Effect of Dissolved Oxygen on Ammonia-oxidizing Bacterial Communities in Activated Sludge. Water Research. 2004, 38(14~15): 3275~3286
    80 A. Mosquera-Corral, M.K. de Kreuk, J.J. Heijnen, et al. Effects of Oxygen Concentration on N-removal in an Aerobic Granular Sludge Reactor. Water Research. 2005, 39(12): 2676~2686
    81 L. Chu, X. Zhang, F. Yang, X. Li. Treatment of Domestic Wastewater by Using a Microaerobic Membrane Bioreactor. Desalination. 2006, 189(1/3): 181~192
    82 L. Hu, J. Wang, X. Wen, Y. Qian. Study on Performance Characteristics of SBR under Limited Dissolved Oxygen. Process Biochemistry. 2005, 40(1): 293~296
    83侯红勋,陈伦强,王淑莹,等.用ORP作为氧化沟同步硝化反硝化控制参数.北京工业大学学报. 2006, 32(12): 1093~1096
    84 Y.C. Chiu, L.L. Lee, C.N. Chang, et al. Control of Carbon and Ammonium Ratio for Simultaneous Nitrification and Denitrification in a Sequencing Batch Bioreactor. International Biodeterioration & Biodegradation. 2007, 59(1): 1~7
    85彭永臻,郭建华,王淑莹,等.低溶解氧污泥微膨胀节能理论与方法的发现、提出及理论基础.环境科学. 2008, 29(12): 3342~3347
    86郭建华,王淑莹,彭永臻,等.低溶解氧污泥微膨胀节能方法在A/O中的试验验证.环境科学. 2008, 29(12): 3348~3352
    87王凯军, Lettinga.生活污水厌氧后处理工艺研究—微氧升流式污泥床反应器.中国给水排水. 1998, 14(3): 20~23
    88 J.J. Beun, M.C.M. Van Loosdrecht, J.J. Heijnen. Anaerobic Granulation. Water Science Technology. 2000, 41(4~5): 41~48
    89 Y. Liu, H.L. Xu, S.F. Yang, et al. Mechanisms and Models for Anaerobic Granulation in Upflow Anaerobic Sludge Blanket Reactor. Water Research. 2003, 37(3): 661~673
    90 H.L. Jiang, J.H. Tay, Y. Liu, et al. Ca2+ Augmentation for Enhancement ofAerobically Grown Microbial Granules in Sludge Blanket Reactors. Biotechnology Letters. 2003, 25(2): 95~99
    91 M. Kim, C.Y. Gomec, Y. Ahn, et al. Hydrolysis and Acidogenesis of Particulate Organic Material in Mesophilic and Thermophilic Anaerobic Digestion. Environ. Technol. 2003, (24):1183~1190
    92 Y. Kalogo, W. Verstraete. Technical Feasibility of the Treatment of Domestic Wastewater by a CEPS-UASB System. Environ. Technol. 2000, 21(1): 55~65
    93 L. Qin, J.H. Tay, Y. Liu. Selection Pressure Is a Driving Force of Aerobic Granulation in Sequencing Batch Reactors. Proess Biochem. 2004, 39(5): 579~584
    94 X.H. Wang, H.M. Zhang, F.L. Yang, et al. Improved Stability and Performance of Aerobic Granules under Stepwise Increased Selection Pressure. Enzyme Microbiol Technol 2007, 41(3):205~211
    95 M.K. Tiwari, S. Guha, C.S. Harendranath, et al. Enhanced Granulation by Natural Ionic Polymer Additives in UASB Reactor Treating Low-strength Wastewater. Water Research. 2005, 39(16): 3801~3810
    96 N. Mahmoud, G. Zeeman, H. Gijzen, et al. Solids Removal in Upflow Anaerobic Reactors, a Review. Bioresource Technology. 2003, 90(1): 1~9
    97蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒污泥化中的作用机理.中国环境科学. 2004, 24(5): 623~626
    98 W. Zhou, T. Imai, M. Ukita, et al. Triggering Forces for Anaerobic Granulation in UASB Reactors. Process Biochemistry. 2006, 41(1): 36~43
    99 Z.H. Li, T. Kuba, T. Kusuda. The Influence of Starvation Phase on the Properties and the Development of Aerobic Granules. Enzyme and Microbial Technology. 2006, 38(5): 670~674
