用户名: 密码: 验证码:
含木质素水凝胶的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质素是自然界中总量仅次于纤维素的天然高分子化合物。以木质素制备高分子材料,是这一丰富的可再生资源得以高值化利用的途径之一。将木质素引入到水凝胶中,不仅可以实现木质素原料在水凝胶材料领域对化石原料的有效替代、不影响水凝胶的生物相容性和生物降解性,还可以提高水凝胶的强度、实现亲水性药物的控制释放等。本论文以脱乙酰化乙酸木质素(AAL)制备两种含木质素温度敏感型水凝胶,系统研究了含木质素温度敏感型水凝胶的性能以及木质素结构与水凝胶性能之间的关系;并以AAL制备了两种水凝胶染料吸附剂,对水凝胶吸附染料的效果进行研究和评价,对吸附机理进行探讨。
     AAL和N-异丙基丙烯酰胺(NIPAAm)接枝共聚制备了具有温度敏感性能的LGN水凝胶。DSC分析表明,水凝胶的最低临界溶解温度(LCST)均为31.0°C,木质素的含量对其LCST影响不大。当温度高于水凝胶的LCST时,凝胶收缩;当温度低于凝胶的LCST时,凝胶膨胀;研究表明冷冻干燥的凝胶断面具有多孔的结构,并且孔径随木质素比例的增加而增大。水凝胶对药物模型物(亚甲基蓝)表现明显的缓释性能。木质素引入对水凝胶的性能影响可控。
     用丙烯酰氯改性AAL,得到大分子结构上带有乙烯基官能团的木质素基大分子单体(AcL)。随后在紫外辐射下引发AcL与NIPAAm进行自由基共聚制备具有温度敏感性能的ALN水凝胶。水凝胶的LCST随着凝胶中AcL的含量的增加而降低。当AcL与N-异丙基丙烯酰胺的比例从0.08:2.2增加到0.24:2.2时,水凝胶的LCST从31.6°C下降到29.9°C。结果表明冷冻干燥的凝胶断面具有多孔的结构,并且孔径随AcL含量的增加而减小。改性后的木质素(AcL)具有疏水性乙烯基单体和交联剂的双重功能。
     AAL与丙烯酰胺(AAm)接枝共聚合成了一种具有一定pH敏感性能的LGA水凝胶。对这种水凝胶的亚甲基蓝吸附行为进行了研究,表明水凝胶对亚甲基蓝的吸附量受亚甲基蓝溶液的pH、亚甲基蓝初始浓度、吸附时间的影响。吸附过程满足准二级动力学模型;平衡吸附数据更符合Langmuir等温吸附模型。
     将AAL分级成相对分子质量大的级分(LA)和相对分子质量小的级分(LB)。研究了LA、LB和未脱乙酰化的乙酸木质素(UDL)对亚甲基蓝的吸附行为。结果表明LA对亚甲基蓝的吸附量受亚甲基蓝溶液的pH、LA的用量、吸附时间、亚甲基蓝初始浓度、温度的影响。吸附过程更满足准二级动力学模型;平衡吸附数据更符合Langmuir等温吸附模型;热力学研究表明木质素对亚甲基蓝吸附是自发的、吸热的、不可逆的过程。乙酸木质素相对分子质量大的级分(LA)、相对分子质量小的级分(LB)和未脱乙酰化木质素(UDL)的吸附能力分别为63.32、40.97和18.21mg/g。
     以磺甲基化改性的木质素为原料,环氧氯丙烷为交联剂交联制备了木质素基水凝胶(CSL)。研究了CSL系列水凝胶对亚甲基蓝的吸附行为,表明CSL系列水凝胶对亚甲基蓝的吸附量受亚甲基蓝溶液pH、浓度,吸附时间的影响。吸附过程更满足准二级动力学模型;平衡吸附数据符合Langmuir和Freundlich等温吸附模型。水凝胶的吸附能力可达276.53mg/g。
Lignin is the most abundant biopolymer second only to cellulose. The conversion of lignininto value-added polymer materials is an effective way to utilize the vast quantities of lignin. Theintroduction of lignin into hydrogels favors the the improvements in performances of hydrogelsand offers plenty of advantages, e.g., controlled release of hydrophilic drug, improved mechanicalproperties, improved biocompatibility and biodegrability of the hydrogels, etc. In this work,lignin-containing temperature-sensitive hydrogels were prepared from deacetylated acetic acidlignin (AAL). The properties of the lignin-containing temperature-sensitive hydrogels, as well asthe relationship between the structural characteristics of lignin and the lignin-containingtemperature-sensitive hydrogels, were investigated. The hydrogels for dye adsorption were alsoprepared from AAL. Adsorption behavior of the dye onto the hydrogels was investigated. The dyeadsorption mechanisms were discussed.
     The temperature-sensitive hydrogel (LGN) was prepared by graft copolymerization of AALand N-isopropylacrylamide (NIPAAm). DSC curves demonstrated that the lower critical solutiontemperature (LCST) of the hydrogels containing different contents of AAL was approximately31°C. The hydrogels shrank in water at temperatures above the LCST and swelled in water attemperatures below the LCST. SEM images suggested that the cross-section of freeze-driedhydrogels was porous and the pore size of the hydrogel increased with increasing the AALcontent. The data of adsorption and release experiments for the model drug (methylene blue)suggested that the controlled drug release can be achieved. The introduction of lignin on theproperties of the hydrogels is controllable.
     A lignin-based macromer (acrylated lignin, AcL) with vinyl bonds was prepared by acylatingAAL with acryloyl chloride. The temperature-sensitive hydrogel (ALN) was prepared from AcLand NIPAAm through UV photocrosslinking. The DSC curves demonstrated that the lowercritical solution temperature of the hydrogels reduced from29.9°C to31.6°C when the massratio of AcL/NIPAAm increased to0.24:2.2from0.08:2.2. The SEM images showed that thecross-section of freeze-dried hydrogels was porous and relatively high content of the macromer resulted in reduced pore size in hydrogels. The results indicated the AcL acted as hydrophobicmonomer and crosslinker.
