用户名: 密码: 验证码:
石油开采区土壤污染物源解析、毒性及快速检测法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代社会经济高速发展的今天,石油天然气等资源越来越重要,然而在石油的开采加工过程中会产生重金属、石油烃、多环芳烃等多种污染物,这些物质排放到水体、大气、土壤中,对周围环境产生了一定的影响。目前有关于石油开采加工产生的有机污染物对自然水体的污染研究较多,但是对陆地石油开采区土壤污染的研究较少。本论文对选定的陆地石油开采区土壤污染进行了初步研究,测试了石油开采区土壤特征污染物含量,研究了特征污染物空间、时间等分布规律,评价了土壤污染现状,揭示了土壤发光菌毒性与污染物含量间的关系,解析了主要污染物的来源及贡献率,并建立了相对快速的特征污染物检测方法。
     通过对美国EPA相关标准方法的优化整合,建立了陆地石油开采区土壤中多环芳烃和石油烃同步前处理方法,并完成了土壤样品中12种重金属以及16种多环芳烃和石油烃的测试。结果显示除了重金属银和钡外,其他27种/类污染物均有检出。
     利用基于地统计分析方法以及地理信息系统对陆地石油开采区土壤中特征污染物的空间、时间分布规律研究发现:特征污染物重金属、PAHs等在纵向上分布比较均匀,含量在95%置信区间没有显著性差异;横向上(0-30m)多数重金属和PAHs等污染物含量差异也不是很显著(95%置信区间),但是总体趋势是距井越近PAHs含量越高,而重金属是先增加(0-6m)然后再降低;各类污染物在不同采样井土壤中含量在95%置信区间差异较大,聚驱油井周围土壤PAHs含量显著增高,水驱油井周围土壤重金属含量显著增高,随着开采时间的增长污染物含量显著增加;另外,通过回归模拟建立的线性拟合模型及对数拟合模型,均可用于模拟石油开采场地土壤PHs浓度和TOC含量关系,可以通过TOC含量推断PHs含量分布规律。
     通过比较国内外土壤污染等级评价方法优缺点,选取了适用于本论文的评价方法;通过对各国家和地区的标准值进行调研比较,选取较严格的标准值作为本论文评价标准;地累积指数法、单因子指数法以及内梅罗指数法评价结果显示所研究的石油开采区的土壤重金属污染较轻,而部分采样点的土壤均受到不同程度的PAHs的污染;内梅罗指数总体评价结果显示80%采样点污染较轻,处于清洁或者尚清洁状态,其他20%左右的采样点受到不同程度的污染。
     相关性分析结果显示土壤发光菌毒性与重金属含量显著相关,而与PAHs含量不显著,而利用主成分回归分析方法建立了土壤发光菌毒性与重金属含量关系的模拟模型,发现重金属间交互作用可以影响重金属毒性在模型中的体现,影响模型的稳健性,从而影响土壤中重金属毒性作用的评估;对数据进行缺失值处理,并对主成分回归方法进行改进,引入重金属间交互作用,建立新的模拟土壤发光菌毒性与重金属含量关系模拟模型,模拟结果显示:重金属单独对发光菌毒性作用顺序是Cd>Co>Ni>Zn>Pb>Sb>Cr>Mn>Fe,而微量重金属Cu可能促进发光菌生存;重金属间交互作用较复杂,重金属Co-Zn、Co-Cu、Co-Cd、Cu-Pb、Cd-Sb、 Pb-Zn和Pb-Cd可能对土壤中发光菌的毒性是作用相互拮抗的,而Co-Ni、Co-Cr、 Co-Sb、Co-Pb、Cu-Sb、Cu-Cd、Cd-Ni、Cd-Fe、Pb-Cr和Pb-Sb等金属对发光菌的毒性作用是协同增加的。
     通过比较选择了比值法、相关性分析以及多元统计分析的因子分析和聚类分析方法对陆地石油开采区重金属和PAHs来源进行识别,然后通过因子回归分析分别对重金属和PAHs来源贡献率进行估计,结果显示:陆地石油开采区土壤中重金属主要来源为自然来源、交通源、混合源、燃煤源、石油源和农业源,并且所占比例分别是37%、19%、18%、16%、5%和5%;解析的PAHs主要来源及比例是石油源占35%,其他依次为生物源20%、燃煤源17%、交通源16%。
     初步研究发现,基于Raman光谱技术的多环芳烃测试可以应用于多环芳烃固体的鉴定,但是目前不适合应用于土壤样品中多环芳烃的直接检测。此外在现有工作基础上,建立了基于超声辅助-分散液液微萃取-上浮溶剂固化技术(UAE/DLLME/SFO)的土壤中的十六种PAHs快速测试方法,对影响土壤中多环芳烃UAE/DLLME/SFO萃取条件进行设计和优化,建立多环芳烃回收率与影响因子回归模型,模型决定系数R2在0.66-0.86之间,均可以通过统计学检验,预测值和实验值之间的标准偏差为0.49-3.01。
     根据模型建立PAHs回收率响应曲面,确定UAE/DLLME/SFO萃取富集土壤中多环芳烃最优条件为萃取剂体积(X1)52.4μL、分散剂体积(X2)1.08mL、土壤质量(X3)0.54g、盐效应(X4)3.1%、超声时间(X5)3.1min、超声功率(X6)59kw;萃取回收率范围在40.91-94.91%(除CHR回收率9.12%外),相对偏差范围1.07-7.87%。所建立的多环芳烃测试方法的线性范围为两个数量级,检出限(S/N=3)为0.17-29.13μg/kg,相关系数为0.9864-0.9995。
     期望本论文能为我国石油开采行业HSE(健康(Health)、安全(Safety)和环境(Environment))管理体系的建立、现代石油企业管理水平的提高、以及清洁生产和可持续发展的实现提供依据。
The significance of petroleum and natural gas to modern civilization is well known. However, it is inevitable for the oilfield to be contaminated during oil exploitation. These activities of oil industries have led to release of various organic and inorganic pollutants into the soil, air, and water, including trace elements, total petroleum hydrocarbons and polycyclic aromatic hydrocarbons. Numerous studies on the organic pollutants released into the water environment by oil and gas industries have been reported and a few researches focus on the contamination in soils generated by oil exploration and exploitation. The situation is worsening and already represents a threat to the environment, to food safety and to sustainable agriculture. In some areas of China, soil already suffers from varying degrees of pollution. Soil contamination has become one of the most pressing problems in our society.
     In this study, a terrestrial oilfield was selected for the study of soil pollution. The contents of the typical soil pollutants were detected; the distribution of the typical soil pollutants were studied; grade division for soil pollutions were evaluated; the relationship between soil biotoxicity and contents of the typical soil pollutants were modeled; the source of the typical soil pollutants were identified and apportioned; and the rapid detection methods of the typical soil pollutants were developed.
     A method for extraction and separation of petroleum hydrocarbons (PHs) and polycyclic aromatic hydrocarbons (PAHs) from heavy oil-polluted soil was established. Effects of several factors such as ultrasonic power, temperature, and elution solvents on the extraction were investigated. The experimental results indicated the optimal experimental conditions were obtained as follows:300watt of ultrasonic power,0℃of extraction solvents, n-hexane and dichloromethane/n hexane (1:1, v/v) used as elution solvents. Then12heavy metals (Pb, Cd, Cu, Zn, Ni, Cr, Co, Sb, Fe, Mn, Ag, and Ba) and16PAHs and PHs were tested, and all of them were detected except the silver and barium.
     The distribution of the typical soil pollutants from the terrestrial petroleum exploitation in horizonal, longitudinal, severce years, mining types, and individual oil wells were investgated by statistical analysis and geographic information systems (GIS). The distributions of the typical soil pollutants (heavy metals, PHs, PAHs) were not significant different in longitudinal (the level of significance is0.05in0-50cm). In horizontal (0-30m), the PAHs contents in soils decrease with increasing distance from the well, the heavy metals increase with increasing distance from0to6m and then decrease with the increase in distance, but the difference was not significant in the95%confidence interval. The distributions of all the typical soil pollutants were significantly different in various oil wells (the level of significance is0.05), the PAHs contents in soils of polymer flooding wells were significantly higher than the water flooding wells, on the contrary, the heavy metals contents in soils of water flooding wells were significantly higher than the polymer flooding wells, and the contents of heavy metals and PAHs were significantly increased with the increase in severe years.