    100 H.Q. YU, J.H. Tay, H.H.P. Fang. The Roles of Calcium in Sludge Granulation during UASB Reactor Start-up. Water Research. 2001, 35(4): 1052~1060
    101 E.D. van Hullebusch, J. Gieteling, W. Van Daele, et al. Effect of Sulfate and Iron on Physico-chemical Characteristics of Anaerobic Granular Sludge. Biochemical Engineering Journal. 2007, 33(2): 168~177
    102 H.Q.Yu, H.H.P. Fang, J.H. Tay. Enhanced Sludge Granulation in Upflow Anaerobic Sludge Blanket (UASB) Reactors by Aluminum Chloride. Chemosphere. 2001, 44(1): 31~36
    103 K.Y. Show, Y. Wang, S.F. Foong, et al. Accelerated Start-up and EnhancedGranulation in Upflow Anaerobic Sludge Blanket Reactors. Water Research. 2004, 38(9): 2293~2304
    104 H.S. Jeong, Y.H. Kim, S.H. Yeom, et al. Facilitated UASB Granule Formation Using Organic-inorganic Hybrid Polymers. Process Biochemistry. 2005, 40(1): 89~94
    105 S.S. Adav, D.J. Lee, K.Y. Show, et al. Aerobic Granular Sludge: Recent Advances. Biotechnology Advances. 2008, 26(5): 411~423
    106 W. Zhou, T. Imai, M. Ukita, et al. Enhanced Granulation in UASB Reactors by Producing Extracellular Polymer at Over Loading. Japan Society of Civil Engineers. 2003, 741(VII-28): 167~173
    107 Y.Q. Liu, Y. Liu, J.H. Tay. The Effects of Extracellular Polymeric Substances on the Formation and Stability of Biogranules, Appl. Microbiol. Biotechnol. 2004, 65(2): 143~148
    108 W. Zhou, T. Imai, M. Ukita, et al. Effect of Loading Rate on the Granulation Process and Granular Activity in a Bench Acale UASB Reactor. Bioresource Technology. 2007, 98(7): 1386~1392
    109 G.H. Yu, Y.C. Juang, D.J. Lee, et al. Enhanced Aerobic Granulation with Extracellular Polymeric Substances (EPS)-free Pellets. Bioresource Technology. 2009, 100(20): 4611~4615
    110 X.W. Liu, G.P. Sheng, H.Q. Yu. Physicochemical Characteristics of Microbial Granules. Biotechnol Adv. 2009, 27(6): 1061~1070
    111 R.J. Frankin. Full-scale Experiences with Anaerobic Treatment of Industrial Wastewater. Water Science and Technology. 2001, 44(8): 1~6
    112 A.B. Dos Santos, F.J. Cervantes, R.E. Yaya-Beas, et al. Effect of Redox Mediator, AQDS, on the Decolourisation of a Reactive Azo dye Containing Triazine Group in a Thermophilic Aanaerobic EGSB Reactor. Enzyme and Microbial Technology. 2003, 33 (7): 942~951
    113 G.C.C.F.S. McHugh, T.M.V. O’Flaherty. Anaerobic Biological Treatment of Phenolic Wastewater at 15-18℃. Water Research. 2005, 39(8): 1614~1620
    114 C. Scully, G. Collins, V. O’Flaherty. Anaerobic Biological Treatment of Phenol at 9.5-15℃in an Expanded Granular Sludge Bed (EGSB)-based Bioreactor. Water Research. 2006, 40(20): 3737~3744
    115 A.M. Enright, G. Collins, V. O’Flaherty. Low-temperature Anaerobic Biological Treatment of Toluene-containing Wastewater. Water Research. 2007,41(7): 1465~1472
    116 A.M. Enright, S. McHugh, G. Collins, et al. Low-temperature Anaerobic Biological Treatment of Solventcontaining Pharmaceutical Wastewater. Water Research. 2005, 39(19): 4587~4596
    117左剑恶,王妍春,陈浩,等.膨胀颗粒污泥床(EGSB)反应器处理高浓度自配水的试验研究.中国沼气. 2001, 19(2):8~11
    118郭家燕,张振家. EGSB反应器处理米酒废水的启动方法研究.环境污染与防治. 2004, 26(2): 107~109