     The pH-sensitive hydrogel (LGA) was prepared by graft copolymerization of AAL andacrylamide (AAm). The adsorption behaviors of methylene blue (MB) onto the hydrogel wereinvestigated. The results showed that the amount of the MB adsorbed was influenced by theinitial solution pH, adsorption time, and initial MB concentration. The kinetic data were found tobe well represented by the pseudo-second-order kinetic model. The equilibrium data were wellfitted to the Langmuir isotherm equation.
     AAL was fractionated to obtain high molecular weight lignin (LA) and low molecularweight lignin (LB). The adsorption behaviors of methylene blue (MB) onto LA, LB, andundeacetylated acetic acid lignin (UDL) were investigated. The amount of the MB adsorbeddepended on the initial solution pH, adsorbent dosage, adsorption time, initial MB concentration,and temperature. The kinetic data were found to be well represented by the pseudo-second-orderkinetic model. The equilibrium data were well fitted to the Langmuir isotherm equation.Thermodynamic studies indicated the adsorption of MB on to LA was spontaneous, endothermic,and irreversible. The monolayer adsorption capacities of LA, LB, and UDL for MB adsorption at30oC were63.32,40.97, and18.21mg/g, respectively.
     The lignin-based hydrogel (CSL) was prepared from sulfomethylated AAL in the presenceof epichlorohydrin as crosslinker. The adsorption behaviors of methylene blue (MB) onto thehydrogel were investigated. The results showed that the amount of the MB adsorbed wasinfluenced by the initial solution pH, adsorption time, and initial MB concentration. The kineticdata were found to be fit the pseudo-second-order kinetic model. The equilibrium data were wellfitted to the Langmuir and Freundlich isotherm equation. The monolayer adsorption capacities ofthe hydrogel for MB adsorption can be up to276.53mg/g at30oC.
引文
[1] Ragauskas A.J.; Williams C.K.; Davison B.H., et al. The path forward for biofuels andbiomaterials [J]. Science,2006,311(5760):484-489
    [2] Stewart D. Lignin as a base material for materials applications: Chemistry, application andeconomics [J]. Industrial Crops and Products,2008,27(2):202-207
    [3] Liu F.; Tao G.L.; Zhuo R.X. Synthesis of thermal phase separating reactive polymers andtheir applications in immobilized enzymes [J]. Polymer Journal,1993,25(6):561-567
    [4] Okano T.; Kikuchi A.; Sakurai Y., et al. Temperature-responsive poly(N-isopropylacrylamide) as a modulator for alteration of hydrophilic/hydrophobicsurface properties to control activation/inactivation of platelets [J]. Journal of ControlledRelease,1995,36(1-2):125-133
    [5] Cicek H.; Tuncel A. Immobilization of alpha-chymotrypsin in thermally reversibleisopropylacrylamide-hydroxyethylmethacrylate copolymer gel [J]. Journal of PolymerScience Part A-Polymer Chemistry,1998,36(4):543-552
    [6] Dimitrov I.; Trzebicka B.; Müller A.H.E., et al. Thermosensitive water-solublecopolymers with doubly responsive reversibly interacting entities [J]. Progress inPolymer Science,2007,32(11):1275-1343
    [7] Qiu Y.; Park K. Environment-sensitive hydrogels for drug delivery [J]. Advanced DrugDelivery Reviews,2001,53(3):321-339
    [8] Hirokawa Y.; Tanaka T. Volume phase transition in a nonionic gel [J]. The Journal ofchemical physics,1984,81(12):6379-6380
    [9] Takei Y.G.; Aoki T.; Sanui K., et al. Temperature-responsive bioconjugates.2. Moleculardesign for temperature-modulated bioseparations [J]. Bioconjugate Chemistry,1993,4(5):341-346
    [10] Yin X.; Hoffman A.S.; Stayton P.S. Poly (N-isopropylacrylamide-co-propylacrylic acid)copolymers that respond sharply to temperature and pH [J]. Biomacromolecules,2006,7(5):1381-1385
    [11] Feil H.; Bae Y.H.; Feijen J., et al. Effect of comonomer hydrophilicity and ionization onthe lower critical solution temperature of N-isopropylacrylamide copolymers [J].Macromolecules,1993,26(10):2496-2500
    [12] Jeong B.; Kim S.W.; Bae Y.H. Thermosensitive sol-gel reversible hydrogels [J].Advanced Drug Delivery Reviews,2002,54(1):37-51
    [13] Medeiros S.F.; Santos A.M.; Fessi H., et al. Stimuli-responsive magnetic particles forbiomedical applications [J]. International Journal of Pharmaceutics,2011,403(1):139-161
    [14] Gupta P.; Vermani K.; Garg S. Hydrogels: From controlled release to pH-responsive drugdelivery [J]. Drug Discovery Today,2002,7(10):569-579
    [15]孙姣霞;罗彦凤;彭辉, et al.一种pH敏感性智能水凝胶的合成与表征[J].高分子材料科学与工程,2009,25(9):138-141
    [16] Chauhan G.S.; Lal H.; Mahajan S. Synthesis, characterization, and swelling responses ofpoly(N-isopropylacrylamide)-and hydroxypropyl cellulose-based environmentallysensitive biphasic hydrogels [J]. Journal of Applied Polymer Science,2004,91(1):479-488
    [17] Silva T.C.F.; Habibi Y.; Colodette J.L., et al. The influence of the chemical and structuralfeatures of xylan on the physical properties of its derived hydrogels [J]. Soft Matter,2011,7(3):1090-1099