     The linear regression model and logarithmic fitting model were developed to simulate the concentrations of PHs and the contents of Total Organic Carbon (TOC) in the soil by comparing the different regression models. The determination coefficients (R2) for linear regression model and logarithmic fitting model were0.715and0.874, respectively. The relative average deviations for the predictive values were9.2%and3.3%in a validation data set of14, with the Nash-Sutcliffe simulation efficiency coefficients (NSC) of0.957for the linear regression model and0.959for the logarithmic fitting model. The established models could also provide some information for the application of spectroscopy and remote-sensing technology in the monitoring of petroleum hydrocarbons.
     The relationship between soil biotoxicity and ten heavy metals (Pb, Cd, Cu, Zn, Ni, Cr, Co, Sb, Fe, and Mn) in an oilfield from China was investigated through multivariable analysis. Multiple regression analysis was conducted to predict the toxicity of the ten heavy metals after mitigated the multicollinearity among the metals by principal component analysis. A multiple regression model was developed to reveal the relationship between the biotoxicity and the contents of ten heavy metals. It was found that the biotoxicity positive correlated with contents of Zn, Ni, Cr, Sb, Fe, and Mn, and negative correlated with contents of Cd, Co, Pb, and Cu. According to the multiple regression model, the contribution to the biotoxicity of the heavy metals in soils was in the order of Cr>Ni>Mn>Sb>Zn>Fe, and a negative influence on the biotoxicity was caused by other four heavy metals, following the order of Cd, Co, Pb, and Cu.
     The potential interactions of ten heavy metals (Pb, Cd, Cu, Zn, Ni, Cr, Co, Sb, Fe and Mn) on soil biotoxicity were also investigated using a modified principal component regression (MPCR) model in an oilfield in China. Principal component analysis (PCA) was used to mitigate the multicollinearity, and an Expectation-Maximisation (EM) algorithm was applied as a missing value treatment to make the principal components readily interpretable. It was found that the MPCR can be used to model the interaction between heavy metals in the biotoxicity analysis of the oilfield soil. According to the modified PCR model, the Cu acts as a micronutrient in the soil for the activities of luminescent marine bacteria (Photobacterium phosphoreum), and the other nine metals have a toxic effect on the bacteria. Additionally, the interactions of metals between Co-Zn, Co-Cu, Co-Cd, Cu-Pb, Cd-Sb, Pb-Zn and Pb-Cd can be described as antagonistic, while the interactions between Co-Ni, Co-Cr, Co-Sb, Co-Pb, Cu-Sb, Cu-Cd, Cd-Ni, Cd-Fe, Pb-Cr and Pb-Sb can be described as synergistic.
     Sources of the heavy metals and PAHs in soil from the terrestrial petroleum exploitation were identified by isotope ratios, correlation analysis and multivariate statistical analysis (factor analysis and cluster analysis), and the contribution rate of the main source of the typical soil pollutants were calculated by factor regression analysis. The result showed that the main sources for heavy metals in soil from the terrestrial petroleum exploitation were natural source, traffic source, mixed source, coal-fired source, petroleum source and agricultural source, and their relative contributions were37%,19%,18%,16%,5%and5%; while the major PAHs source was petroleum source with the relative contribution of35%, followed by biological source which account for20%, coal-fired source for17%, and traffic source for16%.
     Preliminary study found that the test based on the Raman spectra of polycyclic aromatic hydrocarbons can be applied to the identification of pure polycyclic aromatic hydrocarbons in solid, but not suitable for the direct detection of polycyclic aromatic hydrocarbons used in the soil samples.
     The condition of the ultrasound-assisted dispersive liquid-liquid, micro-extraction method based on solidification of floating organic drop (UAE/DLLME/SFO) technique for PAHs in soils were designed by central composite design, and optimized by the response surface plot. The ideal conditions were extractant (dodecanol) volume52.4μL, emulsifier (methanol) volume1.08mL, weight of the soil0.54g, salt effect (contain of NaCl)3.1%, ultrasonic time3.1min, ultrasonic power59kw. The optimized results of the recoveries were9.12-94.91%, with the relative standard deviation (RSD) of1.07-7.87%. Under the selected conditions, the linear range of PAHs was0.02-0.5, with the limits of detection of0.17-29.13μg/L and the correlation coefficient ranged from0.9950to0.9999.
     The author hopes this paper would provide the basis for the establishment of the HSE (Health, Safety and Environment) management system in China's petroleum mining industry, and improve management level of the modern oil companies, as well as the cleaner production and sustainable development.
引文
[1]OSE. Oil&gas and environment facts[EB/OL]. http://www.offshore-environment.com/facts.html
    [2]OPEC. OPEC Annual Statistical Bulletin[R]. Organization of the Petroleum Exporting Countries,1996
    [3]中国金融投资。全球原油消费需求明显增长[EB/OL]。http://www.kiiik.com/info/1488430.html
    [4]百度百科。石油[EB/OL]。http://api.baike.baidu.com/view/16263.htm
    [5]王才良。世界石油工业回顾与发展趋势[J]。中国石化,2009(6):60-62
    [6]梁刚。2009年全球油气储量攀升,石油产量下滑[J]。国际石油经济,2010(1):62-64
    [7]孟其林。世界主要国家石油产量排名[J]。海洋石油,2010(1):100
    [8]辛言。2000-2005年中国原油产量[J]。国际石油经济,2006(3):51
    [9]凤凰网。中国2010年天然原油产量2.03亿吨[EB/OL]。http://finance.ifeng.com/news/20110120/3263088.shtml
    [10]钱江。中国海洋石油将现“海上大庆”[J]。石油工程建设,2010(4):80
    [11]中国石油安全环保技术研究院。《石油天然气开采业污染防治技术政策(征求意见稿)》编制说明[EB/OL]。www.mep. gov.cn/gkml/hbb/bgth/.../W020091019369619477066.pdf
    [12]Weisman W. Analysis of Petroleum Hydrocarbons in Environmental Media[R]. Total Petroleum Hydrocarbon Criteria Working Group Series,1998
    [13]Speight J G. The Chemistry and Technology of Petroleum[M]. New York:Inc. New York,1991
    [14]E&P Forum, UNEP IE. Environmental Management in Oil and Gas Exploration and Production[R]. Oil Industry International Exploration and Production Forum and UNEP Industry and Environment,2001
    [15]E&P Forum. Exploration and Production (E&P) Waste Management Guidelines[R]. Oil Industry International Exploration and Production Forum, 1993
    [16]Wang L, Lee F S C, Wang X, et al. Chemical Characteristics and Source Implications of Petroleum Hydrocarbon Contaminants in the Sediments near Major Drainage Outfalls along the Coastal of Laizhou Bay, Bohai Sea, China[J]. Environmental Monitoring and Assessment,2007,125(1-3):229-237