    119石宪奎,倪文. EGSB处理玉米淀粉生产废水中试研究.环境工程. 2005, 23(1): 17~19
    120王妍春,左剑恶,肖晶华. EGSB反应器内厌氧颗粒污泥性质的研究.中国沼气. 2002, 20(4): 3~7
    121李光,王强,吴昌敏,等. EGSB的后续处理工艺选择.中国给水排水. 2005, 21(10):46~48
    122王毅军,张振家. EGSB-接触氧化工艺处理DMF废水.工业用水与废水. 2007, 38(1): 94~95
    123王春,李秀芬,华兆哲,等. FOP-EGSB-MBR组合工艺处理2-萘酚生产废水.环境工程学报. 2008, 2(8): 1036~1039
    124任立人,赵秀梅,张天兵,等.膨胀颗粒污泥床(EGSB)反应器高效处理链霉素有机废水试验研究.给水排水. 2003, 29(7): 38~41
    125李再兴,杨景亮,叶莉,等.厌氧颗粒污泥床(EGSB)处理生活污水试验研究.环境工程学报. 2008, 2(10): 6430~6431,7431,8431
    126陈川. EGSB同步脱硫反硝化的运行效能和颗粒污泥的特性研究.哈尔滨工业大学工学硕士学位论文. 2007: 41
    127康晶,王建龙. EGSB反应器中厌氧颗粒污泥的脱氮特性研究.环境科学学报. 2005, 25(2): 208~213
    128祖波,张代钧,白玉华,等. EGSB反应器中耦合厌氧氨氧化与甲烷化反硝化的研究.环境科学研究. 2007, 20(2): 51~57
    129任宏洋,张代钧,丛丽影. EGSB反应器中实现完全自营养脱氮与运行优化.环境科学. 2009, 30(5): 1454~1460
    130 M.T. Kato, J.A. Field, G. Lettinga. The Anaerobic Treatment of Low Strength Wastewater in UASB and EGSB Reactors. Water Science Technology. 1997, 36(6-7): 375~382
    131 A. Al-Fuqaha, R. Al-Sa`ed. Development of an Innovative Biofilter System toImprove Effluent Quality of a UASB-Septic Tank System. Dirasat Journal. 2006, 33(2): 117~127
    132 G. Lettinga, S. Rebac, S. Parshina, et al. High-Rate Anaerobic Treatment of Wastewater at Low Temperatures. Applied and Environmental Microbiology. 1999, 65(4): 1696~1702
    133 G. Lettinga, S. Rebac, G. Zeeman. Challenge of Psychrophilic Anaerobic Wastewater Treatment. Trends in Biotechnology. 2001, 19(9): 363~370
    134 J.B. van Lier, S. Rebac, P. Lens, et al. Anaerobic Treatment of Partly Acidified Wastewater in a two-stage Expended Granular Sludge Bed (EGSB) System at 8℃. Water Science Technology. 1997, 36(6-7): 317~324
    135 G. Collins, C. Foy, S. McHugh, et al. Anaerobic Treatment of 2,4,6-trichlorophenol in an Expanded Granular Sludge Bed-anaerobic Filter (EGSB-AF). FEMS Microbiology Ecology. 2005, 53(1):167~178
    136 S. Connaughton, G. Collins, V. O’Flaherty. Development of Microbial Community Structure and Activity in a High-rate Anaerobic Bioreactor at 18℃. Water Research. 2006, 40(5): 1009~1017
    137 G. Akila, T.S. Chandra. Performance of an UASB Reactor Treating Synthetic Wastewater at Low-temperature Using Cold-adapted Seed Slurry. Process Biochemistry. 2007, 42(3): 466~471
    138赵自成,刘颖,雷彬.上流式厌氧污泥床处理低温低浓度废水存在的问题与对策.重庆环境科学. 2003, 25(8): 37~39
    139 S. Connaughton, G. Collins, V. O’Flaherty. Psychrophilic and Mesophilic Anaerobic Digestion of Brewery Effluent: A Comparative Study. Water Research. 2006, 40(13): 2503~2510
    140 S. Aiyuk, I. Forrez, K. Lieven, et al. Anaerobic and Complementary Treatment of Domestic Sewage in Regions with Hot Climates-A Review. Bioresource Technology. 2006, 97(17): 2225~2241
    141 X.M. Li, L. Guo, Q. Yang, et al. Removal of Carbon and Nutrients from Low Strength Domestic Wastewater by Expanded Granular Sludge Bed-zeolite Bed Filtration (EGSB-ZBF) Integrated Treatment Concept. Process Biochemistry. 2007, 42(8): 1173~1179
    142 S.A. El-Shafai, F.A. El-Gohary, F.A. Nasr, et al. Nutrient Recovery from Domestic Wastewater Using a UASB-duckweed Ponds System. Bioresource Technology. 2007, 98(4): 798~807