    [18] Chang C.Y.; Zhang L.N. Cellulose-based hydrogels: Present status and applicationprospects [J]. Carbohydrate Polymers,2011,84(1):40-53
    [19] Edlund U.; Albertsson A.C. A microspheric system: Hemicellulose-based hydrogels [J].Journal of Bioactive and Compatible Polymers,2008,23(2):171-186
    [20] Cai J.; Zhang L.N.; Zhou J.P., et al. Novel fibers prepared from cellulose in NaOH/ureaaqueous solution [J]. Macromolecular Rapid Communications,2004,25(17):1558-1562
    [21] Swatloski R.P.; Spear S.K.; Holbrey J.D., et al. Dissolution of cellose with ionic liquids[J]. Journal of the American Chemical Society,2002,124(18):4974-4975
    [22] Mikkola J.P.; Kirilin A.; Tuuf J.C., et al. Ultrasound enhancement of cellulose processingin ionic liquids: From dissolution towards functionalization [J]. Green Chemistry,2007,9(11):1229-1237
    [23] Song Y.B.; Sun Y.X.; Zhang X.Z., et al. Homogeneous quaternization of cellulose inNaOH/urea aqueous solutions as gene carriers [J]. Biomacromolecules,2008,9(8):2259-2264
    [24] Heinze T.; Schwikal K.; Barthel S. Ionic liquids as reaction medium in cellulosefunctionalization [J]. Macromolecular Bioscience,2005,5(6):520-525
    [25] Zhou J.P.; Chang C.Y.; Zhang R.P., et al. Hydrogels prepared from unsubstitutedcellulose in NaOH/urea aqueous solution [J]. Macromolecular Bioscience,2007,7(6):804-809
    [26] Chang C.Y.; Duan B.; Zhang L.N. Fabrication and characterization of novelmacroporous cellulose-alginate hydrogels [J]. Polymer,2009,50(23):5467-5473
    [27] Chang C.Y.; He M.; Zhou J.P., et al. Swelling behaviors of pH-and salt-responsivecellulose-based hydrogels [J]. Macromolecules,2011,44(6):1642-1648
    [28] Marsano E.; Bianchi E.; Viscardi A. Stimuli responsive gels based on interpenetratingnetwork of hydroxy propylcellulose and poly (N-isopropylacrylamide)[J]. Polymer,2004,45(1):157-163
    [29] Chen Y.; Ding D.; Mao Z.Q., et al. Synthesis of hydroxypropylcellulose-poly (acrylicacid) particles with semi-interpenetrating polymer network structure [J].Biomacromolecules,2008,9(10):2609-2614
    [30] Peng Z.Y.; Chen F.G. Synthesis and properties of temperature-sensitive hydrogel basedon hydroxyethyl cellulose [J]. International Journal of Polymeric Materials,2010,59(6):450-461
    [31] Xu F.J.; Zhu Y.; Liu F.S., et al. Comb-shaped conjugates comprising hydroxypropylcellulose backbones and low-molecular-weight Poly (N-isopropylacryamide) sidechains for smart hydrogels: Synthesis, characterization, and biomedical applications [J].Bioconjugate Chemistry,2010,21(3):456-464
    [32]詹怀宇.纤维化学与物理科学出版社,2005:271-275
    [33]任俊莉;彭新文;孙润仓, et al.半纤维素功能材料——水凝胶[J].中国造纸学报,2012,26(4):49-53
    [34] Li X.M.; Pan X.J. Hydrogels based on hemicellulose and lignin from lignocellulosebiorefinery: A mini-review [J]. Journal of Biobased Materials and Bioenergy,2010,4(4):289-297
    [35] Gabrielii I.; Gatenholm P. Preparation and properties of hydrogels based onhemicellulose [J]. Journal of Applied Polymer Science,1998,69(8):1661-1667
    [36] Gabrielii I.; Gatenholm P.; Glasser W.G., et al. Separation, characterization andhydrogel-formation of hemicellulose from aspen wood [J]. Carbohydrate Polymers,2000,43(4):367-374
    [37] Karaaslan A.M.; Tshabalala M.A.; Buschle-Diller G. Woodhemicellulose/chitosan-based semi-interpenetrating network hydrogels: Mechanical,swelling and controlled drug release properties [J]. Bioresources,2010,5(2):1036-1054
    [38] Lindblad M.S.; Albertsson A.C.; Ranucci E., et al. Biodegradable polymers fromrenewable sources: Rheological characterization of hemicellulose-based hydrogels [J].Biomacromolecules,2005,6(2):684-690
    [39] Peng X.W.; Ren J.L.; Zhong L.X., et al. Xylan-rich hemicelluloses-graft-acrylic acidionic hydrogels with rapid responses to pH, salt, and organic solvents [J]. Journal ofAgricultural and Food Chemistry,2011,59(15):8208-8215
    [40]冯玉.静电纺丝法制备木质素纳米碳纤维的研究[D].广州:华南理工大学,2010
    [41]王鹏;谢益民;范建云, et al.乙酸木质素-聚醚型聚氨酯的合成及其特性研究[J].塑料工业,2006,(8):4-6
    [42] Pan X.J.; Sano Y. Fractionation of wheat straw by atmospheric acetic acid process [J].Bioresource Technology,2005,96(11):1256-1263
    [43] Pan X.J.; Sano Y. Acetic acid pulping of wheat straw under atmospheric pressure [J].Journal of Wood Science,1999,45(4):319-325
    [44] Sano Y.; Shimamoto S.; Enoki M., et al. Fractionation of woody biomass with boilingaqueous acetic acid containing a small amount of mineral acid at atmospheric pressure:Reactivity of arylglycerol-β-aryl ethers in lignins with aqueous acetic acid containingH2SO4[J]. Journal of Wood Science,1998,44(3):217-221
    [45] Sarkanen K.V. Chemistry of solvent pulping [J]. Tappi Journal,1990,73(10):215-219
    [46]吴辉燃;谌凡更;钱磊磊.碱抽提木质素制备磺化木质素的研究[J].造纸科学与技术,2011,(5):27-30
    [47] Yasuda S.; Asano K. Preparation of strongly acidic cation-exchange resins fromgymnosperm acid hydrolysis lignin [J]. Journal of Wood Science,2000,46(6):477-479