    [17]Zhang Z, Zhou Q, Peng S, et al. Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community[J]. Science of the Total Environment,2010,408(22):5600-5605
    [18]任磊。石油勘探开发中的石油类污染及其监测分析技术[J]。中国环境监测,2004,20(3):44-47
    [19]Fernandez-Varela R, Gomez-Carracedo M, Fresco-Rivera P, et al. Monitoring photooxidation of the prestige's oil spill by attenuated total reflectance infrared spectroscopy[J]. Talanta,2006,69(2):409-417
    [20]苏增建,李敏,王颖。应用物理技术处理油田采油废水的研究[J]。安徽农业科学,2007,35(06):1742-1744
    [21]张兴儒,张士权。油气田开发建设与环境影响[M]。北京:石油工业出版社,1998
    [22]刘志群。落地油泥污染及油土分离处理的工艺研究[J]。环境保护科学,2007,33(01):33-34
    [23]Culbertson J B, Valiela I, Peacock E E, et al. Long-term biological effects of petroleum residues on fiddler crabs in salt marshes[J]. Marine Pollution Bulletin, 2007,54(7):955-962
    [24]Wyszkowski M, Ziolkowska A. Role of compost, bentonite and calcium oxide in restricting the effect of soil contamination with petrol and diesel oil on plants[J]. Chemosphere,2009,74(6):860-865
    [25]Kaimi E, Mukaidani T, Miyoshi S, et al. Ryegrass enhancement of biodegradation in diesel-contaminated soil[J]. Environmental and experimental botany,2006, 55(1-2):110-119
    [26]Wang J, Zhang Z, Su Y, et al. Phytoremediation of Petroleum Polluted Soil[J]. Petroleum Science,2008,5(2):167-171
    [27]Issoufi I, Rhykerd R L, Smiciklas K D. Seedling Growth of Agronomic Crops in Crude Oil Contaminated Soil[J]. Journal of Agronomy and Crop Science,2006, 192(4):310-317
    [28]Majagi S H, Vijaykumar K, Vasanthkaumar B. Concentration of heavy metals in Karanja reservoir, Bidar district, Karnataka, India[J]. Environmental Monitoring and Assessment,2008,138(1):273-279
    [29]Du X, Liu J, Xin J, et al. Polycyclic aromatic hydrocarbons (PAHs) in soils sampled from an oilfield:Analytical method by GC-MS, distribution, profile, sources and impacts[C]. Chengdu, China:IEEE Computer Society,2010
    [30]Fakhru'L-Razi A, Pendashteh A, Abdullah L C, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials,2009, 170(2-3):530-551
    [31]Odeyemi O, Ogunseitan O A. Petroleum industry and its pollution potential in Nigeria[J]. Oil and Petrochemical Pollution,1985,2(3):223-229
    [32]Camilli R, Bingham B, Reddy C M, et al. Method for rapid localization of seafloor petroleum contamination using concurrent mass spectrometry and acoustic positioning[J]. Marine Pollution Bulletin,2009,58(10):1505-1513
    [33]Fitzmaurice V. Legal control of pollution from North Sea petroleum development[J]. Marine Pollution Bulletin,1978,9(6):153-156
    [34]陆秀君,郭书海,孙清,等。石油污染土壤的修复技术研究现状及展望[J]。沈阳农业大学学报,2003,34(01):37-63
    [35]Kao C M, Prosser J. Evaluation of natural attenuation rate at a gasoline spill site[J]. Journal of Hazardous Materials,2001,82(3):275-289
    [36]贾建丽。石油污染土壤微生物学特性与生物修复效应研究[D]。清华大学,2005
    [37]新华网。最近40年全球严重石油泄漏事件[EB/OL]。http://news.xinhuanet.com/2010-04/30/c_1264815_1.htm
    [38]Lee C H, Lee J Y, Jang W Y, et al. Evaluation of air injection and extraction tests at a petroleum contaminated site, Korea[J]. Water, Air, & Soil Pollution,2002, 135(1):65-91
    [39]Vazquez D, Mansoori G A. Identification and measurement of petroleum precipitates [J]. Journal of Petroleum Science and Engineering,2000,26(1-4): 49-55
    [40]Mackay D. The chemistry and modeling of soil contamination with petroleum[M]. New York:John Wiley & Sons,1988
    [41]ISI WOK.10-Year Papers-Special Topic of Oil Spills[EB/OL]. http://sciencewatch.com/ana/st/oil-spills/papers10yr/
    [42]Al-Obeidani S, Al-Hinai H, Goosen M, et al. Chemical cleaning of oil contaminated polyethylene hollow fiber micro filtration membranes[J]. Journal of Membrane Science,2008,307(2):299-308
    [43]Owens E H, Taylor E, Humphrey B. The persistence and character of stranded oil on coarse-sediment beaches[J]. Marine pollution bulletin,2008,56(1):14-26
    [44]Hussain T, Gondal M A. Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy[J]. Environmental Monitoring and Assessment,2008,136:391-399
    [45]Nie M, Xian N, Fu X, et al. The interactive effects of petroleum-hydrocarbon spillage and plant rhizosphere on concentrations and distribution of heavy metals in sediments in the Yellow River Delta, China[J]. Journal of Hazardous Materials, 2010,174(1-3):156-161
    [46]Sojinu O S S, Wang J, Sonibare O O, et al. Polycyclic aromatic hydrocarbons in sediments and soils from oil exploration areas of the Niger Delta, Nigeria[J]. Journal of Hazardous Materials,2010,174(1-3):641-647
    [47]刘庆生,刘高焕,励惠国。孤东油田开发石油类污染遥感分析[J]。石油与天然气化工,2003(2):112-114
    [48]陆应诚,田庆久,王晶晶,等。海面油膜光谱响应实验研究[J]。科学通报, 2008(9):1085-1088
    [49]于五一,李进,邵芸,等。海上油气勘探开发中的溢油遥感监测技术——以渤海湾海域为例[J]。石油勘探与开发,2007(3):378-383
    [50]陈海菊,安居白,刘建鑫。基于SVM的激光诱导荧光遥感识别海面溢油[J]。应用能源技术,2008(2):6-9
    [51]赵冬至,张丰收,丛丕福,等。石油平台井喷原油登滩后的遥感探测[J]。遥感技术与应用,2000(2):130-135
    [52]阮文蔚。水上溢油事故中监测工作的探讨[J]。安全与健康,2003(19):42-43
    [53]Ocean Studies Board. Oil Spill Dispersants:Efficacy and Effects[M]. Washington, D.C.:The National Academies Press,2005
    [54]Ocean Studies Board. Oil in the Sea:Inputs, Fates, and Effects[M]. Washington, D.C.:The National Academies Press,1985
    [55]Hatje V, Barros F, Magalhas W, et al. Trace metals and benthic macrofauna distributions in Camamu Bay, Brazil:Sediment quality prior oil and gas exploration[J]. Marine Pollution Bulletin,2008,56(2):363-370
    [56]Lucas Z, Macgregor C. Characterization and source of oil contamination on the beaches and seabird corpses, Sable Island, Nova Scotia,1996-2005[J]. Marine Pollution Bulletin,2006,52(7):778-789
    [57]Pang X, Li M, Li S, et al. Origin of crude oils in the Jinhu Depression of North Jiangsu-South Yellow Sea Basin, eastern China[J]. Organic Geochemistry,2003, 34(4):553-573
    [58]Walker T R, Crittenden P D, Young S D, et al. An assessment of pollution impacts due to the oil and gas industries in the Pechora basin, north-eastern European Russia[J]. Ecological Indicators,2006,6(2):369-387
    [59]顾廷富,梁健,肖红,等。大庆油田落地原油对土壤污染的研究[J]。环境科学与管理,2007(9):50-52
    [60]孙清,陆秀君,梁成华。土壤的石油污染研究进展[J]。沈阳农业大学学报,2002(5):390-393
    [61]李兴伟。石油类有机污染物在土壤中迁移数值模拟[D]。大庆石油学院,2005
    [62]楚伟华。石油污染物在土壤中迁移及转化研究[D]。大庆:大庆石油学院,2006
    [63]王天培。陆地石油开发建设项目生态影响评价分析[EB/OL]。http://www.china-epc. cn/gqt/qnzs/201006/t20100622_191183.htm
    [64]刘五星,骆永明,滕应,等。石油污染土壤的生态风险评价和生物修复Ⅰ一株具有乳化石油能力的细菌分离鉴定[J]。土壤学报,2006(3):461-466
    [65]刘五星,骆永明,滕应,等。石油污染土壤的生态风险评价和生物修复Ⅲ.石油污染土壤的植物—微生物联合修复[J]。土壤学报,2008(5):994-999
    [66]刘五星,骆永明,滕应,等。石油污染土壤的生态风险评价和生物修复Ⅱ.石油污染土壤的理化性质和微生物生态变化研究[J]。土壤学报,2007(5):848-853
    [67]EARLY。环境优先污染物和优先监测[EB/OL]。http://www.erlish.com/htmlstyle/articl einfo_291809.html
    [68]吕毅。对石油化工企业信息化建设中技术标准和规范的认识[J]。石化盈科视窗,2007(4):22-23
    [69]付贵生。美国石油协会(API)及其主要标准类目简介[J]。安全、环境和健康,2001,1(16):5-6