    143 A. Franco, E. Roca, J.M. Lema. Granulation in High-load Denitrifying Upflow Sludge Bed (USB) Pulsed Reactors. Water Research. 2006, 40(5): 871~880
    144袁志丹,左剑恶,甘海南,等.同时产甲烷反硝化与硝化串联工艺处理淀粉废水.环境科学学报. 2008, 28(7): 1272~1278
    145 Y.Q. Liu, J.H. Tay. Cultivation of Aerobic Granules in a Bubble Column and an Airlift Reactor with Divided Draft Tubes at Low Aeration Rate. Biochemical Engineering Journal. 2007, 34(1): 1~7
    146国家环保总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社. 2002
    147贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社. 1998
    148 M.M. Ghangrekar, S.R. Asolekar, K.R. Ranganathan, et al. Experience with UASB Reactor Start-up under Different Operating Conditions. Water Science and Technology. 1996, 34(5~6): 421~428
    149贾学斌,刘冬梅,吕炳南.膨胀颗粒污泥床厌氧反应器的快速启动研究.中国给水排水. 2006, 22(3): 89~92
    150 B. Jefferson, J.E. Burgess, A.Pichon, et al. Nutrient Addition to Enhance Biological Treatment of Greywater. Water Research. 2001, 35(11): 2702~2710
    151 P. Worm, F.G. Fermoso, P.N.L. Lens, et al. Decreased Activity of a Propionate-degrading Community in a UASB Reactor Fed with Synthetic Medium Without Molybdenum, Tungsten and Selenium. Enzyme and Microbial Technology. 2009, 45(2):139~145
    152胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术.中国建筑工业出版社. 2003,135
    153 R.E. Speec著,李亚新译.工业废水的厌氧生物技术.中国建筑工业出版社. 2001, 63, 257~283
    154刘丽,任婷婷,徐得潜,等.高强度好氧颗粒污泥的培养及特性研究.中国环境科学.2008, 28(4): 360~364
    155 J. Wu, H. Zhou, H. Li, et al. Impacts of Hydrodynamic Shear Force on Nucleation of Flocculent Sludge in Anaerobic Reactor. Water Research. 2009, 43(12): 3029~3036
    156 K.J. Ganzeveld, Y. Chisti, M. Moo-Young. Hydrodynamic Behavior of Animal Cells Grown in Microcarrier Suspensions in Split-cylinder Airlift Bioreactors. Bioprocess Engineering. 1995, 12:239~247
    157 M. Fuentes, N.J. Scenna, P.A. Aguirre, et al. Application of two Anaerobic Digestion Models to Biofilm Systems. Biochemical Engineering Journal. 2008, 38(2):259~269
    158 D.J. Batstone, J. Keller. Variation of Bulk Properties of Anaerobic Granules with Wastewater Type. Water Research. 2001, 35(7): 1723~1729
    159 P.C. Sabumon. Anaerobic Ammonia Removal in Presence of Organic Matter: a Novel route. Journal of Hazardous Materials. 2007, 149(1): 49~59
    160 P.C. Sabumon. Development of a Novel Process for Anoxic Ammonia Removal with Sulphidogenesis. Process Biochemistry. Process Biochemistry. 2008, 43(9): 984~991
    161 J.J. Beun, J.J. Heijnen, M.C.M. Van Loosdrecht. N-removal in a Granular Sludge Sequencing Batch Airlift Reactor. Biotechnology and Bioengineering. 2001, 75(1):82~92
    162 K. Pochana, J. Keller. Study of Factors Affecting Simultaneous Nitrification and Denitrification (SND). Water Science Technology. 1999, 39(6): 61~68
    163彭赵旭,彭永臻,左金龙.同步硝化反硝化的影响因素研究.给水排水. 2009, 35(5): 167~171
    164 L.P. Kuai, W. Verstraete. Ammonium Removal by the Oxygen-limited Autotrophic Nitrification-denitrification System. Applied and Environment Microbiology. 1998, 64(11): 4500~4506
    165 K. Third. Oxygen Management for Optimization of Nitrogen Removal in a Sequencing Batch Reator. PHD Thesis of Murdoch University, Western Australia. 2003: 188