    [48]冯攀;谌凡更.乙酸木质素分级产物制备环氧树脂的研究[J].林产化学与工业,2011,31(4):7-12
    [49] Khan M.A.; Ashraf S.M.; Malhotra V.P. Development and characterization of a woodadhesive using bagasse lignin [J]. International Journal of Adhesion and Adhesives,2004,24(6):485-493
    [50] Parajuli D.; Inoue K.; Kawakita H., et al. Recovery of precious metals using lignophenolcompounds [J]. Minerals Engineering,2008,21(1):61-64
    [51] Meister J.J.; Chen M.J. Graft1-phenylethylene copolymers of lignin.1. Synthesis andproof of copolymerization [J]. Macromolecules,1991,24(26):6843-6848
    [52] Meister J.J.; Patil D.R.; Channell H. Synthesis of graft copolymers from lignin and2-propenamide and applications of the products to drilling muds [J]. Industrial&Engineering Chemistry Product Research and Development,1985,24(2):306-313
    [53] Yue X.P.; Chen F.G.; Zhou X.S. Synthesis of lignin-g-MMA and the utilization of thecopolymer in PVC/wood composites [J]. Journal of Macromolecular Science, Part B,2012,51(2):242-254
    [54] Hüttermann A.; Mai C.; Kharazipour A. Modification of lignin for the production of newcompounded materials [J]. Applied Microbiology and Biotechnology,2001,55(4):387–394
    [55] Mai C.; Schormann W.; Hüttermann A. Chemo-enzymatically induced copolymerizationof phenolics with acrylate compounds [J]. Applied Microbiology and Biotechnology,2001,55(2):177-186
    [56] Kim Y.S.; Kadla J.F. Preparation of a thermoresponsive lignin-based biomaterial throughatom transfer radical polymerization [J]. Biomacromolecules,2010,11(4):981-988
    [57] Wang J.F.; Ya K.J.; Korich A.L., et al. Combining renewable gum rosin and lignin:Towards hydrophobic polymer composites by controlled polymerization [J]. Journal ofPolymer Science Part A-Polymer Chemistry,2011,49(17):3728-3738
    [58] Okano T.; Bae Y.H.; Jacobs H., et al. Thermally on-off switching polymers for drugpermeation and release [J]. Journal of Controlled Release,1990,11(1-3):255-265
    [59] Bae Y.H.; Okano T.; Kim S.W. Insulin permeation through thermo-sensitive hydrogels[J]. Journal of Controlled Release,1989,9(3):271-279
    [60] Lee W.F.; Yeh Y.C. Studies on preparation and properties of NIPAAm/hydrophobicmonomer copolymeric hydrogels [J]. European Polymer Journal,2005,41(10):2488-2495
    [61] Yamamoto H.; Amaike M.; Saitoh H., et al. Gel formation of lignin and biodegradationof the lignin gels by microorganisms [J]. Materials Science&EngineeringC-Biomimetic and Supramolecular Systems,2000,7(2):143-147
    [62] Chen L.; Tang C.Y.; Ning N.Y., et al. Preparation and properties of chitosan/lignincomposite films [J]. Chinese Journal of Polymer Science,2009,27(5):739-746
    [63] Mansur H.S.; Mansur A.a.P.; Bicallho S.M.C.M. Lignin-hydroxyapatite/tricalciumphosphate biocomposites: SEM, EDX and FTIR characterization [J]. Key EngineeringMaterials,2005,284:745-748
    [64] Martinez M M.; Pacheco B A.; Vargas V M. Histological evaluation of thebiocompatibility and bioconduction of a hydroxyapatite-lignin compound inserted inrabbits shinbones [J]. Revista MVZ Córdoba,2009,14(1):1624-1632
    [65] Lindstr m T.; S remark C.; Westman L. Lignin gels as a medium in gel permeationchromatography [J]. Journal of Applied Polymer Science,1977,21(11):2873-2876
    [66] Lindstr m T.; Westman L. The colloidal behaviour of kraft lignin III. Swelling behaviourand mechanical properties of kraft lignin gels [J]. Colloid&Polymer Science,1980,258(4):390-397
    [67] Lindstr m T.; Westman L. The colloidal behaviour of kraft lignin IV. Syneresis andhysteresis in swelling of kraft lignin gels [J]. Colloid&Polymer Science,1982,260(6):594-598
    [68] Parajuli D.; Inoue K.; Ohto K., et al. Adsorption of heavy metals on crosslinkedlignocatechol: a modified lignin gel [J]. Reactive&Functional Polymers,2005,62(2):129-139
    [69] Nishida M.; Uraki Y.; Sano Y. Lignin gel with unique swelling property [J]. BioresourceTechnology,2003,88(1):81-83
    [70] Uraki Y.; Imura T.; Kishimoto T., et al. Body temperature-responsive gels derived fromhydroxypropylcellulose bearing lignin [J]. Carbohydrate Polymers,2004,58(2):123-130
    [71] Uraki Y.; Hashida K.; Sano Y. Self-assembly of pulp derivatives as amphiphiliccompounds: Preparation of amphiphilic compound from acetic acid pulp and itsproperties as an inclusion compound [J]. Holzforschung-International Journal of theBiology, Chemistry, Physics and Technology of Wood,1997,51(1):91-97
    [72] Uraki Y.; Imura T.; Kishimoto T., et al. Body temperature-responsive gels derived fromhydroxypropylcellulose bearing lignin II: Adsorption and release behavior [J]. Cellulose,2006,13(3):225-234
    [73] Yang J.Y.; Zhou X.S.; Fang J. Synthesis and characterization of temperature sensitivehemicellulose-based hydrogels [J]. Carbohydrate Polymers,2011,86(3):1113-1117
    [74] Yang Y.; Ladisch M.R.; Ladisch C.M. Alcohol adsorption on softwood lignin fromaqueous solutions [J]. Biotechnology and Bioengineering,1990,35(3):268-278