    [70]李玉喜。加拿大阿尔伯达省油气管理[J]。国土资源情报,2004,2010(11):41-43
    [71]瑞欧科技。编写符合中国GHS等国标的MSDS[EB/OL]。 http://www.reach24h.cn/a/china-reach/services/2010/0618/china-msds.html
    [72]经贸委。GB16483-2000化学品安全技术说明书编写规定范围中华人民共和国经济贸易委员会,2000
    [73]湖北安全生产信息网。化学品安全说明书(Material Safety Data Sheet) [EB/OL]。 http://www.hbsafety.cn/MSDS/
    [74]傅德黔,孙宗光。中国水中优先控制污染物黑名单筛选程序[J]。中国环境监测,1990,6(5):48-50
    [75]S T, W B G. Bioformation of polycyclic aromatic hydrocarbons in soil under oxygen deficient conditions[J]. Soil Biology and Biochemistry,2002(34): 733-735
    [76]von Steiger B, Webster R, Schulin R, et al. Mapping heavy metals in polluted soil by disjunctive kriging[J]. Environmental pollution,1996,94(2):205-215
    [77]Shu T. Factor score mapping of soil trace element contents for the Shenzhen area[J]. Water,Air,and Soil Pollution,1998,102:415-425
    [78]G. W J, M. W R, A. N W. Soil zinc map of the USA using geostatistics and geographic information systems[J]. Soil Science Society of America journal, 1997(61):185-194
    [79]王学军,邓宝山。北京东郊污灌区表层土壤微量元素的小尺度空间结构特征[J]。环境科学学报,1997,17(4):412-416
    [80]陶澎,邓宝山,陈伟元。深圳地区土壤汞含量分布与污染[J]。土壤学报,1993,13(1):35-38
    [81]魏叶敏。GIS技术支持下的重庆土壤重金属元素污染评价[D]。成都理工大学,2009
    [82]王波,毛任钊。基于kriging法和GIS技术的迁安市农田重金属污染评价[J]。 农业环境科学学报,2006,25(增刊):561-564
    [83]Shi J, Wang H. Spatial distribution of heavy metal in soils a case Study of Changxing,China[J]. EnvironGeol,2007(52):1-10
    [84]李思米,卞新民。土壤重金属Pb含量空间分布及空间聚集性研究[J]。江西农业学报,2005,17(2):34-37
    [85]徐建,林玉锁,金鑫,等。应用斑马鱼和凡纳对虾诊断污染场地污水的生物毒性[J]。环境监测管理与技术,2008,20(5):52-55
    [86]孙铁珩,宋玉芳。土壤污染的生态毒理诊断[J]。环境科学学报,2002,22(6):689-695
    [87]Gong P, Gasparrini P, Rho D, et al. An in situ respirometric technique to measure pollution-induced microbial community tolerance in soils contaminated with 2,4, 6-trinitrotoluene[J]. Ecotoxicology and Environmental Safety,2000,47(1): 96-103
    [88]Gong P, Wilke B M, Fleischmann S. Soil-Based Phytotoxicity of 2,4,6-Trinitrotoluene (TNT) to Terrestrial Higher Plants[J]. Archives of Environmental Contamination and Toxicology,1999,36(2):152
    [89]李丽君,刘振乾,徐国栋,等。工业废水的鱼类急性毒性效应研究[J]。生态科学,2006,25(1):43-47
    [90]于晓丽,李秀珍。用发光菌评价油田采油污水综合毒性[J]。石油与天然气化工,2002,31(2):101-103
    [91]钟宇红,房春生,邱立民,等。扫描电镜分析在大气颗粒物源解析中的应用[J]。吉林大学学报(地球科学版),2008(3):473-478
    [92]Daisey J M. A new approach to the identification of sources of airborne mutagens and carcinogens:Receptor source apportionment modeling[J]. Environment InternationalGenotoxic Air Pollutants,1985,11(2-4):285-291
    [93]Fernandez A J, Ternero M, Barragan F J, et al. An approach to characterization of sources of urban airborne particles through heavy metal speciation[J]. Chemosphere-Global Change Science,2000,2(2):123-136
    [94]Manoli E, Voutsa D, Samara C. Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece[J]. Atmospheric Environment,2002,36(6):949-961
    [95]Larsen R K, Baker J E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere:A comparison of three methods[J]. Environmental Science & Technology,2003,37(9):1873-1881
    [96]Li J, Zhang G, Li X D, et al. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China[J]. Science of The Total Environment,2006,355(1-3):145-155
    [97]Harrison R M, Smith D, Luhana L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK[J]. Environmental Science & Technology, 1996, 30(3): 825-832
    [98]Doong R, Lin Y. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan[J]. Water Research, 2004, 38(7): 1733-1744
    [99]Manoli E, Samara C. Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis[J]. TrAC Trends in Analytical Chemistry, 1999, 18(6): 417-428
    [100]Jiang B, Zheng H L, Huang G Q, et al. Characterization and distribution of polycyclic aromatic hydrocarbon in sediments of Haihe River, Tianjin[J]. Journal of Environmental Sciences, 2007, 19: 306-311
    [101]Tripathi R, Kumar R, Mudiam M K R, et al. Distribution, sources and characterization of polycyclic aromatic hydrocarbons in the sediment of the River Gomti, Lucknow, India[J]. Bulletin of environmental contamination and toxicology, 2009, 83(3): 449-454
    [102]Botsou F, Karageorgis A P, Dassenakis E, et al. Assessment of heavy metal contamination and mineral magnetic characterization of the Asopos River sediments (Central Greece)[J]. Marine Pollution Bulletin, 2011, 62(3): 547-563
    [103]Eze P N, Udeigwe T K, Stietiya M H. Distribution and potential source evaluation of heavy metals in prominent soils of Accra Plains, Ghana[J]. Geoderma, 2010, 156(3-4): 357-362
    [104]Zuo Q, Duan Y H, Yang Y, et al. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China[J]. Environmental Pollution, 2007, 147(2): 303-310
    [ 105]Doelsch E, Van de Kerchove V, Saint Macary H. Heavy metal content in soils of Renion (Indian Ocean)[J]. Geoderma, 2006, 134(1-2): 119-134
    [ 106]Opfer S E, Farver J R, Miner J G, et al. Heavy metals in sediments and uptake by burrowing mayflies in western Lake Erie basin[J]. Journal of Great Lakes Research, 2011, 37(1): 1-8
    [107]Yuan G, Liu C, Chen L, et al. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China[J]. Journal of Hazardous Materials, 2011, 185(1): 336-345
    [108]Gocht T, Moldenhauer K, Puttmann W. Historical record of polycyclic aromatic hydrocarbons (PAH) and heavy metals in floodplain sediments from the Rhine River (Hessisches Ried, Germany)[J]. Applied Geochemistry, 2001, 16(15): 1707-1721
    [109]王震。辽宁地区土壤中多环芳烃的污染特征、来源及致癌风险[D]。大连理工大学,2007
    [110]许云竹,花修艺,董德明,等。地表水环境中PAHs源解析的方法比较及应 用[J]。吉林大学学报(理学版),2011(3):565-574
    [111]黄小平。源解析受体模型在伶仃洋沉积物重金属污染研究中的应用[J]。热带海洋,1995(1)
    [112]欧冬妮。长江口滨岸多环芳烃(PAHs)多相分布特征与源解析研究[D]。上海:华东师范大学,2007
    [113]Li A, Jang J K, Scheff P A. Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago[J]. Environmental science & technology,2003,37(13):2958-2965
    [114]Engelbrecht J P, Swanepoel L, Chow J C, et al. The comparison of source contributions from residential coal and low-smoke fuels, using CMB modeling, in South Africa[J]. Environmental Science & Policy,2002,5(2):157-167
    [115]Liu Y, Chen L, Huang Q, et al. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China[J]. Science of The Total Environment,2009,407(8):2931-2938
    [116]Kavouras I G, Koutrakis P, Tsapakis M, et al. Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods[J]. Environmental Science & Technology,2001,35(11): 2288-2294
    [117]Arditsoglou A, Samara C. Levels of total suspended particulate matter and major trace elements in Kosovo:a source identification and apportionment study[J]. Chemosphere,2005,59(5):669-678
    [118]USEPA. Method 3050B Acid Digestion of Sediments, Sludges, and Soils[S]. Revision 2 ed. United States Environmental Protection Agency,1996