    166张鹏,周琪.低氧条件下同时硝化和反硝化机理初探.环境污染与防治. 2004, 26(1):11~13
    167邱兆富,周琪,杨殿海,等.低碳氮比城市污水短程生物脱氮试验研究.工业水处理.2006, 26(11): 35~38
    168周克钊,段余杰,邬甘霖.碳源不足的城市污水Highsludge高浓度活性污泥法研究.给水排水. 2009, 35(3): 41~46
    169张楠.膜生物反应器在低氧条件下处理生活污水的研究.同济大学硕士学位论文. 2006:100
    170吉芳英,左宁,胡玉琴,等. LSP&PNR工艺脱氮除磷和污泥减量性能研究.中国给水排水. 2007, 23(3):35~39
    171王社平.西安市第四污水厂水质分析及分段进水A/O生物脱氮工艺研究.西安建筑科技大学博士学位论文. 2006:4
    172李冰.电子受体对污泥产率的影响.四川环境. 2007, 26(5):16~20, 29
    173 Y.H. Ahn, H.C. Kim. Nutrient Removal and Microbial Granulation in Anaerobic Process Treating Inorganic and Organic Nitrogenous Wastewater. Water Science Technology. 2004, 50(6): 207~216
    174高艳玲.悬浮载体生物膜流化床反应器脱氮试验研究.哈尔滨工业大学博士学位论文. 2007:83
    175 A. Stams, S. EIrerink, P. Westermann. Metabolic Interactions between Methanogenic Consortia and Anaerobic Respiring Bacteria. Advances in Biochemical Engineering Biotechnology. 2003, 8l: 31~56
    176 A. Machnika, J. Suschka, K. Grübel. The Importance of Potassium and Magnesium Ions in Biological Phosphorus Removal from Waste Water. In: Final Report (No.12), Proceedings of Polish-Swedish Seminars, Stokholm June 6~8 2004, Integration and Optimization of Urban Sanitation Systems
    177 T.R. Ramothokang, S.C. Simelane, F. Bux. Biological Nitrogen and Phosphorus Removal by Filamentous Bacteria in Pure Culture. Water SA. 2006, 32(5): 667~672
    178 J. Zhu, P.A. Wilderer. Effect of Extended Idle Conditions on Structure and Activity of Granular Activated Sludge. Water Research. 2003, 37(9): 2013~2018
    179 S.S. Adav, D.J. Lee, J.H. Tay. Activity and Structure of Stored Aerobic Granules. Environ.Technol. 2007, 28(11): 1227~1235
    180 S.S. Adav, D.J. Lee, N.Q. Ren. Biodegradation of Pyridine Using Aerobic Granules in the Presence of Phenol. Water Research. 2007, 41(13): 2903~2910
    181 H.S. Joo, M. Hirai, M. Shoda. Characteristics of Ammonium Removal by Heterotrophic Nitrification-aerobic Denitrification by Alcaligenes Faecalis NO.4. Journal of Bioscience and Bioengineering. 2005, 100(2): 184~191
    182 K.Z. Su, H.Q. Yu. Gas Holdup and Oxygen Transfer in an Aerobic Granule-based Sequencing Batch Reactor. Biochemical Engineering Journal. 2005, 25(3): 201~207
    183秦义,董志姚,刘立明,等.工业微生物中NADH的代谢调控.生物工程学报. 2009, 25(2): 161~169
    184饶佳家,霍丹群,陈柄灿,等.芳香族化合物的生物降解途径.化工环保. 2004, 24(5): 323~327
    185李宗军,徐建兴.线粒体的分子进化与氧效应.生物技术通讯. 2005,16(2):168~171
    186 F. Widdel, R. Rabus. Anaerobic Biodegradation of Saturated and Aromatic Hydrocarbons. Environmental Biotechnology. 2001, 12:259~276
    187 P.C. Sabumon. Effect of Potential Electron Acceptors on Anoxic Ammonia Oxidation in the Presence of Organic Carbon. Journal of Hazardous Materials. 2009,172(1): 280~288
    188刘思彤.电/磁场强化厌氧氨氧化及多菌群协同自养生物脱氮.大连理工大学博士学位论文. 2009: 4
    189陈涛,张国亮.化工传递过程基础.化学工业出版社(北京). 2002, 236
    190 S. Matsumoto, A. Terada, and S. Tsuneda. Modeling of Membrane-aerated Biofilm: Effects of C/N Ratio, Biofilm Thickness and Surface Loading of Oxygen on Feasibility of Simultaneous Nitrification and Denitrification. Biochemical Engineering Journal. 2007, 37(1): 98~107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700