    [75] Griffith W.L.; Compere A.L. Separation of alcohols from solution by lignin gels [J].Separation Science and Technology,2008,43(9-10):2396-2405
    [76] Parajuli D.; Adhikari C.R.; Kuriyama M., et al. Selective recovery of gold by novellignin-based adsorption gels [J]. Industrial&Engineering Chemistry Research,2006,45(1):8-14
    [77] Pe aranda A J.E.; Sabino M.A. Effect of the presence of lignin or peat in IPN hydrogelson the sorption of heavy metals [J]. Polymer Bulletin,2010,65(5):495-508
    [78] Peng Z.Y.; Chen F.G. Synthesis of polyurethane-based hydrogels from liquefied bagasse[J]. Journal of Biobased Materials and Bioenergy,2010,4(4):346-352
    [79] Wu Y.X.; Zhou J.H.; Ye C.C., et al. Optimized synthesis oflignosulphonate-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogel based onthe taguchi method [J]. Iranian Polymer Journal,2010,19(7):511-520
    [80]彭志远.基于植物纤维及其组分的水凝胶合成与性能研究[D].广州:华南理工大学,2010
    [81] Kok F.N.; Wilkins R.M.; Cain R.B., et al. Controlled release of aldicarb from ligninloaded ionotropic hydrogel microspheres [J]. Journal of Microencapsulation,1999,16(5):613-623
    [82] Peng Z.Y.; Chen F.G. Synthesis and properties of lignin-based polyurethane hydrogels[J]. International Journal of Polymeric Materials,2011,60(9):674-683
    [83] Raschip I.E.; Vasile C.; Ciolacu D., et al. Semi-interpenetrating polymer networkscontaining polysaccharides. I. Xanthan/lignin networks [J]. High Performance Polymers,2007,19(5-6):603-620
    [84] Raschip I.E.; Hitruc E.G.; Oprea A.M., et al. In vitro evaluation of the mixedxanthan/lignin hydrogels as vanillin carriers [J]. Journal of Molecular Structure,2011,1003(1-3):67-74
    [85] Ciolacu D.; Oprea A.M.; Anghel N., et al. New cellulose-lignin hydrogels and theirapplication in controlled release of polyphenols [J]. Materials Science and Engineering:C,2011,32(3):452-463
    [86] Jin Z.F.; Yu Y.M.; Shao S.L., et al. Lignin as a cross-linker of acrylic acid-graftedcarboxymethyl lignocellulose [J]. Journal of Wood Science,2010,56(6):470-476
    [87] El-Zawawy W.K. Preparation of hydrogel from green polymer [J]. Polymers forAdvanced Technologies,2005,16(1):48-54
    [88] Passauer L.; Fischer K.; Liebner F. Activation of pine kraft lignin by Fenton-typeoxidation for cross-linking with oligo (oxyethylene) diglycidyl ether [J]. Holzforschung,2011,65(3):319-326
    [89] Passauer L.; Fischer K.; Liebner F. Preparation and physical characterization of stronglyswellable oligo (oxyethylene) lignin hydrogels [J]. Holzforschung,2011,65(3):309-317
    [90] Meister J.J. Modification of lignin [J]. Journal of Macromolecular Science-PolymerReviews,2002, C42(2):235-289
    [91] Meister J.J.; Patil D.R.; Channell H. Properties and applications of lignin–acrylamidegraft copolymer [J]. Journal of Applied Polymer Science,1984,29(11):3457-3477
    [92]李建法;宋湛谦.木质素磺酸盐及其接枝产物作沙土稳定剂的研究[J].林产化学与工业,2002,22(1):17-20
    [93]刘千钧;刘明华;詹怀宇, et al.两性木素絮凝剂用于模拟染料废水的脱色处理研究[J].中山大学学报:自然科学版,2006,44(A02):22-25
    [94]穆环珍;郑涛;黄衍初, et al.木质素接枝改性影响因素的研究[J].环境化学,2005,24(004):443-445
    [95] Uraki Y.; Sano Y.; Sasaya T. Cooking of hardwoods with organosolv pulping in aqueousacetic acid containing sulfuric acid at atmospheric pressure [J]. Japan Tappi J,1991,45(9):1018-1024
    [96]岳小鹏.木质素在PVC复合材料中的应用研究[D].广州:华南理工大学,2011
    [97] Huang X.; Lowe T.L. Biodegradable thermoresponsive hydrogels for aqueousencapsulation and controlled release of hydrophilic model drugs [J].Biomacromolecules,2005,6(4):2131-2139
    [98] Boeriu C.G.; Bravo D.; Gosselink R.J.A., et al. Characterisation of structure-dependentfunctional properties of lignin with infrared spectroscopy [J]. Industrial Crops andProducts,2004,20(2):205-218
    [99] Pan X.J.; Sano Y. Atmospheric acetic acid pulping of rice straw iv: Physico-chemicalcharacterization of acetic acid lignins from rice straw and woods. Part2. Chemicalstructures [J]. Holzforschung,1999,53(6):590-596
    [100] Meister J.J.; Patil D.R. Solvent effects and initiation mechanisms for graftpolymerization on pine lignin [J]. Macromolecules,1985,18(8):1559-1564
    [101] Meister J.J.; Patil D.R.; Field L.R., et al. Synthesis and characterization of graftcopolymers from lignin and2-propenamide [J]. Journal of Polymer Science: PolymerChemistry Edition,1984,22(9):1963-1980
    [102] Tastet D.; Save M.; Charrier F., et al. Functional biohybrid materials synthesized viasurface-initiated MADIX/RAFT polymerization from renewable natural wood fiber:Grafting of polymer as non leaching preservative [J]. Polymer,2011,52(3):606-616
    [103] Chen M.J.; Gunnells D.; Gardner D.J., et al. Graft copolymers of lignin with1-ethenylbenzene.2. Properties [J]. Macromolecules,1996,29(5):1389-1398
    [104]武书彬;向冰莲;刘江燕, et al.工业碱木素热裂解特性研究[J].北京林业大学学报,2008,(05):143-147