    [119]USEPA. Method 3031 Acid Digestion of Oils for Metals Analysis by Atomic Absorption or Icp Spectroscopy[S]. Revision 0 ed. United States Environmental Protection Agency,1996
    [120]USEPA. Method 7000B Flame Atomic Absorption Spectrophotometry[S]. Revision 2 ed. United States Environmental Protection Agency,2007
    [121]USEPA. Method 8270C Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)[S]. Revision 3 ed. United States Environmental Protection Agency,1996
    [122]USEPA. Method 8310 Polynuclear Aromatic Hydrocarbons[S]. Revision 0 ed. United States Environmental Protection Agency,1986
    [123]USEPA. Method 8275A Semivolatile Organic Compounds (PAHs and PCBs) in Soils/Sludges and Solid Wastes Using Thermal Extraction/Gas Chromatography/Mass Spectrometry (TE/GC/MS)[S]. Revision 1 ed. United States Environmental Protection Agency,1996
    [124]Gan S, Lau E V, Ng H K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs)[J]. Journal of Hazardous Materials,2009, 172(2-3):532-549
    [125]Sun P, Weavers L K, Taerakul P, et al. Characterization of polycyclic aromatic hydrocarbons (PAHs) on lime spray dryer (LSD) ash using different extraction methods[J]. Chemosphere,2006,62(2):265-274
    [126]江锦花,陈涛。超声萃取-气相色谱-质谱联用测定海洋沉积物中39种多溴联苯醚残留[J]。分析化学,2009,37(11):1627-1632
    [127]刘美华,邱彬,陈国南,等。超声辅助离子液体分散液相微萃取-高效液相色谱法测定废水中雌激素的研究[J]。分析测试技术与仪器,2009,15(3):151-157
    [128]Carabias-Martinez R, Rodriguez-Gonzalo E, Revilla-Ruiz P, et al. Pressurized liquid extraction in the analysis of food and biological samples[J]. Journal of Chromatography A,2005,1089(1-2):1-17
    [129]周丽屏,郭璇华。超临界流体萃取技术及其应用[J]。现代仪器,2006,12(4):18-20,24
    [130]Kemmei T, Kodama S, Muramoto T, et al. Study of solid-phase extraction for the determination of sequestering agents in river water by high-performance liquid chromatography[J]. Journal of Chromatography A,2009,1216(7):1109-1114
    [131]de Castro M D L. Determination of oxalic acid in urine:A review[J]. Journal of Pharmaceutical and Biomedical Analysis,1988,6(1):1-13
    [132]Lambropoulou D A, Albanis T A. Application of solvent microextraction in a single drop for the determination of new antifouling agents in waters[J]. Journal of Chromatography A,2004,1049(1-2):17-23
    [133]Berijani S, Assadi Y, Anbia M, et al. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection::Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water[J]. Journal of Chromatography A,2006,1123(1):1-9
    [134]Bernardo M, Gon Alves M, Lapa N, et al. Determination of alkylphenols in eluates from pyrolysis solid residues using dispersive liquid-liquid microextraction[J]. Chemosphere,2010,79(11):1026-1032
    [135]Leong M, Huang S. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection [J]. Journal of Chromatography A, 2008,1211(1-2):8-12
    [136]胡兰萍,李燕,张琳,等。遥感FTIR在大气环境监测中的新发展[J]。光谱学与光谱分析,2006(10):1863-1867
    [137]孙震,苏尚典,益建芳。遥感综合技术在城市环境监测中的作用[J]。测绘与空间地理信息,2006(2):92-95
    [138]戴前伟,杨震中。遥感技术在环境监测中的应用[J]。西部探矿工程,2007(4):209-211
    [139]季惠颖,赵碧云。遥感技术在环境监测中的应用综述[J]。环境科学导刊,2008(2):21-24
    [140]Ben-Dor E, Chabrillat S, Dematt J A M, et al. Using imagin spectroscopy to study soil properties [J]. Remote Sensing of EnvironmentImaging Spectroscopy Special Issue,2009,113(Supplement 1):S38-S55
    [141]Kwarteng A Y. Multitemporal remote sensing data analysis of Kuwait's oil lakes[J]. Environment InternationalThe Long-term Environmental Effects of the Gulf War,1998,24(1-2):121-137
    [142]Ud Din S, Al-Dousari A, Ramdan A, et al. Site-specific precipitation estimate from TRMM data using bilinear weighted interpolation technique:An example from Kuwait[J]. Journal of Arid Environments,2008,72(7):1320-1328
    [143]Ud Din S, Al Dousari A, Literathy P. Evidence of hydrocarbon contamination from the Burgan oil field, Kuwait--Interpretations from thermal remote sensing data[J]. Journal of Environmental Management,2008,86(4):605-615
    [144]王瑗,盛连喜,李科,等。石油污染土壤的近红外波段偏振光特性测量[J]。科学通报,2008(23):2956-2961
    [145]Ud Din S, Al-Dousari A, Al-Ghadban A, et al. Use of interferometric techniques for detecting subsidence in the oil fields of Kuwait using Synthetic Aperture Radar Data[J]. Journal of Petroleum Science and Engineering,2006,50(1):1-10
    [146]Hitzig R, Chaudet R, Emarson M. Expedited Site Assessment Tools For Underground Storage Tank Sites:Chapter Ⅵ Field Methods For The Analysis Of Petroleum Hydrocarbons [R]. Washington, DC:Office of Underground Storage Tanks, OSWER,1997
    [147]USEPA. Method 4030 Soil Screening for Petroleum Hydrocarbons by Immunoassay[S]. Revision 0 ed. United States Environmental Protection Agency, 1996
    [148]USEPA. Method 4035 Soil Screening for Polynuclear Aromatic Hydrocarbons by Immunoassay[S]. Revision 0 ed. United States Environmental Protection Agency, 1996
    [149]USEPA. Method 9074 Turbidimetric Screening Method for Total Recoverable Petroleum Hydrocarbons in Soil[S]. Revision 0 ed. United States Environmental Protection Agency,2007
    [150]Sitelab. Case Studies using TD-500 analyzer[EB/OL]. http://www.site-lab.com/TD500_Applications.htm
    [151]Sitelab. Ultraviolet Fluorescence Technology[EB/OL]. http://www.site-lab.com/uvf_technology.htm
    [152]CHEMetries. CHEMetrics, Inc. Instrumental Kits[EB/OL]. http://www.chemetrics.com/Total%20Petroleum%20Hydrocarbons%20(TPH)%2 0in%20Soil/Instrumental+Kits/I-9312
    [153]Dexsil. Dexsil PetroFLAG Analyzer System[EB/OL]. http://www.dexsil.com/products/detail.php?product_id=23#tech_hint
    [154]Wilksir. Oil/Grease Analyzers[EB/OL]. http://www.wilksir.com/oilgrease-analyzers
    [155]SDIX.Testing for Petroleum TPH BTEX in Soil[EB/OL]. http://www.sdix.com/Products/KitProduct.aspx?id=364
    [156]周文敏,傅德黔。水中优先控制污染物黑名单[J]。中国环境监测,1990,6(4):1-3
    [157]周文敏,傅德黔,孙宗光。中国水中优先控制污染物黑名单的确定[J]。环境科学研究,1991,4(6):9-12
    [158]中石油。大庆油田概况[EB/OL]。http://www.cnpc.com.cn/dq/dqyt/qyjj/
    [159]百度百科。大庆油田[EB/OL]。http://baike.baidu.com/view/24076.htm
    [160]中石油。大庆油田采油一厂[EB/OL]。http://www.cnpc.com.cn/dq/daqing/cyqy/yckf/cy1/
    [161]USEPA. Method 3550c Ultrasonic Extraction[S]. Revision 3 ed. United States Environmental Protection Agency,2007
    [162]USEPA. Method 3630c Silica Gel Cleanup[S]. Revision 3 ed. United States Environmental Protection Agency,1996
    [163]袁义生,刘应忠,罗明学,等。应用MAPGIS制作地球化学图单元素异常图及综合异常图[J]。贵州地质,2007,24(2):156-160
    [164]王德明。水体TOC与COD(Cr)、BOD5、COD(Mn)相关性研究[J]。化学分析计量,2010(3):61-64
    [165]贾建丽,刘莹,李广贺,等。油田区土壤石油污染特性及理化性质关系[J]。化工学报,2009(3):726-732
    [166]李波。石油烃的污染及其检测方法综述[J]。广东化工,2010,37(4):269-271
    [167]程彬,姜琦刚,王坤。遥感在土壤有机质含量估算中的应用及其研究进展[J]。山东农业大学学报(自然科学版),2011(2):317-321
    [168]韩瑞珍,宋韬,何勇。基于可见/近红外光谱的土壤有机质含量预测[J]。中国科学:信息科学,2010(S1):111-116