    [105] Eeckman F.; Mo s A.J.; Amighi K. Evaluation of a new controlled-drug deliveryconcept based on the use of thermoresponsive polymers [J]. International Journal ofPharmaceutics,2002,241(1):113-125
    [106] Hsiue G.H.; Chang R.W.; Wang C.H., et al. Development of in situ thermosensitivedrug vehicles for glaucoma therapy [J]. Biomaterials,2003,24(13):2423-2430
    [107] Kaneko Y.; Nakamura S.; Sakai K., et al. Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels usingpoly (ethylene oxide) graft chains [J]. Macromolecules,1998,31(18):6099-6105
    [108] Ramkissoon-Ganorkar C.; Liu F.; Baudys M., et al. Modulating insulin-release profilefrom pH/thermosensitive polymeric beads through polymer molecular weight [J].Journal of Controlled Release,1999,59(3):287-298
    [109] Park T.G. Temperature modulated protein release from pH/temperature-sensitivehydrogels [J]. Biomaterials,1999,20(6):517-521
    [110] Zhang X.Z.; Jo Lewis P.; Chu C.C. Fabrication and characterization of a smart drugdelivery system: Microsphere in hydrogel [J]. Biomaterials,2005,26(16):3299-3309
    [111] Li X.Y.; Wu W.H.; Liu W.Q. Synthesis and properties of thermo-responsive guargum/poly (N-isopropylacrylamide) interpenetrating polymer network hydrogels [J].Carbohydrate Polymers,2008,71(3):394-402
    [112] Zhang X.; Zhuo R. Synthesis of temperature-sensitive poly (N-isopropylacrylamide)hydrogel with improved surface property [J]. Journal of Colloid and Interface Science,2000,223(2):311-313
    [113] Yoshida R.; Okuyama Y.; Sakai K., et al. Sigmoidal swelling profiles fortemperature-responsive poly (N-isopropylacrylamide-co-butyl methacrylate) hydrogels[J]. Journal of Membrane Science,1994,89(3):267-277
    [114] Zhang X.Z.; Wu D.Q.; Chu C.C. Synthesis and characterization of partiallybiodegradable, temperature and pH sensitive Dex-MA/PNIPAAm hydrogels [J].Biomaterials,2004,25(19):4719-4730
    [115] Kaneko Y.; Yoshida R.; Sakai K., et al. Temperature-responsive shrinking kinetics ofpoly (N-isopropylacrylamide) copolymer gels with hydrophilic and hydrophobiccomonomers [J]. Journal of Membrane Science,1995,101(1-2):13-22
    [116] Gupta V.K. Application of low-cost adsorbents for dye removal-A review [J]. Journal ofEnvironmental Management,2009,90(8):2313-2342
    [117] Vadivelan V.; Kumar K.V. Equilibrium, kinetics, mechanism, and process design for thesorption of methylene blue onto rice husk [J]. Journal of Colloid and Interface Science,2005,286(1):90-100
    [118] Janos P.; Coskun S.; Pilarova V., et al. Removal of basic (methylene blue) and acid(egacid orange) dyes from waters by sorption on chemically treated wood shavings [J].Bioresource Technology,2009,100(3):1450-1453
    [119] Hamcerencu M.; Desbrieres J.; Popa M., et al. New unsaturated derivatives of Xanthangum: Synthesis and characterization [J]. Polymer,2007,48(7):1921-1929
    [120] Granata A.; Argyropoulos D.S.2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed andcondensed phenolic moieties in lignins [J]. Journal of Agricultural and Food Chemistry,1995,43(6):1538-1544
    [121] Hamcerencu M.; Desbrieres J.; Khoukh A., et al. Synthesis and characterization of newunsaturated esters of Gellan Gum [J]. Carbohydrate Polymers,2008,71(1):92-100
    [122] Wang L.F.; Shen S.S.; Lu S.C. Synthesis and characterization of chondroitinsulfate-methacrylate hydrogels [J]. Carbohydrate Polymers,2003,52(4):389-396
    [123]储富强.改性木质素磺酸盐/丙烯酸酯共聚乳液的制备研究[D].南京:南京林业大学,2004
    [124] Liu C.F.; Sun R.C.; Qin M.H., et al. Chemical modification of ultrasound-pretreatedsugarcane bagasse with maleic anhydride [J]. Industrial Crops and Products,2007,26(2):212-219
    [125] Chang S.T.; Chang H.T. Comparisons of the photostability of esterified wood [J].Polymer Degradation and Stability,2001,71(2):261-266
    [126] Pu Y.; Cao S.; Ragauskas A.J. Application of quantitative31P NMR in biomass ligninand biofuel precursors characterization [J]. Energy&Environmental Science,2011,4(9):3154-3166
    [127] Xie H.; King A.; Kilpelainen I., et al. Thorough chemical modification of wood-basedlignocellulosic materials in ionic liquids [J]. Biomacromolecules,2007,8(12):3740-3748
    [128] Sannigrahi P.; Ragauskas A.J.; Miller S.J. Lignin structural modifications resultingfrom ethanol organosolv treatment of loblolly pine [J]. Energy&Fuels,2009,24(1):683-689
    [129] Faix O.; Argyropoulos D.S.; Robert D., et al. Determination of hydroxyl groups inlignins evaluation of1H-,13C-,31P-NMR, FTIR and wet chemical methods [J].Holzforschung,1994,48(5):387-394
    [130] Yoshida H.; M rck R.; Kringstad K., et al. Kraft lignin in polyurethanes. I. Mechanicalproperties of polyurethanes from a kraft lignin–polyether triol–polymeric MDI system[J]. Journal of Applied Polymer Science,1987,34(3):1187-1198
    [131] Lora J.H.; Glasser W.G. Recent industrial applications of lignin: A sustainablealternative to nonrenewable materials [J]. Journal of Polymers and the Environment,2002,10(1):39-48