    [169]李鱼,郑爽,王江玲,等。基于BP神经网络模型的催化湿式氧化正丁酸反应条件的优化[J]。吉林大学学报(理学版),2009(2):397-402
    [170]Al-Hassan J M, Afzal M, Rao C, et al. Petroleum hydrocarbon pollution in sharks in the Arabian Gulf[J]. Bulletin of environmental contamination and toxicology, 2000,65(3):391-398
    [171]翟虎渠。尽快开展农业土壤污染等级划分研究[EB/OL]。 http://www.jieyue.net/html/xnc/page/homepage_show34621.htm
    [172]王哲,张国盛,王颖。包钢尾矿坝土壤重金属污染诊断[J]。安徽农业科学,2008(12):5149-5150
    [173]Gerlach S A. Marine pollution--Diagnosis and therapy[M]. Berlin: Springer-Verlag,1981:238
    [174]毕新慧,盛国英,谭吉华,等。多环芳烃(PAHs)在大气中的相分布[J]。环境科学学报,2004(1):101-106
    [175]王国平,刘景双,汤洁。无尾河下游湿地重金属污染评价[J]。农村生态环境,2004(2):50-54
    [176]Hamadoun B, Tang J, Lin N. Groundwater quality and contamination index mapping in Changchun City, China[J]. Chinese Geographical Science,2004(1): 63-70
    [177]Ibarra-Berastegi G, Elias A, Barona A, et al. From diagnosis to prognosis for forecasting air pollution using neural networks:Air pollution monitoring in Bilbao[J]. Environmental Modelling & Software,2008,23(5):622-637
    [178]翟航,卢文喜,杨威,等。模糊数学和污染指数法在土壤重金属污染中的应用[J]。土壤,2008,40(02):212-215
    [179]黄彩霞,张江山,李小梅。宽域灰色聚类法在土壤环境质量评价中的应用[J]。环境科学导刊,2009,28(04):61-64
    [180]Forstner U, Ahlf W, Calmano W. Sediment criteria development contributions from environmental geochem istry to water quality management[A], In:Heling D, Ro the P, Fo rstner U, etal, eds. S ed em ents and E nv ironm ental Geochem istry;Selected Aspects and Case H istories[M]. Springer Verlag:Berlin Heidelberg,1990:311-338
    [181]刘衍君,汤庆新,白振华,等。基于地质累积与内梅罗指数的耕地重金属污染研究[J]。中国农学通报,2009(20):174-178
    [182]de Rond M E J, Ms, de Wit R, et al. A Pain Monitoring Program for Nurses: Effects on Communication, Assessment and Documentation of Patients' Pain[J]. Journal of Pain and Symptom Management,2000,20(6):424-439
    [183]吴晓霞,黄芳,陈昌云。秦淮河底泥重金属污染评价[J]。南京晓庄学院学报,2009(6):36-39
    [184]周秀艳,王恩德,王宏志。辽西滨海矿集区重金属污染与评价[J]。土壤,2004(4):387-391
    [185]周秀艳,王恩德,刘秀云,等。辽东湾河口底质重金属环境地球化学[J]。地球化学,2004(3):286-290
    [186]陈桂芬,黄武杰,张丽明,等。南宁市菜地土壤及蔬菜重金属污染状况调查与评价[J]。广西农业科学,2004(05):571-575
    [187]程继雄,程胜高,张炜。地下水质量评价常用方法的对比分析[J]。安全与环境工程,2008(02):23-25
    [188]黄东亮。我国饮用水源水质评价的新方法[J]。水文,2001,19(S1):62-64
    [189]刘崇洪。几种土壤质量评价方法的比较[J]。干旱环境监测,1996(01):26-29
    [190]侯克复。环境系统工程[M]。北京:北京理工大学出版社,1992:530
    [191]陈仁杰,钱海雷,阚海东。水质评价综合指数法的研究进展[J]。环境与职业医学,2009(6):581-584
    [192]谷朝君,潘颖,潘明杰。内梅罗指数法在地下水水质评价中的应用及存在问题[J]。环境保护科学,2002(01):45-47
    [193]赵孟芹。计算水质综合指数的一种新模式[J]。水文,2002,22(5):44-46
    [194]马成有,曹剑锋,姜纪沂,等。改进的尼梅罗污染指数法及其应用——以磐石市地下水环境质量评价为例[J]。水资源保护,2006,22(4):53-55
    [195]韩立岩,汪培庄。应用模糊数学[M]。北京:首都经济贸易大学出版社,1998:340
    [196]舒冬妮。用模糊数学综合评判土壤中重金属污染程度的探评[J]。农业环境保护,1989,8(5):30-32
    [197]张志泉,潘武。综述环境质量评价方法[J]。黑龙江环境通报,2004(03)
    [198]S Nchez E, Colmenarejo M F, Vicente J, et al. Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution[J]. Ecological Indicators,2007,7(2):315-328
    [199]贾玉霞。环境质量综合指数评价方法的应用[J]。城市环境与城市生态,2003,16(S1):10-11
    [200]黄兴国,刘秀花。水环境质量评价中几种方法的对比[J]。地下水,2005,27(2):125-126
    [201]吴梅,钱翌。灰关联分析法在水磨河水环境质量评价中的应用[J]。安全与环境工程,2006,13(1):26-29
    [202]Terziyska A, Waltschewa L, Venkov P. A new sensitive test based on yeast cells for studying environmental pollution[J]. Environ Pollut,2000,109(1):43-52
    [203]Bierkens J, Klein G, Corbisier P, et al. Comparative sensitivity of 20 bioassays for soil quality[J]. Chemosphere,1998,37(14-15):2935-2947
    [204]周启星,宋玉芳。污染土壤修复原理与方法[M]。北京:科学出版社,2004
    [205]严雪,沈国兴。水生植物毒性试验及在生态风险评价中的作用[J]。上海环境科学,1998,17(7):24-26
    [206]游秀花,何海斌,聂丽华。重金属对杉木种子发芽与根伸长抑制的生态效应[J]。东北林业大学学报,2006,34(1):7-8
    [207]Bekaert C, Ferrier V, Marty J, et al. Evaluation of toxic and genotoxic potential of stabilized industrial waste and contaminated soils[J]. Waste Management,2002, 22(2):241-247
    [208]李彬,李培军,王晶,等。污染土壤毒性研究方法进展[J]。环境污染治理技术与设备,2003(5):42-46
    [209]宋玉芳,龚平。土壤重金属污染对蚯蚓的急性毒性效应研究[J]。应用生态学报,2002,13(2):187-190
    [210]周可新,许木启,曹宏,等。土壤原生动物在环境监测中的应用[J]。动物学杂志,2003,38(1):80-84
    [211]陈玉成。土壤污染的生物修复[J]。环境科学动态,1999(2):7-11
    [212]王桂燕,周启星,胡筱敏,等。四氯乙烯和对二氯苯对草鱼的联合毒性[J]。中国环境科学,2007,27(3):387-390
    [213]窦亚卿,成永旭。糠虾作为毒性试验标准生物的应用与研究进展[J]。实验动物科学与管理,2006,23(3):47-49
    [214]Senapati B K, Biswal J, Pani S C, et al. Ecotoxicological effects of malathion on earthworms[J]. Soil Biology and Biochemistry,1992,24(12):1719-1722
    [215]Blaylock B G, Frank M L, Mccarthy J F. Comparative toxicity of copper and acridine to fish, Daphnia and algae[J]. Environmental toxicology and chemistry, 1985,4(1):63-71
    [216]陈霆,施晓东。利用紫露草微核技术监测抚仙湖水质污染的研究[J]。云南大学学报:自然科学版,2002,24(3):237-240
    [217]张红波,姬晓娜,张静,等。用蚕豆根尖细胞微核技术监测湛河水质的研究[J]。黑龙江科技信息,2009(25):57
    [218]王宏镔,孟珍贵。利用紫露草微核技术监测滇池水质污染[J]。城市环境与城市生态,1998,11(3):12-15
    [219]郭小颖。利用蚕豆根尖微核技术监测长江南京段水质[J]。环保科技,2008,14(3):47-48
    [220]Wilke B M. Project organization waste management and contaminated site reclamation[R]. Berlin:"Federal Ministry for Education, science, Research and Technology, Germany",1997
    [221]Ritchie J M, Cresser M, Cotter-Howells J. Toxicological response of a bioluminescent microbial assay to Zn, Pb and Cu in an artificial soil solution: relationship with total metal concentrations and free ion activities[J]. Environmental Pollution,2001,114(1):129-136
    [222]环保局。GB/T15441-1995水质急性毒性的测定发光细菌法国家环境保护局,1995
    [223]Strachan G, Preston S, Maciel H, et al. Use of bacterial biosensors to interpret the toxicity and mixture toxicity of herbicides in freshwater[J]. Water Research,2001, 35(14):3490-3495
    [224]蒋代华,赵雪梅,马耀勋。重金属污染土壤的发光菌法研究[J]。安徽农业科学,2008,36(11):4640-4642
    [225]环保局。HJ/T 166-2004土壤环境监测技术规范国家环境保护局,2004
    [226]叶文虎,栾胜基。环境质量评价学[M]。北京:高等教育出版社,1994
    [227]刘凤枝,刘潇威。土壤和固体废弃物检测分析技术[M]。北京:化学工业出版社,2007:925
    [228]Fu S, Li K, Xia X J, et al. Polycyclic aromatic hydrocarbons residues in sandstorm depositions in Beijing, China.[J]. Bulletin of Environmental Contamination and Toxicology,2009,82(2):162-166
    [229]葛成军,安琼,董元华。钢铁工业区周边农业土壤中多环芳烃(PAHs)残留及评价[J]。农村生态环境,2005,21(2):66-69
    [230]于波,孙晓怡,唐伟,等。抚顺地区土壤中多环芳烃分布及污染风险评价[J]。环境保护与循环经济,2008,28(02):43-45
    [231]闫欣荣。修正的内梅罗指数法及其在城市地下饮用水源地水质评价中的应用[J]。地下水,2010(01):6-7
    [232]李亚松,张兆吉,费宇红,等。内梅罗指数评价法的修正及其应用[J]。水资源保护,2009,25(06):48-50
    [233]孟生旺。多指标综合评价中权数的选择[J]。统计研究,1993(02)
    [234]李丽和。石油烃污染场地风险评价及案例研究[D]。北京化工大学,2007
    [235]夏家淇,骆永明。关于土壤污染的概念和3类评价指标的探讨[J]。生态与农村环境学报,2006,22(1):87-90
    [236]陈洪渊。《土壤中化学物质的行为与环境质量》专著评述[J]。土壤学报,2006,43(5): 883
    [237]周国华,秦绪文,董岩翔。土壤环境质量标准的制定原则与方法[J]。地质通报,2005,24(8):721-727
    [238]高怀友,赵玉杰,师荣光,等。区域土壤环境质量评价基准研究[J]。农业环境科学学报,2005(z1):342-345
    [239]魏复盛,陈静生。中国土壤环境背景值研究[J]。环境科学,1991,12(4):12-19
    [240]夏家淇。土壤环境质量标准详解[M]。北京:中国环境科学出版社,1996
    [241]USEPA. Soil Screening Guidance:User's Guide[S]. Washington.DC, Office Of Solid Waste Agency,1996
    [242]USEPA. Soil Screening Guidance:Technical Background Document[S]. Washington.DC, Office Of Solid Waste Agency,1996
    [243]NMED. Technical Background Document for Development of Soil Screening Levels Revision 5.0[S]. New Mexico Environment Department,2009
    [244]WDNR. Soil Cleanup Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Guidance. Technical Resources Section[S]. Wisconsin Department of Natural Resources, Bureau for Remediation and Redevelopment,1997
    [245]KDHE. Risk-based Standards for Kansas Risk Manual-4th Version[S]. Kansas Department of Health and Environment,2007
    [246]NJDEPE. Cleanup Standards for Contaminated Sites[S]. New Jersey Department of Environment and Energy,1992
    [247]WDNR. RR Guidance Commonly Asked QuestionsAbout the Lead (Pb) Soil Standards in Wisconsin[S]. Wisconsin Department of Natural Resources,Bureau for Remediation and Redevelopment,2001
    [248]CEHT. Technical Report:Development of Cleanup Target Levels (CTLs) for Chapter 62-777, F. A. C. Prepared for the Division of Waste Management Florida Department of Environmental Protection[S]. Center For Environmental Human Toxicology University of Florida Gainesville, Florida,2005
    [249]SMDE. Cleanup Standards for Soil and Groundwater[S]. State of Maryland Department of the Environment,2008
    [250]MDEQ. Risk Evaluation Procedures for Voluntary Cleanup and Redevelopment of Brownfield [S]. Sites Mississippi Department of Environmental Quality,2002
    [251]NYSDEC. Determination of Soil Cleanup Objectives and Cleanup Levels[S]. New York State Department of Environmental Conservation,1994
    [252]SCDEP. Regulation Concerning Remediation Standard[S]. State Of Connecticut Department,1996
    [253]王国庆,骆永明,宋静,等。土壤环境质量指导值与标准研Ⅳ.保护人体健康的土壤苯并[a]芘的临界浓度[J]。土壤学报,2007(04):603-611
    [254]DEFRA. The Contaminated Land Exposure Assessment Model (CLEA): Technical basis and algorithms[S]. Department for Environment, Food and Rural Affairs The Environment Agency,2002
    [255]王国庆,骆永明,宋静,等。土壤环境质量指导值与标准研究Ⅰ.国际动态及中国的修订考虑[J]。土壤学报,2005,42(4):666-673
    [256]CCME. A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines[S]. Winnipeg, Canadian Council of Ministers of the Environment,1996
    [257]DEPA. Environmental Guidelines No.7:Guidelines on Remediation of Contaminated Sites[R]. Danish Environmental Protection Agency,2002
    [258]BRGM. French Approach to Contaminated-Land Management:Revision 1. French Geological Survey [S].2003
    [259]JME. Quality Standards for Soil Pollution[S]. Japanese Ministry of the Environment,1994
    [260]VROM Ministry of Housing, Spatial Planning And Environment. Circular on target values and intervention values for soil remediation[S]. VROM,2000
    [261]NEPC. Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater[S]. National Environmental Protection (Assessment of Site Contamination). National Environmental Protection Council,Canberra,1999
    [262]环保局。GB 15618-1995国家土壤环境质量标准国家环境保护总局,1995
    [263]环保局。HJ350-2007展览会用地土壤环境质量评价标准国家环境保护局,2007
    [264]CCME. Interim Canadian Environmental Quality Criteria for Contaminated Sites.Report CCME EPC2-CS34[R]. Winnipeg:"Canadian Council of Ministers of the Environment",1991
    [265]CCME. Guidance Document on the Management of Contaminated Sites in Canada[R]. Winnipeg:"Canadian Council of Ministers of the Environment", 1997
    [266]环保局。HJ/T 25-1999工业企业土壤环境质量风险评价基准国家环境保护总局,1999
    [267]Ji G D, Yang Y S, Zhou Q, et al. Phytodegradation of extra heavy oil-based drill cuttings using mature reed wetland:an in situ pilot study[J]. Environment International,2004,30(4):509-517
    [268]Amellal N, Portal J M, Berthelin J. Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil[J]. Applied Geochemistry,2001,16(14):1611-1619
    [269]Ortega-Calvo J J, Lahlou M, Saiz-Jimenez C. Effect of organic matter and clays on the biodegradation of Phenanthrene in soils[J]. International Biodeterioration & Biodegradation,1997,40(2-4):101-106
    [270]Loureiro S, Ferreira A L G, Soares A M V M, et al. Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays[J]. Chemosphere, 2005,61(2):168-177
    [271]Corbisier P, Thiry E, Diels L. Bacterial biosensors for the toxicity assessment of solid wastes[J]. Environmental Toxicology and Water Quality,1996,11(3): 171-177
    [272]Prokop Z, Cupr P, Zlevorova-Zlamalikova V, et al. Mobility, bioavailability, and toxic effects of cadmium in soil samples[J]. Environmental research,2003,91(2): 119-126
    [273]Ince N H, Dirilgen N, Apikyan I G, et al. Assessment of toxic interactions of heavy metals in binary mixtures:A statistical approach[J]. Archives of environmental contamination and toxicology,1999,36(4):365-372
    [274]Sukul P, Majumder A, Spiteller M. Microbial population and their activities in soil as influenced BY metalaxyl residues[J]. Fresenius Environmental Bulletin, 2008,17(1):103-110
    [275]Weissenfels W D, Klewer H J, Langhoff J. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles:influence on biodegradability and biotoxicity[J]. Applied Microbiology and Biotechnology,1992,36(5):689-696
    [276]Jonsson S, Persson Y, Frankki S, et al. Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent:A multivariate evaluation of the importance of soil characteristics and PAH properties[J]. Journal of Hazardous Materials,2007,149(1):86-96
    [277]ASTM. Designation:D 5660-96 Standard test method for assessing the microbial detoxification of chemically contaminated water and soil using a toxicity test with a luminescent marine bacterium[S]. American Society for Testing Materials, 2004
    [278]信晶,杜显元,李兴春,等。一种利用明亮发光杆菌快速测定石油污染土壤生物毒性的方法[J]。中国环境监测,2011(3):24-27
    [279]Bundy J G, Paton G I, Campbell C D. Combined microbial community level and single species biosensor responses to monitor recovery of oil polluted soil[J]. Soil Biology and Biochemistry,2004,36(7):1149-1159
    [280]Hori H, Inoue T, Toda S, et al. Sensitive acute toxicity testing in two marine shrimp species:collection and rearing of larvae, and changes of acute toxicity values during larval development[J]. Fresenius Environmental Bulletin,2009, 18(8):1480-1490
    [281]Brouwer H, Murphy T, Mcardle L. A sediment-contact bioassay with Photobacterium phosphoreum[J]. Environmental Toxicology and Chemistry, 1990,9(11):1353-1358
    [282]Abdul-Wahab S A, Bakheit C S, Al-Alawi S M. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations[J]. Environmental Modelling & Software,2005, 20(10):1263-1271
    [283]Hwang J, Nettleton D. Principal components regression with data chosen components and related methods[J]. Technometrics,2003,45(1):70-79