    [132]李燕;敖日格勒;韩雁明.乙酸木质素基聚氨酯硬泡的制备与性能[J].林业科学,2011,(07):160-165
    [133] Zhang X.Z.; Wu D.Q.; Chu C.C. Effect of the crosslinking level on the properties oftemperature-sensitive poly(N-isopropylacrylamide) hydrogels [J]. Journal of PolymerScience Part B-Polymer Physics,2003,41(6):582-593
    [134] Yoshida R.; Uchida K.; Kaneko Y., et al. Comb-type grafted hydrogels with rapiddeswelling response to temperature changes [J]. Nature,1995,374(6519):240-242
    [135] Mckay G.; Porter J.; Prasad G. The removal of dye colours from aqueous solutions byadsorption on low-cost materials [J]. Water, Air,&Soil Pollution,1999,114(3):423-438
    [136] Yi J.Z.; Ma Y.Q.; Zhang L.M. Synthesis and decoloring properties of sodiumhumate/poly (N-isopropylacrylamide) hydrogels [J]. Bioresource Technology,2008,99(13):5362-5367
    [137] Yi J.Z.; Zhang L.M. Removal of methylene blue dye from aqueous solution byadsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels [J]. BioresourceTechnology,2008,99(7):2182-2186
    [138] Liu Y.; Wang W.B.; Jin Y.L., et al. Adsorption behavior of methylene blue fromaqueous solution by the hydrogel composites based on attapulgite [J]. SeparationScience and Technology,2011,46(5):858-868
    [139] Ka g z H.; Durmus A. Dye removal by a novel hydrogel-clay nanocomposite withenhanced swelling properties [J]. Polymers for Advanced Technologies,2008,19(7):838-845
    [140] Akkaya M.; Emik S.; Gü lü G., et al. Removal of basic dyes from aqueous solutions bycrosslinked-acrylic acid/acrylamidopropane sulfonic acid hydrogels [J]. Journal ofApplied Polymer Science,2009,114(2):1150-1159
    [141] M rck R.; Yoshida H.; Kringstad K. Fractionation of kraft lignin by successiveextraction with organic solvents. I: Fonctional groups,13C-NMR-spectra and molecularweight distributions [J]. Holzforschung,1986,40(supplement):51-60
    [142] Yoshida H.; M rck R.; Kringstad K.P., et al. Fractionation of kraft lignin by successiveextraction with organic solvents. II. Thermal properties of kraft lignin fractions [J].Holzforschung,1987,41(3):171-176
    [143] Caulfield M.J.; Qiao G.G.; Solomon D.H. Some aspects of the properties anddegradation of polyacrylamides [J]. Chemical Reviews,2002,102(9):3067-3084
    [144] Leung W.M.; Axelson D.E.; Van Dyke J.D. Thermal degradation of polyacrylamideand poly (acrylamide-co-acrylate)[J]. Journal of Polymer Science Part A: PolymerChemistry,1987,25(7):1825-1846
    [145] Zohra B.; Aicha K.; Fatima S., et al. Adsorption of Direct Red2on bentonite modifiedby cetyltrimethylammonium bromide [J]. Chemical Engineering Journal,2008,136(2):295-305
    [146] Bestani B.; Benderdouche N.; Benstaali B., et al. Methylene blue and iodine adsorptiononto an activated desert plant [J]. Bioresource Technology,2008,99(17):8441-8444
    [147] Pavan F.A.; Mazzocato A.C.; Gushikem Y. Removal of methylene blue dye fromaqueous solutions by adsorption using yellow passion fruit peel as adsorbent [J].Bioresource Technology,2008,99(8):3162-3165
    [148] Vijayaraghavan K.; Mao J.; Yun Y.S. Biosorption of methylene blue from aqueoussolution using free and polysulfone-immobilized Corynebacterium glutamicum: Batchand column studies [J]. Bioresource Technology,2008,99(8):2864-2871
    [149] Khare S.K.; Panday K.K.; Srivastava R.M., et al. Removal of victoria blue fromaqueous solution by fly ash [J]. Journal of Chemical Technology&Biotechnology,1987,38(2):99-104
    [150] Sivaraj R.; Namasivayam C.; Kadirvelu K. Orange peel as an adsorbent in the removalof acid violet17(acid dye) from aqueous solutions [J]. Waste Management,2001,21(1):105-110
    [151] Kannan N.; Sundaram M.M. Kinetics and mechanism of removal of methylene blue byadsorption on various carbons--A comparative study [J]. Dyes and Pigments,2001,51(1):25-40
    [152] Ho Y.S.; Mckay G. Pseudo-second order model for sorption processes [J]. ProcessBiochemistry,1999,34(5):451-465
    [153] Ho Y.S. Removal of copper ions from aqueous solution by tree fern [J]. Water Research,2003,37(10):2323-2330
    [154] Crini G.; Badot P.M. Application of chitosan, a natural aminopolysaccharide, for dyeremoval from aqueous solutions by adsorption processes using batch studies: A reviewof recent literature [J]. Progress in Polymer Science,2008,33(4):399-447
    [155] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J].Journal of the American Chemical Society,1918,40(9):1361-1403
    [156] Freundlich H. Over the adsorption in solution [J]. Journal of Physical Chemistry,1906,57:385-470
    [157] Chen H.; Zhao J.; Wu J.Y., et al. Isotherm, thermodynamic, kinetics and adsorptionmechanism studies of methyl orange by surfactant modified silkworm exuviae [J].Journal of Hazardous Materials,2011,192(1):246-254
    [158] Harmita H.; Karthikeyan K.G.; Pan X.J. Copper and cadmium sorption onto kraft andorganosolv lignins [J]. Bioresource Technology,2009,100(24):6183-6191