    [284]Pant S D, Schenkel F S, Verschoor C P, et al. A principal component regression based genome wide analysis approach reveals the presence of a novel QTL on BTA7 for MAP resistance in holstein cattle[J]. Genomics,2010,95(3):176-182
    [285]Jolliffe I T. Principal component analysis[M]. New York:Springer verlag New York Inc.,2002
    [286]Vega M, Pardo R, Barrado E, et al. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis[J]. Water Research, 1998,32(12):3581-3592
    [287]Koch I, Naito K. Prediction of multivariate responses with a selected number of principal components[J]. Computational Statistics & Data Analysis,2010,54(7): 1791-1807
    [288]Du X, Liu J, Zhang Y, et al. Relationship between soil biotoxicity and levels of heavy metals (Pb, Cd, Cu, Zn, Ni, Cr, Co, Sb, Fe, and Mn) in an oilfield from China[J]. Fresenius Environmental Bulletin,2011,20(1):121-126
    [289]Utgikar V P, Chaudhary N, Koeniger A, et al. Toxicity of metals and metal mixtures:analysis of concentration and time dependence for zinc and copperfJ]. Water Research,2004,38(17):3651-3658
    [290]Fulladosa E, Murat J, Villaescusa I. Study on the toxicity of binary equitoxic mixtures of metals using the luminescent bacteria Vibrio flscheri as a biological target[J]. Chemosphere,2005,58(5):551-557
    [291]Acufia E, Rodriguez C. The treatment of missing values and its effect on classifier accuracy[M]. Classification, clustering and data mining applications, New York:Springer-Verlag New York Inc,2004,639-647
    [292]Olamiti A O, Osofisan A O. Experimental Comparison of Missing Value Treatment Methods in Students'Enrolment Data[J]. European Journal of Scientific Research,2009,33(4):546-574
    [293]Jolliffe I T. Principal Component Analysis[M]. New York:Springer Verlag,2002: 173
    [294]Wang Y, Shi J, Lin Q, et al. Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient[J]. Journal of Environmental Sciences,2007,19(7):848-853
    [295]郭炜锋,戴树桂。水环境多环芳烃源解析研究进展[J]。环境污染治理技术与设备,2005(10)
    [296]Mackay D, Hickie B. Mass balance model of source apportionment, transport and fate of PAHs in Lac Saint Louis, Quebec[J]. Chemosphere,2000,41(5):681-692
    [297]Gleser L J. Some thoughts on chemical mass balance models[J]. Chemometrics and intelligent laboratory systems,1997,37(1):15-22
    [298]苏丹,唐大元,刘兰岚,等。水环境污染源解析研究进展[J]。生态环境学报,2009(2):749-755
    [299]郭芬,张远。水环境中PAHs源解析研究方法比较[J]。环境监测管理与技术,2008(5):11-16
    [300]胡成,王彤,苏丹,等。水环境中污染物的源解析方法及其应用[J]。水资源保护,2010(1):57-62
    [301]刘春慧,田福林,陈景文,等。正定矩阵因子分解和非负约束因子分析用于大辽河沉积物中多环芳烃源解析的比较研究[J]。科学通报,2009(24):3817-3822
    [302]Bai J, Xiao R, Cui B, et al. Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China[J]. Environmental Pollution,2011,159(3):817-824
    [303]Paatero P, Tapper U. Positive matrix factorization:A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics,1994, 5(2):111-126
    [304]Sofowote U M, Mccarry B E, Marvin C H. Source apportionment of PAH in Hamilton Harbour suspended sediments:comparison of two factor analysis methods[J]. Environmental science & technology,2008,42(16):6007-6014
    [305]Shi G, Li X, Feng Y, et al. Combined source apportionment, using positive matrix factorization-chemical mass balance and principal component analysis/multiple linear regression-chemical mass balance models[J]. Atmospheric Environment, 2009,43(18):2929-2937
    [306]Su M C, Christensen E R, Karls J F, et al. Apportionment of polycyclic aromatic hydrocarbon sources in lower Fox River, USA, sediments by a chemical mass balance model[J]. Environmental toxicology and chemistry,2000,19(6): 1481-1490
    [307]邵学新,吴明,蒋科毅。土壤重金属污染来源及其解析研究进展[J]。广东微量元素科学,2007,14(4):1-6
    [308]王利军,卢新卫,雷凯,等。宝鸡市街尘重金属元素含量、来源及形态特征[J]。环境科学,2011,32(8):2470-2476
    [309]田崇国。中国α-六六六土壤残留分布特征及源汇解析的数值模拟研究[D]。哈尔滨:哈尔滨工业大学,2009
    [310]Maia P D, Maurice L, Tessier E, et al. Mercury distribution and exchanges between the Amazon River and connected floodplain lakes[J]. Science of the Total Environment,2009,407(23):6073-6084
    [311]李勇,周永章,窦磊,等。基于多元统计和傅立叶和谱分析的土壤重金属的来源解析及其风险评价[J]。地学前缘,2010(4):253-261
    [312]林燕萍,赵阳,胡恭任,等。多元统计在土壤重金属污染源解析中的应用[J]。地球与环境,2011(4):536-542
    [313]王学松,秦勇。徐州城市表层土壤中重金属环境风险测度与源解析[J]。地球化学,2006,35(1):88-94
    [314]刘颖。上海市土壤和水体沉积物中多环芳烃的测定方法、分布特征和源解析[D]。上海:同济大学,2008
    [315]Peon O, Rinnert E, Lehaitre M, et al. Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS)[J]. Talanta,2009,79(2):199-204
    [316]Schmidt H, Bich Ha N, Pfannkuche J, et al. Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS)[J]. Marine Pollution Bulletin,2004, 49(3):229-234
    [317]USEPA. Innovative Technology Verification Report:Field Measurement Technologies for Total Petroleum Hydrocarbons in Soil:siteLAB Corporation siteLAB Aalytical Test Kit UVF-3100A[R]. Washington, DC:Office of Research and Development,2001
    [318]USEPA. Field Measurement Technologies for Total Petroleum Hydrocarbons in Soil, siteLAB Corporation, siteLAB Analytical Test Kit UVF-3100A[R]. Washington, DC:Office of Research and Development,2001
    [319]USEPA. Innovative Technology Verification Report:Field Measurement Technologies for Total Petroleum Hydrocarbons in Soil:CHEMetrics, Inc., and AZUR Environmental, Ltd., RemediAid Total Petroleum Hydrocarbon Starter Kit[R]. Washington, DC:Office of Research and Development,2001
    [320]USEPA. Field Measurement Technologies for Total Petroleum Hydrocarbons in Soil, CHEMetrics, Inc., and AZUR Environmental, Ltd., RemediAid Total Petroleum Hydrocarbon Starter Kit[R]. Washington, DC:Office of Research and Development,2001
    [321]USEPA. Innovative Technology Verification Report:Field Measurement Technologies for Total Petroleum Hydrocarbons in Soil:Dexsil Corporation PetroFlag System[R]. Washington, DC:Office of Research and Development, 2001
    [322]USEPA. Field Measurement Technologies for Total Petroleum Hydrocarbons in Soil, Dexsil Corporation, PetroFLAG System[R]. Washington, DC:Office of Research and Development,2001
    [323]USEPA. Innovative Technology Verification Report:Field Measurement Technologies for Total Petroleum Hydrocarbons in Soil:Wilks Enterprise, Inc. Infracal TOG/TPH Analyzer[R]. Washington, DC:Office of Research and Development,2001
    [324]USEPA. Field Measurement Technologies for Total Petroleum Hydrocarbons in Soil, Wilks Enterprise, Inc., Infracal TOG/TPH Analyzer [R]. Washington, DC: Office of Research and Development,2001
    [325]Kneipp K, Moskovits M, Kneipp H. Surface-enhanced raman scattering[M]. Berlin:Springer,2006
    [326]宫衍香,吕刚,马传涛。拉曼光谱及其在现代科技中的应用[J]。现代物理知识,2006,18(1):24-28
    [327]张孝芳,齐小花,邹明强,等。表面增强拉曼光谱活性基底与纳米结构[J]。检验检疫科学,2007(S1):78-81
    [328]骆智训,方炎。表面增强拉曼散射光谱的应用进展[J]。光谱学与光谱分析,2006,26(2):358-364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700