    [159] Dizhbite T.; Zakis G.; Kizima A., et al. Lignin—a useful bioresource for the productionof sorption-active materials [J]. Bioresource Technology,1999,67(3):221-228
    [160] Guo X.Y.; Zhang S.Z.; Shan X.Q. Adsorption of metal ions on lignin [J]. Journal ofHazardous Materials,2008,151(1):134-142
    [161] Febrianto J.; Kosasih A.N.; Sunarso J., et al. Equilibrium and kinetic studies inadsorption of heavy metals using biosorbent: A summary of recent studies [J]. Journal ofHazardous Materials,2009,162(2-3):616-645
    [162] Liu M.H.; Huang J.H. Removal and recovery of cationic dyes from aqueous solutionsusing spherical sulfonic lignin adsorbent [J]. Journal of Applied Polymer Science,2006,101(4):2284-2291
    [163] Da Silva L.G.; Ruggiero R.; Gontijo P.D.M., et al. Adsorption of Brilliant Red2BE dyefrom water solutions by a chemically modified sugarcane bagasse lignin [J]. ChemicalEngineering Journal,2011,168(2):620-628
    [164] Consolin Filho N.; Venancio E.; Barriquello M., et al. Methylene blue adsorption ontomodified lignin from sugar cane bagasse [J]. Eclética Química,2007,32(4):63-70
    [165] Sundin J. Precipitation of kraft lignin under alkaline conditions [D].Stockholm: RoyalInstitute of Technology2000
    [166] Kubo S.; Uraki Y.; Sano Y. Preparation of carbon fibers from softwood lignin byatmospheric acetic acid pulping [J]. Carbon,1998,36(7-8):1119-1124
    [167] Ncibi M.C.; Mahjoub B.; Seffen M. Kinetic and equilibrium studies of methylene bluebiosorption by Posidonia oceanica (L.) fibres [J]. Journal of Hazardous Materials,2007,139(2):280-285
    [168] Yao Y.J.; Xu F.F.; Chen M., et al. Adsorption behavior of methylene blue on carbonnanotubes [J]. Bioresource Technology,2010,101(9):3040-3046
    [169] Banerjee S.; Dastidar M. Use of jute processing wastes for treatment of wastewatercontaminated with dye and other organics [J]. Bioresource Technology,2005,96(17):1919-1928
    [170] Bhattacharyya K.G.; Sharma A. Kinetics and thermodynamics of methylene blueadsorption on Neem (Azadirachta indica) leaf powder [J]. Dyes and Pigments,2005,65(1):51-59
    [171] Akar T.; Divriklioglu M. Biosorption applications of modified fungal biomass fordecolorization of Reactive Red2contaminated solutions: Batch and dynamic flow modestudies [J]. Bioresource Technology,2010,101(19):7271-7277
    [172]梁文学;邱学青;杨东杰, et al.麦草碱木质素的氧化和磺甲基化改性[J].华南理工大学学报(自然科学版),2007,(05):117-121
    [173] Bai Y.X.; Li Y.F. Preparation and characterization of crosslinked porous cellulose beads[J]. Carbohydrate Polymers,2006,64(3):402-407
    [174] Chang C.Y.; Duan B.; Cai J., et al. Superabsorbent hydrogels based on cellulose forsmart swelling and controllable delivery [J]. European Polymer Journal,2010,46(1):92-100
    [175] De Miguel I.; Rieumajou V.; Betbeder D. New methods to determine the extent ofreaction of epichlorohydrin with maltodextrins [J]. Carbohydrate Research,1999,319(1-4):17-23
    [176] Silva D.A.; Feitosa J.; Maciel J.S., et al. Characterization of crosslinked cashew gumderivatives [J]. Carbohydrate Polymers,2006,66(1):16-26
    [177] Chang C.Y.; Lue A.; Zhang L.N. Effects of crosslinking methods on structure andproperties of cellulose/PVA hydrogels [J]. Macromolecular Chemistry and Physics,2008,209(12):1266-1273
    [178]陈敏;陈嘉翔.关于电导滴定法测定浆中磺酸基含量若干问题的探讨[J].中国造纸,1991,(6):49-51
    [179] Beatson R.P. Determination of sulfonate groups and total sulfur [M].Berlin-Herdelberg:Springer-Verlag,1992:473-483
    [180] Ouyang X.P.; Ke L.X.; Qiu X.Q., et al. Sulfonation of alkali lignin and its potential usein dispersant for cement [J]. Journal of Dispersion Science and Technology,2009,30(1):1-6
    [181] Ouyang X.P.; Lin Z.X.; Yang D.J., et al. Chemical modification of lignin assisted bymicrowave irradiation [J]. Holzforschung,2011,65(5):697–701
    [182]杨益琴;李忠正.改性木材硫酸盐木质素制备染料分散剂的研究[J].林产化学与工业,2003,23(4):31-36
    [183] Matsushita Y.; Inomata T.; Hasegawa T., et al. Solubilization and functionalization ofsulfuric acid lignin generated during bioethanol production from woody biomass [J].Bioresource Technology,2009,100(2):1024-1026
    [184] Yasuda S.; Hamaguchi E.; Matsushita Y., et al. Ready chemical conversion of acidhydrolysis lignin into water-soluble lignosulfonate II: Hydroxymethylation andsubsequent sulfonation of phenolized lignin model compounds [J]. Journal of WoodScience,1998,44(2):116-124
    [185]林再雄.微波协同下碱木质素的氧化反应及其动力学的研究[D].广州:华南理工大学,2011
    [186]赵斌元;胡克鳌.木质素磺酸及其衍生物红外光谱研究[J].分析化学,2000,28(6):716-719
    [187]邱学青;王斌;楼宏铭, et al.酸析木素的接枝磺化改性及减水增强作用[J].华南理工大学学报(自然科学版),2007,35(4):11-15
    [188] Malutan T.; Nicu R.; Popa V.I. Lignin modification by epoxidation [J]. Bioresources,2008,3(4):1371-1376
    [189] Zhao B.Y.; Chen G.; Liu Y., et al. Synthesis of lignin base epoxy resin and itscharacterization [J]. Journal of Materials Science Letters,2001,20(9):859-862

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700